
REVIEW
published: 21 June 2019

doi: 10.3389/fneur.2019.00513

Frontiers in Neurology | www.frontiersin.org 1 June 2019 | Volume 10 | Article 513

Edited by:

Ashfaq Shuaib,

University of Alberta, Canada

Reviewed by:

Joshua Z. Willey,

Columbia University, United States

Alexander Tsiskaridze,

Tbilisi State University, Georgia

*Correspondence:

László Csiba

csiba@med.unideb.hu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Stroke,

a section of the journal

Frontiers in Neurology

Received: 27 December 2018

Accepted: 30 April 2019

Published: 21 June 2019

Citation:

Bagoly Z, Szegedi I, Kálmándi R,

Tóth NK and Csiba L (2019) Markers

of Coagulation and Fibrinolysis

Predicting the Outcome of Acute

Ischemic Stroke Thrombolysis

Treatment: A Review of the Literature.

Front. Neurol. 10:513.

doi: 10.3389/fneur.2019.00513

Markers of Coagulation and
Fibrinolysis Predicting the Outcome
of Acute Ischemic Stroke
Thrombolysis Treatment: A Review of
the Literature
Zsuzsa Bagoly 1,2†, István Szegedi 3†, Rita Kálmándi 1, Noémi Klára Tóth 1 and

László Csiba 2,3*†

1Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen,

Debrecen, Hungary, 2MTA-DE Cerebrovascular and Neurodegenerative Research Group, University of Debrecen, Debrecen,

Hungary, 3Department of Neurology, Clinical Centre, University of Debrecen, Debrecen, Hungary

Intravenous administration of recombinant tissue plasminogen activator (rt-PA) has

been proven to be safe and effective in the treatment of acute ischemic stroke. Little

is known, however, why this treatment is less effective in some patients while in

others life-threatening side-effects, e.g., symptomatic intracerebral hemorrhage might

occur. Clinical failure of thrombolysis related to absent or partial recanalization or

reocclusion as well as hemorrhagic complications of thrombolysis are possibly related

to hemostatic events. Data on markers of coagulation and/or fibrinolysis in acute stroke

patients are numerous and may provide indications regarding therapy outcomes. Better

understanding of the hemostatic and fibrinolytic system during rt-PA therapy might be

clinically useful and ultimately might lead to an improvement in the efficacy or safety

of this treatment. Studies on thrombus composition retrieved from cerebral arteries may

also advance our knowledge and provide a key to improve acute stroke therapy. Here we

provide a comprehensive review on a wide range of factors and markers of coagulation

and fibrinolysis that have been studied in the context of thrombolysis outcome in ischemic

stroke patients. Moreover, a brief summary is given on the most recent research on

thrombus composition having a potential influence on outcomes.

Keywords: thrombolysis, coagulation, fibrinolysis, stroke, outcome

INTRODUCTION

Ischemic stroke is one of the most important and serious vascular diseases affecting millions
of people all over the world (1). By causing paresis, gait disturbance, speech disturbances and
other symptoms stroke increases morbidity and mortality significantly (2). Despite the emerging
importance of endovascular stroke therapy, e.g., mechanical thrombectomy (3), the primary
treatment of acute ischemic stroke today is thrombolysis using recombinant tissue plasminogen
activator within the therapeutic time window. The 1995 National Institute of Neurological
Disorders and Stroke rt-PA (recombinant tissue plasminogen activator) Stroke Study (NINDS trial)
was a milestone for stroke therapy as it proved that treating ischemic stroke patients with rt-PA
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within 3 h of the onset of stroke symptoms results in a
considerable neurological improvement at 3months as compared
to the placebo group without significant change in mortality (4).
The ECASS (European Cooperative Acute Stroke Study) III trial
showed that intravenous rt-PA treatment is efficient beyond the
time window of 3 h as compared to placebo in a certain group of
ischemic stroke patients (5). By extending the time window to up
to 4.5 h, 52.4% of patients had a favorable outcome as compared
to the placebo group. Despite the unquestionable effectiveness of
rt-PA in the treatment of acute ischemic stroke, this treatment
is not a remedy for all. The rate of early recanalization using
rt-PA is ∼25% in patients with a proximal middle cerebral
artery occlusion and only 10% in patients with an internal
carotid occlusion (6). Additionally, the rate of re-occlusion is
as high as 30% (7). Besides recanalization failure, about 6–
8% of patients develop intracranial hemorrhage as side-effect,
despite taking all precautionary steps to minimize bleeding risk
(8). Little is known why in some patients recanalization failure
occurs while in others bleeding will take place. In theory, the
effect of rt-PA might depend on hemostasis factors affecting
clot structure. The aim of this review article is to provide an
insight on coagulation and fibrinolysis parameters that can have
an impact on or were shown to have an association with the
outcome of thrombolysis in ischemic stroke patients. Recent
studies on thrombus composition obtained via endovascular
treatment from the cerebral arteries of ischemic stroke patients
are also summarized.

BRIEF OVERVIEW OF THE
NON-HEMOSTASIS FACTORS AFFECTING
THROMBOLYSIS OUTCOME

Although the Safe Implementation of Thrombolysis in Stroke-
MOnitoring STudy (SITS-MOST) proved the efficiency and
safety of intravenous rt-PA (8), our understanding of predictive
factors affecting thrombolysis outcomes is still limited. Poor
outcome of thrombolysis is generally defined at 3 months
post-event as a modified Rankin score (mRS) of 3 or more
(less frequently 2 or more), which includes mortality (mRS
= 6) (9). Thrombolytic therapy-related hemorrhage has been
defined by the NINDS, ECASS I, ECASS II, ECASS III, and the
SITS-MOST studies. (10) Symptomatic intracranial hemorrhage
(sICH) was defined as any neurological deterioration associated
with hemorrhage within 36 h of rt-PA therapy in the NINDS
trial, while in ECASS III and SITS-MOST studies intracranial
hemorrhage and ≥4 point increase in baseline NIHSS was
considered as sICH [for a comprehensive review, see (10)].
There are several baseline clinical factors which may affect the
outcomes of rt-PA therapy including male gender, stroke severity
on admission, infarct size, advanced age, hyperglycaemia, etc.,
nevertheless, due to their low predictive value, these factors
are mostly unhelpful for individual treatment decisions (9).
Wahlgren et al. adjusted the outcomes of the SITS-MOST to
the baseline characteristics of randomized, controlled trials in
order to find parameters that can predict the outcome of the
thrombolysis (11). In a multivariable analysis it was found

that older age, high blood glucose, high National Institutes of
Health Stroke Scale (NIHSS) score and definitive ischemic lesion
on imaging scans were related to poor outcome (mRS 3–6).
Male sex, disability before the actual stroke (modified Rankin
Score 2–5), congestive heart failure, diastolic blood pressure,
antiplatelet therapy other than aspirin, treatment in new centers
were associated with higher mortality at the third month of the
follow-up. Atrial fibrillation, systolic blood pressure, and weight
were predictors of the occurrence of sICH, but current smokers
had a lower rate of sICH.

Among standard baseline laboratory parameters, few were
found to be associated with thrombolysis outcomes. In a
systematic review based on 54 previous reports unadjusted and
adjusted meta-analysis of high admission glucose level showed
association with poor outcome (mRS≥2) and sICH (12). In a
relatively large study, admission neutrophil count and neutrophil
to lymphocyte ratio was found to be independently associated
with increased risk of sICH and worse outcomes (mRS≥3) at 3
months (13).

The disruption of blood-brain barrier (BBB) is thought to
be associated with post-lysis ICH (14). Early detection of BBB
changes using imaging techniques (contrast-enhanced MRI or
CT) are promising tools to predict hemorrhagic transformation
(15, 16). The emerging role of imaging techniques in identifying
therapy failure and safety is out of the scope of this review,
interested readers should consult recent publications (17, 18).

Unfortunately, despite all efforts to predict patient subgroups
that are more likely to clearly benefit or not benefit from
intravenous thrombolysis, it is not yet possible to predict
individual outcomes infallibly based on the above listed baseline
clinical, standard laboratory or imaging variables (19). Moreover,
known predictors of worse functional outcome due to inefficacy
of therapy and the predictors of symptomatic intracranial
hemorrhage show an overlap. This suggests a potential role for
other factors in the diverse pathomechanisms ultimately leading
to poor clinical outcomes.

Here we give a comprehensive list of hemostasis parameters
that were reported to be associated with thrombolysis outcomes.
Hemostasis parameters showing significant association with
hemorrhagic transformation after thrombolysis are summarized
in Table 1, while markers with a significant association regarding
poor outcome based on mRS are listed in Table 2. A
simplified overview of the coagulation and fibrinolytic system
and cited literature investigating the potential role of certain
factors/markers in the outcome of thrombolytic therapy is
provided on Figure 1.

COAGULATION FACTORS/MARKERS OF
COAGULATION ACTIVATION ASSOCIATED
WITH THROMBOLYSIS OUTCOMES

Fibrinogen
Fibrinogen is a central protein of hemostasis, although it has
considerable non-hemostasis related functions as well: it plays a
role in cellular and matrix interactions, inflammatory response,
wound healing, cancer progression (29). Fibrinogen is the
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TABLE 1 | Hemostasis markers associated with hemorrhagic transformation after acute ischemic stroke thrombolysis.

Predictive

marker

References Definition

of ICH

Time of blood

collection

Cut-off value OR 95% CI P ICH/Total

patient

cohort

aSICH/

SICH

Association with

outcome

Fibrinogen Sun et al. (20) ECASS I 2 h post-lysis <2 g/L 12.82 1.13–145.80 0.04 17 (6 ePH

and 11

eHI)/72

n.a. Higher risk of ePH

Fibrinogen Vandelli et al. (21) NINDS 2h post-lysis <2 g/L and/or

>25% decrease

7.43 2.620–21.100 < 0.001 24/104 18/6 Higher risk of ICH

Fibrinogen Matosevic et al. (22) NINDS 6h post-lysis decrease of ≥2

g/L (1 fibrinogen

0–6 h)

4.53 2.39–8.60 < 0.0001 47/547 14/33 Higher risk of

SICH and major

systemic bleeding

ETP Hudák et al. (23) ECASS II Before

thrombolysis

<1265.9 nM x min 17.54 1.45–212.72 < 0.05 13/120 7/6 Higher risk of SICH

Peak

thrombin

Hudák et al. (23) ECASS II Before

thrombolysis

<204.7 nM 15.12 1.38–166.02 < 0.05 13/120 7/6 Higher risk of SICH

PAI-1 Ribo et al. (24) ECASS I Before

thrombolysis

<21.4 ng/mL 12.75 1.17–139.2 0.04 17/77 11/6 Higher risk of SICH

TAFI Ribo et al. (24) ECASS I Before

thrombolysis

>180% 12.9 1.41–118.8 0.02 17/77 11/6 Higher risk of SICH

FDP Trouillas et al. (25) ECASS I 2 h post-lysis Increase by >200

mg/L as

compared to

baseline

4.95 1.09–22.4 0.03 42 (11 ePH

and 31

eHI) /157

n.a. Higher risk of ePH

FDP Sun et al. (20) ECASS I 2 h post-lysis n.a.* 7.50 1.26-44.61 0.03 17 (6 ePH

and 11

eHI)/72

n.a. Higher risk of ePH

D-dimer Hsu et al. (26) ECASS II 24 h post-lysis n.a.* 2.97 1.15–7.70 0.025 37/159 31/6 Higher risk of SICH

Only studies showing significant associations with hemorrhagic transformation after thrombolysis are summarized. aSICH, asymptomatic intracerebral hemorrhage; CI, confidence

interval; ECASS, European Cooperative Acute Stroke Study; eHI, early hemorrhagic infarct; ePH, early parenchymal hematoma; ETP, endogenous thrombin potential; FDP, fibrin(ogen)

degradation product; ICH, intracerebral hemorrhage; n.a., not available; NINDS, National Institute of Neurological Disorders and Stroke rt-PA (recombinant tissue plasminogen activator)

Stroke Study; OR, odds ratio; PAI-1, plasminogen activator inhibitor-1; SICH, symptomatic intracerebral hemorrhage; TAFI, thrombin-activatable fibrinolysis inhibitor, *Per unit change

of log transformed data.

substrate of the procoagulant enzyme thrombin that cleaves it
into fibrin. Fibrin forms a branched three-dimensional network
that is cross-linked by activated factor XIII (FXIIIa) in the
last step of the coagulation cascade (30). Cross-linked fibrin
forms a network providing a stable biochemical and biophysical
support to blood clots. Fibrin acts as a cofactor in tPA-
induced plasminogen activation thus linking fibrin formation
and fibrinolysis. Variations in fibrin properties and fibrin clot
structure ultimately affect its degradation by plasmin (29, 31).

Low circulating fibrinogen levels (or a significant early
decrease in fibrinogen levels after therapy) have been associated
with post-thrombolysis hemorrhage in ischemic stroke patients
(Table 1), although some studies showed contradictory results.
In 2004, the phenomena of “early fibrinogen degradation
coagulopathy” was proposed, describing a biological syndrome
predictive of cerebral bleeding post-thrombolysis related to an
early loss of fibrinogen and thus characterized by the increase
of fibrin(ogen) degradation products (FDPs) (25). These results
were later confirmed by other studies, including that of Sun
et al. (20) (Table 1). In that study, 72 consecutive ischemic stroke
patients treated with rt-PA were enrolled, and it was shown
that a decrease in fibrinogen levels at 2 h post-lysis to <2 g/l
multiplies the odds of early parenchymal hemorrhage by a factor
of 12.82. It has to be noted, however, that in another study by

the same authors somewhat different conclusions were reached
(32). In that study 80 consecutive ischemic stroke patients were
involved and changes in coagulation and fibrinolytic parameters
were studied after rt-PA induced thrombolysis. Fibrinogen levels
showed a 20% mean decrease, which was statistically linked to a
decrease in plasminogen levels and it was also related to decreases
of factors inhibiting thrombolysis (FXIII, α2-plasmin inhibitor).
Nevertheless, fibrinogen levels didn’t show a direct correlation
with outcomes.

The concept of low fibrinogen levels being associated with
post-lysis intracranial hemorrhage was confirmed by two other
studies (21, 22) (Table 1). One hundred and four stroke patients,
treated with intravenous thrombolysis, were included in the
study by Vandelli et al. (21). Fibrinogen levels were measured
on admission and 2 h after the thrombolysis. After 7 days of
follow-up 24 patients presented with intracranial hemorrhage, of
whom 6 patients were symptomatic. Among the 24 patients with
intracerebral hemorrhage, 18 belonged to the “low fibrinogen
group” (classified as levels decreased to <2 g/L and/or by 25%
or more). Multivariate logistic regression analysis confirmed
that patients belonging to the “low fibrinogen group” had a
significantly increased risk for therapy-associated intracranial
hemorrhage (OR: 7.47, 95%CI: 2.26–24.74, p < 0.001) and
among the conventional risk factors only baseline NIHSS score
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TABLE 2 | Hemostasis markers associated with poor outcome at 3 months after acute ischemic stroke thrombolysis.

Predictive

marker

References Definition of

poor outcome

Time of blood

collection

Cut-off value OR 95% CI P Poor outcome/Total

patient cohort

Fibrinogen Tanne et al. (27) mRS = 6 24 h post-lysis >1 g/L as

compared to

baseline

1.42 1.05–1.91 n.a. n.a./545

FVIII Tóth et al. (28) mRS ≥ 3 Immediately after

thrombolysis

>168% 7.10 1.77–28.38 0.006 51/131

24 h post-lysis >168% 4.67 1.42–15.38 0.011

VWF Tóth et al. (28) mRS ≥ 3 Immediately after

thrombolysis

>160% 6.31 1.83–21.73 0.003 51/131

24 h post-lysis >160% 19.02 1.94–186.99 0.012

ETP Hudák et al. (23) mRS = 6 Before thrombolysis 1265.9 nM x min 5.28 1.27–21.86 < 0.05 26/120

TAT complex Tanne et al. (27) mRS = 6 24 h post-lysis n.a.* 1.72 1.26–2.34 0.0006 n.a./361

D-dimer Hsu et al. (26) mRS ≥ 3 After initiation of

thrombolysis within

24 h after stroke onset

n.a.* 1.90 1.27–2.86 0.002 79/159

Only studies showing significant associations with poor outcome after thrombolysis are summarized. CI, confidence interval; ETP, endogenous thrombin potential; FVIII, factor VIII; mRS,

modified Rankin Scale; n.a., not available; OR, odds ratio; VWF, von Willebrand Factor; TAT complex, thrombin-antithrombin complex, *per unit change of log transformed data.

FIGURE 1 | Simplified scheme demonstrating the main elements of coagulation, fibrinolysis, and thrombus formation, depicting publications that investigated the

relationship of these elements with the outcome of thrombolytic therapy applied in acute ischemic stroke. α2PI, α2 plasmin inhibitor; FVII, factor VII; FVIIa, activated

factor VII; FVIII, factor VIII; FVIIIa, activated factor VIII; FIXa, activated factor IX; FXIa, activated factor XI; FXIIa, activated factor XII; FXIII, factor XIII; FXIIIa, activated

factor XIII; FXIII-A2B2, plasma (tetramer) form of factor XIII; PAI-1, plasminogen activator inhibitor-1; RBC, red blood cell; TAFI, thrombin-activatable fibrinolysis inhibitor

TAFIa, activated thrombin-activatable fibrinolysis inhibitor; TAT complex, thrombin-antithrombin complex; TF, tissue factor; tPA, tissue plasminogen activator; VWF, von

Willebrand Factor; WBC, white blood cell.

conferred a statistically significant risk (OR: 1.15, 95%CI: 1.06–
1.25, p < 0.001). On the other hand, they also demonstrated
that higher baseline fibrinogen levels seem to enhance the risk

of more significant decrease after thrombolysis. These data are
in line with results published by Matosevic et al. who also
showed that a reduction of at least 2 g/L in fibrinogen levels
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at 6 h post-lysis increases the risk of symptomatic intracranial
hemorrhage (22). In this study a relatively large (n = 547)
consecutive stroke patient cohort was investigated, and it was
found that quantification of fibrinogen depletion after stroke
thrombolysis significantly improved routine risk prediction of
bleeding complications.

The association between admission fibrinogen levels and poor
outcomes at 3 months post-lysis is not entirely clear. Tanne
et al. investigated fibrinogen levels among other hemostasis
parameters in patients with acute ischemic stroke from the
NINDS rt-PA Stroke Study (27) (Table 2). Fibrinogen levels
were measured at baseline, at 2 and 24 h after the thrombolysis.
Of the 624 patients of the trial (consisting of rt-PA treatment
and placebo group) the plasma samples of 465 patients were
available at baseline, after 2 h or after 24 h and in the case of
281 patients all 3 plasma samples were available and were used
for further evaluation. Fibrinogen levels showed a decrease at
2 h and remained low after 24 h in the treatment group and the
placebo group as well. Higher levels of fibrinogen at baseline
were associated with infarct lesion volume as detected by CT at 3
months within the entire study cohort (n= 570; p= 0.05). Higher
24 h fibrinogen levels were associated with an approximately 40%
increase in the odds of death by 90 days in the whole study group
(OR: 1.42; 95% CI: 1.05–1.91 per 1 g/L increment), but no other
significant associations with outcomes were detected.

On the other hand, in an earlier study by Marti-Fabregas et al.
including 83 patients treated by intravenous rt-PA, admission
fibrinogen levels showed no association with long-term outcomes
as determined by mRS>2 at 3 months (33). Similarly, in a
most recent paper, fibrinogen levels on admission, at 24 h and
3 months post-event did not differ significantly in patients with
poor outcomes (mRS>2) as compared to those with favorable
outcomes at 3 months (34).

The association of fibrinogen levels on admission with
imaging results found by Tanne et al. were confirmed in a
hyperdense artery study Pikija et al. (35). The authors assessed
on-admission fibrinogen level and clot burden in relation with
the severity of the stroke, the volume of the infarct and in-hospital
mortality in 132 ischemic stroke patients with hyperdense artery
sign admitted within 6 h from the onset of the symptoms.
Thrombolysis was performed in 60% of the patients and
thrombectomy in 44% of them. Increased fibrinogen levels on
admission showed association with smaller clot burden and lower
NIHSS on admission, while patients with decreased fibrinogen
had a higher clot burden and bigger volume of the infarct.
However, in the adjusted statistical model, admission fibrinogen
levels were not associated significantly with in hospital survival
or death.

As conclusion, according to these data assessment of plasma
fibrinogen levels pre- and post-lysis could be potentially useful
to predict post-lysis intracranial hemorrhage but more data is
needed regarding its associations with poor outcomes. It must
be noted that determination of fibrinogen levels by the Clauss
method is a relatively quick, easy and cheap measurement that
can be performed in most clinical laboratories in any hour
of the day, which is a clear advantage as compared to many
other potentially useful biomarkers. Nevertheless, future studies

involving more patients are needed to clearly define its predictive
value and to validate its use as a potential biomarker for rt-PA
associated bleeding events.

Fibrin Clot Structure
The structure of the fibrin clots is determined by genetic and
environmental factors. Fibrin clots composed of thin, highly
branched fibrin fibers are more rigid, less permeable, and
less susceptible to dissolution by fibrinolysis (36). It has been
shown that patients with ischemic stroke have reduced clot
permeability and have features of prothrombotic clot phenotype
as compared to healthy individuals (37). On the other hand,
changes in clot microstructure of ischemic stroke patients
who underwent thrombolysis have been studied scarcely. In a
prospective cohort study by Stanford et al. clot microstructure
was compared in ischemic stroke patients before, at 2–4 h and
at 24 h after thrombolysis to assess the effects of thrombolysis
(38). It was shown that thrombolysis itself has an effect on clot
structure, but due to the relatively small number of patients
who received rt-PA (n = 32) no conclusions were reached
regarding patient outcomes. In a most recent paper by Bembenek
et al. clot properties of 74 ischemic stroke patients undergoing
thrombolysis were studied and their impact on clinical outcome
was assessed (34). Ex vivo plasma fibrin clot formation was
investigated on admission, at 24 h and at 3 months post-
lysis. Compared with the pretreatment values, fibrin networks
assessed at 24 h post-lysis were formed more slowly, were less
compact, composed of thinner fibers, which lysed more rapidly.
Logistic regression adjusted for potential confounders showed
that pretreatment clot lysis time predicted excellent outcome
as measured by mRS (0–1). In conclusion, formation of denser
fibrin clots that show impaired lysability and the pattern of their
changes might be indicative of clinical outcomes in acute stroke
patients treated with thrombolysis.

Factor VII (FVII), Factor VII Activating
Protease (FSAP)
The complex of activated factor VII (FVIIa) and tissue factor is
the most potent activator that initiates the blood clotting cascade
in normal hemostasis (39). FVII levels have been investigated in a
handful of studies involving ischemic stroke patients undergoing
thrombolysis but no relevant association was found between FVII
levels and treatment outcomes or safety (33, 40, 41).

Factor VII activating protease (FSAP)—predominantly
expressed in the liver—is a plasma serine protease that activates
coagulation factor VII as well as pro-urokinase. Besides, FSAP
inactivates tissue factor pathway inhibitor (TFPI), which would
have a procoagulant effect on hemostasis as well (42). One
hundred and twenty acute stroke patients were prospectively
studied by Bustamente et al. in order to determine whether
plasma FSAP levels have an association with recanalization
after thrombolysis (43). The authors found that lower FSAP
antigen levels correlates with a higher chance of recanalization
after thrombolysis, suggesting the involvement of FSAP in
rt-PA induced clot lysis, however, FSAP levels showed no
significant association with poor outcomes (mRS>2) at 3
months post-event.

Frontiers in Neurology | www.frontiersin.org 5 June 2019 | Volume 10 | Article 513

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Bagoly et al. Coagulofibrinolytic Markers Predicting Stroke Outcome

Factor VIII (FVIII), Von Willebrand
Factor (VWF)
Factor VIII (FVIII), a key component of the blood coagulation
system, is a cofactor for factor IXa that converts factor X to the
activated form (FXa). In plasma, it circulates with vonWillebrand
factor (VWF) in a non-covalent complex (44). Associations
between FVIII or VWF levels and stroke thrombolysis outcomes
were investigated in four recent studies (28, 34, 45, 46). Faille
et al. studied VWF levels before rt-PA treatment in 64 acute
ischemic stroke patients (45). No association was found between
VWF levels and poor outcome (mRS>2). In the study by
Tóth et al. 131 consecutive acute ischemic stroke patients
undergoing thrombolysis were investigated and FVIII activity
and VWF levels were determined on admission, immediately
after and 24 h after rt-PA treatment. FVIII levels decreased
significantly immediately after lysis, that was attributed to
plasmin-mediated FVIII degradation. In this study, VWF levels
at all investigated time points and FVIII levels on admission
and 24 h after thrombolysis were associated with worse imaging
results (24 h post-lysis ASPECTS scores). In a binary backward
logistic regression analysis elevated FVIII and VWF levels after
thrombolysis were independently associated with poor long-
term functional outcomes as defined by mRS>2 (Table 2). No
association was found between FVIII levels during thrombolysis
and post-lysis ICH. Navalkele et al. tested FVIII levels of 29
acute ischemic stroke patients on arrival, at 6 h and followed by
12-h intervals up to 72 h. (46) Similarly to previous findings, a
significant decrease in median FVIII level from baseline to 6 h
after thrombolysis was found. Baseline FVIII level and change
in FVIII levels were not associated with recanalization or sICH.
In another study including 74 acute ischemic stroke patients by
Bembenek et al. FVIII levels on admission, at 24 h and 3 months
did not differ significantly in patients with favorable or poor
outcome (mRS>2) (34). To summarize these findings, elevated
FVIII, and VWF levels after thrombolysis treatment might have
a potential prognostic value regarding poor outcomes, but more
studies are warranted on this topic.

Factor XIII (FXIII)
Activated factor XIII (FXIIIa) cross-links fibrin chains in the
last step of the clotting cascade. FXIIIa plays a crucial role in
protecting the fibrin clot against prompt fibrinolysis not only
via fibrin cross-linking but also by cross-linking α2-plasmin
inhibitor (α2-PI) and perhaps other plasma components to the
fibrin clot, thus effectively hindering its proteolysis by plasmin
(17). The association of FXIII levels with thrombolysis outcomes
in ischemic stroke patients has been studied in several papers
(20, 32, 33, 41, 47, 48). Although it might be hypothesized that
a decrease in FXIII level could be a predictor of post-lysis ICH,
no such association was found in any of the investigated study
cohorts. In 3 studies, a decrease of FXIII level was observed after
thrombolytic treatment but it was not related to hemorrhagic
complications (20, 47, 48).

In an early multicenter study investigating 63 acute ischemic
stroke patients receiving intravenous thrombolysis, FXIII levels
on admission were not related to poor outcomes (mRS>2) (33).

In the study by Sun et al. investigating a panel of hemostasis
markers in 80 acute stroke patients treated with rt-PA, FXIII
activity as measured on admission, at 2 h and 24 h post-lysis was
found to have no significant predictive value on recanalization or
poor functional outcome (32). In the study by Schroeder et al.
investigating 66 acute ischemic stroke patients, it was suggested
that the decrease in FXIII levels post-stroke might be associated
with an unfavorable short-term outcome and the authors
expressed the need for larger studies investigating FXIII as a
candidate prognostic marker (47). In a most recent study by our
group FXIII levels were investigated on admission, immediately
after and 24 h after thrombolysis in 132 consecutive patients with
acute ischemic stroke (48). In a backward multiple regression
analysis it was revealed that a FXIII level in the lowest quartile
24 h after thrombolysis is an independent predictor of short-term
mortality (14 days). However, as found by previous studies, FXIII
level was not a predictor of long-term outcome or mortality at
3 months. Major FXIII-A and FXIII-B polymorphisms had no
impact on therapeutic outcomes.

To conclude, in the above mentioned studies, although
interesting trends were seen on low FXIII levels post-event and
short-term outcomes, FXIII levels showed no association with
unfavorable outcomes at 3 months after the event and were not
associated with post-lysis ICH.

Global Markers of Coagulation Activation
(Thrombin Generation,
Thrombin-Antithrombin Complex)
Thrombin generation test is a global hemostasis assay that
provides information on the speed and the amount of generated
thrombin in plasma. The assay in its present form is a relatively
new test but it is a potentially promising laboratory tool to
elucidate coagulation mechanisms in various clinical conditions
(49). Due to this fact the first studies on thrombin generation in
ischemic stroke patients treated with intravenous thrombolysis
were published in the past few years (23, 34, 50, 51) and
patient outcomes were only assessed in two papers (23, 34).
In an early study investigating thrombin generation in stroke
patients, significantly higher peak thrombin concentration was
found as compared to controls, but unfortunately in this study
therapy outcomes were not investigated (50). In the study by
Balogun et al. thrombin generation was assessed in 154 ischemic
stroke patients of which 57 were treated with rt-PA (51). The
authors concluded that endogen thrombin potential (ETP) or
peak thrombin concentrations were not different between stroke
subtypes or as compared to healthy controls, but results were not
correlated with outcomes. Ninety five patients who suffered acute
ischemic stroke were studied by Goldman et al. (52). Seventy
one patients recevied intravenous thrombolysis, the remaining 24
served as control patients. Thrombolysed patients had markedly
decreased thrombin generation parameters measured after 24 h,
with the strongest impact on lag time compared to the baseline
values, but again, results were not correlated with outcomes.

Our group investigated the thrombin generation test in
120 consecutive acute ischemic stroke patients before the
administration of intravenous thrombolysis (23). We found
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that symptomatic intracranial hemorrhage was significantly
associated with low ETP and peak thrombin levels (Table 1).
Moreover, in a multiple logistic regression analysis it was shown
that a low ETP result is an independent predictor of mortality
within the first 2 weeks (OR: 6.03; 95%CI: 1.2–30.16, p < 0.05)
and 3 months after the event (OR: 5.28; 95%CI: 1.27–21.86, p
< 0.05) (Table 2). In the studied patient cohort, ETP was not
significantly lower in those patients who had worse functional
outcomes (mRS 2-5) but survived by the end of the 3rd month.
In the study by Bembenek et al. it was found that a higher peak
thrombin result at baseline is significantly associated with poor
outcome at 3 months post-lysis (34).

Based on these interesting observations, one can conclude that
the thrombin generation test might serve in the future as a useful
tool to predict outcomes and safety of thrombolysis treatment,
but future prospective studies involving large cohorts of patients
are needed.

Antithrombin is a major inhibitor of thrombin, forming a
1:1 stable complex with it (thrombin-antithrombin complex:
TAT). TAT complex is a sensitive marker for the activation of
intravascular coagulation, thus useful for the risk assessment and
diagnosis of thromboembolic events (53). Levels of TAT has been
investigated in the population of the NINDS trial from samples
collected at baseline, at 2 h after treatment and after 24 h post-
lysis (27). TAT levels peaked at 2 h post-treatment selectively
in the rt-PA treatment group. Increased levels of TAT (in the
entire cohort) were associated with higher mortality at the third
month of the follow-up that could have been due to resistance to
recanalization (Table 2).

The association between pretreatment TAT levels and
the outcome of thrombolysis was assessed in an interesting
study by Fernandez-Cadenas et al. as well (54). TAT levels
of 89 patients with middle cerebral artery occlusion were
measured before the administration of rt-PA and the results
correlated with the outcomes. No association was found between
the measured TAT concentrations and the occurrence of
hemorrhagic transformation. Decreased levels of TAT showed
a significant association with better recanalization rates at all
time-points (1 h: OR: 24.8, 95% CI 1.4–434.8, p = 0.028; 2
h: OR: 6.3 95% CI 1.5–27, p = 0.014; 6 h: OR: 6.4 95% CI
1.5–26.5, p = 0.011) after adjustment for stroke risk factors.
Nevertheless, as compared to the study of Tanne, statistically
significant correlation wasn’t found between pre-thrombolysis
levels of TAT and mortality rates.

FIBRINOLYTIC PARAMETERS/MARKERS
OF FIBRINOLYSIS ASSOCIATED WITH
THROMBOLYSIS OUTCOMES

Thrombin-Activatable Fibrinolysis Inhibitor
(TAFI), Plasminogen Activator
Inhibitor-1 (PAI-1)
Endogenous fibrinolysis inhibitors (e.g., TAFI, PAI-1) play an
important role in the balance of coagulation and fibrinolysis and
in theory may be involved in the hemorrhagic transformation
after thrombolysis. After its activation TAFI removes lysine

residues from partially degraded fibrin thus suppresses
fibrinolysis (55). PAI-1 is the main inhibitor of t-PA: by
forming stable complexes with t-PA it effectively blocks
plasminogen activation (56). Moreover, it has been proposed that
t-PA facilitates the disruption of BBB and PAI-1 could prevent
t-PA-induced neuronal degeneration and BBB impairment
(57, 58). Thus, the potential role of PAI-1 in preventing post-lysis
hemorrhagic complications is intriguing.

In a prospective, longitudinal, multicenter, observational
study Alessi et al. investigated the correlation between
consumption of TAFI, activated/inactivated TAFI (TAFIa/ai) and
the severity and outcome of stroke (59). Two groups of 109 stroke
patients were enrolled in the study: one treated (68 patients) and
one untreated with rt-PA (41 patients), furthermore there was a
reference group of 20 patients without stroke. TAFI levels were
sequentially measured in treated and not treated patients. On
admission, patients had higher level of TAFIa/ai than the healthy
reference group matched for age and gender. TAFIa/ai levels
significantly increased at the end of thrombolysis that lasted up
to 4 h. Higher levels of TAFIa/ai showed an association with a
more severe day 2 NIHSS score and an unfavorable mRS score
at day.

The authors concluded that their data demonstrate a
considerable relationship between TAFI levels and early clinical
severity during thrombolysis.

The aim of a study by Fernandez-Cadenas et al. was to evaluate
whether the presence of two relatively common functional
polymorphisms of the PAI-1 and TAFI genes (influencing PAI-
1 and TAFI levels) have impact on recanalization rates of the
middle cerebral artery among stroke patients treated with rt-PA
(60). One hundred and thirty nine patients were enrolled in the
study who all underwent the classic post-stroke diagnostic check-
up (Doppler sonography, echocardiography, long-term ECG
monitoring, complete blood cell count, and special coagulation
tests) and the severity of the stroke was determined using NIHSS
score. Occlusion and recanalization was diagnosed by the means
of transcranial Doppler. There was no association between PAI-
1 4G/5G polymorphism and the rate of recanalization, on the
other hand, TAFI Thr325Ile polymorphism was significantly
associated with recanalization resistance. The combination of the
two polymorphisms doubled the risk of recanalization failure
(OR: 11.1; 95% CI: 1.4–89.8%, p= 0.025).

Kim et al. also aimed to analyze pretreatment fibrinolysis
inhibitor levels in patients who underwent intravenous
thrombolysis and to investigate their potential association with
thrombolysis failure (61). Forty three stroke patients were
enrolled in the study: 17 patients were treated with intravenous
t-PA, 11 with intra-arterial urokinase, and 15 with combined
intravenous t-PA and intra-arterial urokinase. Patients were
categorized into 2 groups according to recanalization (n =

30) or non-recanalization (n = 13), and a group of healthy
volunteers (n = 34) were used as controls. It was found that
plasma PAI-1 levels were increased in patients with acute
stroke, and the increased pretreatment plasma PAI-1 levels were
associated with the failure of the thrombolysis based on post-lysis
angiography. TAFI levels did not differ among the groups of
this cohort.
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Admission PAI-1 and TAFI levels of consecutive rt-PA treated
stroke patients with middle cerebral artery occlusion were
studied by Ribo et al. (24). Seventy seven patients were involved
in the study who had middle cerebral artery occlusion proved by
transcranial Doppler. Patients with hemorrhagic transformation
had lower baseline PAI-1 and higher TAFI levels. The
combination of admission PAI<21.4 ng/mL and TAFI>180%
had a sensitivity of 75% and a specificity of 97.6% predicting
symptomatic intracranial hemorrhage (Table 1), indicating the
need of further studies testing whether these biomarkers could
be useful to improve the safety of thrombolysis.

α2-Plasmin Inhibitor (α2-PI)
α2-PI is one of the most important regulators of fibrinolysis.
It has an inhibitory effect on the fibrinolytic pathway by three
ways: it forms a complex with plasmin; inhibits the binding of
plasminogen to fibrin; and makes fibrin more resistant toward
the effect of plasmin via its own cross-linking to fibrin mediated
by FXIIIa (62).

The levels of α2-PI were found to correlate well with the rate of
recanalization in ischemic stroke patients treated with rt-PA (33).
In this study by Marti-Fabregas et al., α2-PI level was proved to
be an independent predictor of recanalization, although it didn’t
have a relation with long-term outcome. In studies by others,
although a decrease in α2-PI levels post-lysis was found, α2-PI
levels showed no association with the occurrence of hemorrhagic
transformation or poor outcomes (20, 32, 41).

Fibrin(ogen) Degradation Products (FDPs)
and D-Dimer
The in vivo formation of cross-linked fibrin and its subsequent
secondary fibrinolytic digestion yields to a variety of soluble
cross-linked FDPs. One of these products is known as D-dimer
(63). It has been proved by many clinical studies that D-dimer
is a valuable marker of coagulation activation and fibrinolysis
(64, 65).

An increase in FDP levels 2 h post-lysis was found to be a
predictor of post-lysis ICH in two studies. In an early study
by Trouillas et al. FDPs were studied in 157 patients of the
Lyon rt-PA trial in order to determine whether early fibrin(ogen)
degradation might be indicative of hemorrhagic lesions (25).
It was found that an FDP level at 2 h was a strong predictive
factor for early parenchymal hematomas. An increase of FDP
level >200 mg/L at 2 h post-lysis multiplied the probability of
parenchymal hematoma by 4.95 (95%CI: 1.09–22.4) (Table 1).
Based on the results of this single-centered study it was concluded
that early fibrin(ogen) degradation can be indicative of early
parenchymal hematomas thatmay be recognized by the detection
of FDPs.

Sun et al. investigated the correlations between the presence
of early intracerebral hemorrhage and the post-thrombolytic
changes of hemostasis parameters (20). Seventy two patients were
enrolled in the study. Similarly to the study by Trouillas et al.
the presence of early parenchymal hematomas were associated
with an increase in FDPs at 2 h post-lysis, indicating a massive
lysis of fibrin and fibrinogen (Table 1). These results suggest that
measuring not only fibrinogen but also FDPs might be useful in

predicting the possibility of thrombolysis-induced intracerebral
hematoma in acute stroke patients. In another study of the same
authors, FDP and D-dimer levels were measured before rt-PA
treatment, at 2 h and 24 h after thrombolysis in 80 stroke patients,
and the results were correlated with global outcome (32). As
expected, FDP and D-dimer levels increased between h0 and h2
and showed a tendency to return to the initial values at 24 h
post-lysis. However, none of these values were predictive of poor
outcome at 3 months.

In a study by Hsu et al. plasma D-dimer levels were evaluated
after the initiation of rt-PA but within 24 h of stroke onset
in 159 patients (26). Plasma D-dimer levels were significantly
associated with unfavorable outcome at 3 months. Elevated
D-dimer level was an independent parameter of symptomatic
intracerebral hemorrhage after treatment with intravenous rt-PA.
After adjustment for clinical variables in the statistical model, a
higher level of D-dimer remained significantly associated with
an unfavorable outcome (OR 1.90, 95% CI 1.27–2.86, p = 0.002)
and with the occurrence of symptomatic intracranial hemorrhage
(OR 2.97, 95% CI 1.15–7.70, p= 0.025) (Tables 1, 2).

Global Testing of Coagulation and
Fibrinolysis: Thromboelastography (TEG)
and Rotational
Thromboelastometry (ROTEM)
Thromboelastography (TEG) and rotational
thromboelastometry (ROTEM) are global viscoelasticity-
based hemostasis tests of similar methodology providing
information about coagulation and fibrinolysis from whole
blood (66). The viscoelastic properties of blood monitored using
TEG or ROTEM were found to be associated with bleeding and
thrombotic predisposition in a variety of clinical conditions.
According to the present research so far, however, its usefulness
to detect hypercoagulability or therapy resistance might be
questionable in the ischemic stroke patient population. In a
study involving 72 patients with ischemic stroke and 71 healthy
subjects, the ROTEM method did not seem to be able to detect
a hypercoagulable state in patients with ischemic stroke as
compared to controls (67). Moreover, in another study involving
171 acute ischemic stroke patients treated with rt-PA, no
robust association was found between TEG results and clinical
response to therapy. Baseline and post-lysis TEG data showed
no association neither with rapid improvement as detected by a
change of NIHSS, nor with hemorrhagic transformation (68).

Therefore, according to these results it is not proved as yet that
the above listed viscoelasticity-based point-of-care tests could
be useful to guide clinical decisions in acute stroke patients,
nevertheless, future prospective studies involving large number
of patients are needed to confirm such negative associations.

STUDIES ON THE STRUCTURE
OF THROMBI

The origin of thrombi causing ischemic stroke can be traced back
to either atherosclerosis, cardioembolism or, rarely, to dissection
(69). As mechanical thrombectomy became more widespread
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it became possible to analyze thrombi derived from the site
of ischemic lesions. This technique opened a new, unique and
interesting field of research providing the possibility to analyze
fresh pathological thrombi of acute ischemic stroke patients. The
main components of the thrombi are platelets, red blood cells,
white blood cells, and cholesterol crystals (70). Knowledge of the
composition of these thrombi may advance our knowledge on
thrombolysis failure/therapy outcomes, as differently structured
thrombi respond potentially differently to thrombolytic therapy.
For instance, platelet-rich thrombi seem to be more resistant to
lysis by thrombolytic therapy in rat models (71).

Most recently, a consensus statement on the current
knowledge and future directions on the analysis of thrombi
in acute stroke patients has been published on behalf of
an international group of well-recognized clinicians and
scientists (72). In this consensus paper recent research, current
opportunities and limitations were published, which interested
readers should consult. Here we provide a brief overview of
studies that investigated thrombus composition and its relation
to stroke or therapy outcomes.

The first, ground breaking study demonstrating systematic
histological analysis of thrombi removed from the cerebral artery
network of patients with acute ischemic stroke was published
by Marder et al. (70). In that report, the authors analyzed the
histology of 25 thrombi retrieved from the cerebral circulation
of ischemic stroke patients and correlated the findings with
clinical data. They found that the retrieved thrombi had similar
histological components, independent on whether they derived
from cardiac or arterial sources. Nevertheless, histological
examination of these thrombi indicated that none of them were
similar in overall appearance, each demonstrating a distinctive
pattern. Yet the components of most cerebral thrombi were
remarkably similar, 75% of them showing the pattern of lightly
stained fibrin and platelet areas, interspersed with deposits of
nucleated cells, often with intervening collections of erythrocytes.

In the paper by Niesten et al. the composition of the 22
extracted thrombi were found to be related to stroke subtype (73).
They found that 73% of the thrombi were fresh, 18% were lytic
and 9% were organized. Four thrombi were red blood cell rich,
4 thrombi were platelet rich while the rest were mixed thrombi.
They found that most of the examined thrombi were fresh and
the ones from the large artery atherosclerosis had the highest
rate of red blood cell while the cardioembolism and cryptogenic
subtype had the lowest. The large artery atherosclerosis was
the only subtype with red thrombi. They found no correlation
between subtype of the stroke and platelet and fibrin content.
There was correlation between the red blood cell component and
thrombus attenuation that can improve the attenuation on plain
CT, pointing out the possibility of this as a useful imaging marker
of stroke management.

In a study by Simons et al. the correlation between thrombus
composition and hyperdense artery sign was investigated (74).
Forty stroke patients were involved of which 28 patients
underwent intravenous thrombolysis prior to the mechanical
thrombectomy. Besides the basic histopathologic evaluation the
samples were stained with CD34 immunostain, then they were
categorized into 4 phases of thrombus formation: red blood cell

dominant (11 samples), red blood cell proportion equal to fibrin
(11 samples), fibrin dominant (7 samples), and organized fibrin
pathology (11 samples). The hyperdense artery sign was defined
by a neuroradiologist as an asymmetrical, increased density in
one of the intracranial arteries. In 29 cases the radiologist was able
to assess hyperdense artery sign on the pre-treatment CT. The
conclusion of the examination was that thrombi were composed
of early phase pathology. The impact of this data is that the
presence or absence of hyperdense artery sign might enable
neurologists to predict the composition of the thrombus, which
might provide the benefit of different treatment options. They
didn’t find statistically significant connection between thrombus
composition and cardioembolic stroke data.

The presence of white blood cells with an emphasis on
neutrophil extracellular traps (NETs) was studied in a particularly
interesting paper by Laridan et al. (75). Sixty-eight thrombi were
extracted from ischemic stroke patients undergoing endovascular
treatment. The thrombi were immunostained and characterized
for the presence of neutrophils and NETs. Both neutrophils
and NETs were detected in all thrombi. Older thrombi and
those of cardioembolic origin contained more NETs. Ex vivo
lysis of thrombi indicated that adding DNase might have
prothrombolytic effect, which is an interesting observation with
potential future therapeutic value.

In a study by Sporns et al. involving a remarkably large
cohort (n= 187) of patients histopathologic investigation of clots
retracted with mechanical thrombectomy was used in order to
find specific clot patterns that might help to differentiate between
causes of ischemic stroke (76). Of the 187 patients included
77 had cardioembolic source of stroke, 35 had large artery
atherosclerosis, 11 were of other origin (dissection, radiogenic
stenosis, tumor associated) and 64 cases were identified as
cryptogenic stroke. Erythrocyte-rich thrombi were shown to have
a significant correlation with non-cardioembolic stroke sources,
while cardioembolic cases showed a significant association
with fibrin-rich thrombi. The immunhistochemical markers
CD68/KiM1P were higher in cardioembolic cases as compared
to noncardioembolic strokes. Based on this study, it was
concluded that histological thrombus features vary significantly
according to the underlying cause and might be used to help
to differentiate between cardioembolic and non-cardioembolic
stroke types.

In another study with a relatively large number of clot
samples (n = 137) histological clot composition was also
studied in the relation of ischemic stroke causes (77). In this
paper the authors aimed to find specific patterns that may
help to differentiate between the causes of cryptogenic stroke.
They found significant differences between the composition of
thrombi of cardioembolic and noncardioembolic stroke patients.
Cardioembolic thrombi consisted of significantly higher rate
of fibrin/platelets, more leukocytes and less erythrocytes than
noncardioembolic thrombi. Thrombi received from cryptogenic
stroke patients had the same basic pattern as cardioembolic
thrombi, with higher proportions of fibrin/platelets and smaller
fractions of red blood cells. Similarities were also found between
cryptogenic and cardioembolic strokes in terms of interventional
and outcome parameters.
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Despite the significant achievements in the efficacy of
mechanic thrombectomy, little is known why in some patients
recanalization is less successful. The composition of thrombi and
its relation to the outcomes after thrombectomy were studied in
only few studies as yet (78–81).

In a prospective study by Boeckh-Behrens et al. thrombus
composition was analyzed with respect to the etiology of stroke,
recanalization and clinical outcome (78). Thirty-four patients
with acute ischemic stroke were included in the study, with
distal internal carotid artery/carotid-T, anterior cerebral artery or
middle cerebral artery occlusion. Histopathological examination
of the extracted thrombi was carried out and it was found
that the higher rate of white blood cells in the thrombus was
associated with extended mechanical recanalization time, less
favorable recanalization and worse clinical outcome (mRS>2).
The percentage of leukocytes within the thrombi and the mRS
scores showed a positive correlation (r = 0.358, p= 0.057) with a
borderline statistical significance. The authors found significant
relation between the white blood cell fraction of the thrombi and
cardioembolic etiology of stroke. These data suggest that white
blood cell-mediated immunological or hemostatic processes may
play an important role in the development of stroke and might
have impact on outcomes.

The aim of the prospective study by Sporns was to
identify the effect of thrombus composition on the time and
grade of revascularization and the risk of procedure-related
secondary embolisms (79). Moreover, the authors aimed to
evaluate the correlation of pre-interventional CT thrombus
attenuation with the histological analysis of thrombi and other
outcome parameters. Samples of 180 patients with complete
diagnostic and histological workup were included in the study.
The cause of the stroke as determined by the TOAST-
classification was arterioembolic in 34 patients, cardioembolic
in 75 patients, of other determined cause in 11 patients,
and cryptogenic in 60 patients. In 168 patients recanalization
was complete and 27 patients (15%) suffered secondary
embolism. Besides the basic histopatological examination,
detailed immunohistochemistry staining was also performed in
the extracted thrombi samples (CD3, CD20, and CD68/KiM1P
CD3; CD20, and CD68/KiM1P). Based on their observations
fibrin-rich thrombi with low erythrocyte rate had significantly
longer intervention times, while thrombi with a low rate of
red blood cells and low CT-density caused embolisms in the
thrombectomy process more often suggesting that these thrombi
have higher fragility.

Similar results were obtained in the study of Gunning et al.
(80). In this paper, the relationship between clot composition
and the resistance to sliding (friction) was studied, which
might contribute to resistance to clot removal. They found that
fibrin-rich clots with <20% red cell content have significantly
higher friction coefficient that might contribute to resistance to
clot removal.

Prochazka et al. investigated thrombus composition in a
prospective cohort study including 131 patients with ischemic
stroke (81). Recanalization was successful in 115 patients from
whom 90 samples were extracted and analyzed histologically.
They found a significant relationship between plasma VWF and

the VWF found in the thromboembolus, platelets, or fibrin.
There was a correlation between the area of immunostained
VWF and platelet count, CD31- positive cells and fibrin. The
amount of all CD31-positive cells correlated with the number
of neutrophils in the thrombus. D-dimer levels showed a
significantly positive relationship with plasma VWF levels and
with long-term prognosis (mRS>2). Significant correlations were
found between the numbers of NK (natural killer) cells and the
fibrin content of the thrombus, blood neutrophil levels and VWF
levels within the thrombus and the number of lymphocytes and
fibrin content of the thrombus.

To conclude, insights into thrombus composition might
reveal stroke etiology and might provide relations to clinical
outcomes. Understanding thrombus composition might serve
as a key in advancing our knowledge and improving acute
stroke care.

CONCLUSION

Despite advances in understanding the mechanisms leading to
poor clinical outcomes and hemorrhagic complications following
rt-PA treatment of acute ischemic stroke, prediction of individual
patient risks is still unavailable. Clinical failure of thrombolysis
as well as hemorrhagic complications are possibly related to
hemostatic events. Data on markers of coagulation and/or
fibrinolysis in acute stroke patients are numerous but most
studies include relatively few patients thus they lack statistical
power. Based on these data clinical recommendations regarding
treatment and monitoring cannot be given as yet. Nevertheless,

TABLE 3 | A simplified evaluation regarding the prognostic values of hemostasis

markers/tests on thrombolysis safety and outcome.

Predictive marker References Prognostic value on

safety (ICH) poor outcome

Fibrinogen (20–22, 25, 27, 32–35) + –

Fibrin clot structure (34, 38) – +

FVII, FSAP (33, 40–43) – –

FVIII, VWF (28, 34, 45, 46) – +

FXIII (20, 32, 33, 41, 47, 48) – +

Thrombin generation

assay

(23, 34, 50–52) + +

TAT complex (27, 54) – +

TAFI (24, 59–61) + –

PAI-1 (24, 60, 61) + –

α2 plasmin inhibitor (20, 32, 33, 41) – –

FDP (20, 25, 32) + –

D-dimer (20, 26, 32) + +

Thromboelastometry (67, 68) – –

–, no prognostic value or insufficient data; +, potential prognostic value; FDP, fibrin(ogen)

degradation product; FSAP, factor seven activating protease; FVII, factor seven; FVIII,

factor VIII; FXIII, factor XIII; ICH, intracerebral hemorrhage; PAI-1, plasminogen activator

inhibitor-1; TAFI, thrombin-activatable fibrinolysis inhibitor; TAT complex, thrombin-

antithrombin complex; VWF, von Willebrand Factor.
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few markers seem to be potentially useful in predicting
therapeutic outcomes. A simplified evaluation regarding the
prognostic values of hemostasis markers/tests on thrombolysis
safety and outcome is summarized in Table 3.

Well-designed, prospective clinical studies involving large
cohorts of patients are awaited to better understand the
hemostatic and fibrinolytic system during rt-PA therapy and to
validate the prognostic value of promising markers in clinical
decision making. Conclusions of such studies might lead to
an improvement of the efficacy and/or safety of thrombolysis
treatment. Studies on thrombus composition also seem useful in
advancing our knowledge that could ultimately provide a key to
improve acute stroke therapy.
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