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Background: Amplitude spectrum area (AMSA) calculated from ventricular fibrillation (VF) can be 
used to monitor the effectiveness of chest compression (CC) and optimize the timing of defibrillation. 
However, reliable AMSA can only be obtained during CC pause because of artifacts. In this study, we sought 
to develop a method for estimating AMSA during cardiopulmonary resuscitation (CPR) using only the 
electrocardiogram (ECG) waveform.
Methods: Intervals of 8 seconds ECG and CC-related references, including 4 seconds during CC and an 
adjacent 4 seconds without CC, were collected before 1,008 defibrillation shocks from 512 out-of-hospital 
cardiac arrest patients. Signal quality was analyzed based on the irregularity of autocorrelation of VF. If signal 
quality index (SQI) was high, AMSA would be calculated from the original signal. Otherwise, CC-related 
artifacts would be constructed and suppressed using the least mean square filter from VF before calculation 
of AMSA. The algorithm was optimized using 480 training shocks and evaluated using 528 independent 
testing shocks.
Results: Overall, CC resulted in lower SQI [0.15 (0.04–0.61) with CC vs. 0.75 (0.61–0.83) without CC, 
P<0.01] and higher AMSA [11.2 (7.7–16.2) with CC vs. 7.2 (4.9–10.6) mVHz without CC, P<0.01] values. 
The predictive accuracy (49.2% vs. 66.5%, P<0.01) and area under the receiver operating characteristic 
curve (AUC) (0.647 vs. 0.734, P<0.01) were significantly decreased during CC. Using the proposed method, 
the estimated AMSA was 7.1 (5.0–15.2) mVHz, the predictive accuracy was 67.0% and the AUC was 0.713, 
which were all comparable with those calculated without CC.
Conclusions: Using the signal quality-based artifact suppression method, AMSA can be reliably estimated 
and continuously monitored during CPR.
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Introduction

Ventricular fibrillation (VF) is the commonly observed 
initial rhythm in cardiac arrest patients, and defibrillation 
is the only effective way to terminate this malignant 
arrhythmia (1,2). Since the probability of successful 
defibrillation diminishes as time elapses, earlier defibrillation 
with concurrent high-quality cardiopulmonary resuscitation 
(CPR) is critical to survival (3). However, treatment of 
VF consists of a series of time-sensitive therapies, and 
not all patients in VF benefit from being treated in the 
same manner (4,5). Real-time electrocardiogram (ECG) 
waveform analysis has been advocated for several decades as 
a potential decision-making tool to optimize CPR (6). The 
VF signal changes over time, and therefore quantitative 
measures can help estimate the duration of VF, predict 
the likelihood of successful defibrillation, and evaluate the 
effectiveness of CPR (7). Both animal and clinical studies 
have demonstrated that quantitative VF signal analysis 
can be used as a non-invasive tool to optimize the timing 
of defibrillation, and allow CPR to be tailored to each 
individual heart (8,9).

Amplitude spectrum area (AMSA), as one of the most 
efficient predictors for successful defibrillation (9-11), 
has been shown to be correlated with coronary perfusion 
pressure, and can reflect the energy state of the myocardium 
(12,13). Typically, the highest value of AMSA is frequently 
observed at the onset of VF, and declines as time elapses 
without treatment. When effective CPR is provided in 
time, a higher AMSA value is usually achieved due to the 
myocardium regaining perfusion status (7,14). Therefore, 
real-time monitoring of AMSA may serve as a quality-
control for CPR, revealing whether or not the myocardial 
blood flow has improved and whether or not the heart 
is ready for defibrillation (14,15). Clinical studies have 
confirmed that both pre-shock AMSA and relative changes 
of AMSA during CPR are associated with shock success 
and may provide an effective real-time strategy to guide 
individual treatment (16-18). 

However, reliable AMSA can only be obtained during 
the interval of CC pause because CC-produced artifacts 
may lead to overestimation of AMSA and reduction of 
predictive performance (11,19). Suppressing the artifact 
using additional reference recordings, such as transthoracic 
impedance or acceleration signals, may be a possible 
solution (20,21). Additional equipment is required to 
obtain these references, and they are not available in 
all existing automated external defibrillators (AEDs). A 

universal algorithm which is capable of estimating AMSA 
accurately during the resuscitation effort using only the 
ECG waveform recorded from AEDs, is therefore much 
anticipated. The present study aimed to develop a method 
that can reliably estimate AMSA during CPR and preserve 
its predictive performance of defibrillation outcome using 
the ECG waveform recorded from cardiac arrest patients. 
We present the following article in accordance with the 
MDAR reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-7166).

Methods

Data collection and annotation

This study was approved by the Ethical Committee 
of the Army Medical University (No. 2020-002-02). 
Written informed consent was waived due to the study’s 
retrospective nature. The study conformed to the provisions 
of the Declaration of Helsinki (as revised in 2013). Data 
were retrospectively collected in emergency departments of 
the Army Medical University affiliated hospitals. Cases with 
VF as the presenting rhythm received at least 60 seconds of 
CC before shock delivery and ECG recorded in conjunction 
with the CPR references by defibrillators were selected for 
the study. Since data collection was performed after the 
resuscitation events had been completed, the electronic data 
did not contain any identifiable participant information, 
such as age, sex, or survival outcomes. In 163 cases, ECG 
waveforms were recorded at a sample rate of 125 Hz, and 
the transthoracic impedance signals were recorded from the 
same defibrillation pads at a sample rate of 61 Hz (LifePak 
12, Physio-Control, Inc., Redmond, WA, USA). In another 
349 cases, ECG and compression depth waveforms were 
recorded through two standard adhesive adult defibrillation/
pacing pads that integrating an accelerometer-based CPR 
feedback at a sample rate of 250 Hz (R-Series, Zoll Medical 
Corporation, Chelmsford, MA, USA). The datasets are not 
publicly available because they are part of the participant’s 
medical information.

For each case, an 8-second episode of ECG and CPR 
reference waveforms preceding each defibrillation shock was 
extracted from the recordings. As shown in Figure 1A, each 
episode contained 2 segments: a 4-second-artifact-corrupted 
waveform during CC followed by an adjacent 4-second-
artifact-free waveform without CC. A total of 1,008 episodes 
that consisted of 461 first shock and 547 subsequent shocks 
were obtained from 512 cases. For each episode, both pre-
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Figure 1 Development of the proposed method. (A) Example of 8-second episode of ECG and CPR reference waveforms extraction prior 
to each defibrillation shock. Each episode contained 2 segments, a 4-second segment with CC followed by an adjacent 4-second-artifact-
free segment without CC. (B) Spectral distribution of the CC-corrupted VF and clean VF from panel A. (C) Autocorrelation function of the 
CC-corrupted VF and clean VF. Distribution of peaks in the first half of the autocorrelation function were analyzed due to its symmetrical 
characteristic. (D) The constructed artifact and filtered VF signal. AMSA, amplitude spectrum area; ECG, electrocardiogram; CPR, 
cardiopulmonary resuscitation; CC, chest compression; VF, ventricular fibrillation.

shock and post-shock ECG rhythms were annotated by 
2 experienced emergency physicians who were blinded 
to the quantitative waveform analysis. A defibrillation 
was regarded as successful when VF was converted to an 
organized rhythm within 60 seconds after shock delivery 
with a heart rate greater than 40 beats/minute and sustained 
for a period greater than 30 seconds (9,15,16). The data 
were distributed into a training set (480 episodes from 
259 cases) and a testing set (528 episodes from 253 cases) 
for the derivation and validation of the algorithm. Signals 
were resampled to 250 Hz for compatibility and analyzed 
using MATLAB (The MathWorks, Inc., Natick, MA, USA) 
software.

Proposed method

In order to obtain reliable analysis, the CC-produced 

artifacts needed to be suppressed from the VF signal prior 
to AMSA calculation as the spectral components of the 
artifact overlapped the dominant frequencies of the VF 
(Figure 1B). On the contrary, AMSA needed to be calculated 
from the original VF signal when CC was paused because 
filtering the clean ECG would lead to underestimation 
of AMSA. Based on the fact that the CC-related artifact 
presented an almost periodic waveform while the VF signal 
exhibited a nonchaotic stochastic signal, we proposed 
a method incorporating VF signal quality index (SQI) 
and least mean square (LMS) filter to estimate AMSA  
(Figure 1C,D). In this way, AMSA could be adaptively 
calculated either during ongoing CC or during CC pause 
from the VF signals. The flowchart of the proposed 
method is shown in Figure 2, and the major process of the 
algorithm consisted of 4 steps. The generated code will not 
be available for the time being due to ongoing patent and 
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software copyright application process.
The first step was signal preprocessing. The VF signal 

underwent preprocessing using a high-pass filter with a 
cutoff frequency at 1 Hz to minimize baseline drift. A low-
pass filter with a cutoff frequency at 48 Hz was then used to 
remove high frequency noise.

The second step was VF signal quality assessment. In order 
to determine whether the VF signal was corrupted by CC, we 
proposed a novel SQI that could measure the quality of VF, 
providing an irregularity evaluation for each segment of the 
signal. The autocorrelation of the VF signal was calculated to 
extract the periodic components, and the peaks were detected 
from the first half of the normalized autocorrelation function 
due to its symmetrical characteristic (Figure 1C) (22). The 
distribution of the peaks was incorporated using 2 weighted 
measures: i.e., the slope of fitting curve among successive 
peaks and mean interval of successive peaks in each segment 
were combined using a sigmoid function to assign a score 
between 0 to 1 to indicate the SQI of VF.

The third step consisted of CC-related artifact 
construction and suppression. If the SQI was lower than 

the predefined threshold, the VF signal was more likely 
to be corrupted by CC. The CC-related artifact was 
constructed by modeling the fundamental frequency of 
CC and its sinusoidal harmonics (23). The estimated VF 
signal was derived by subtraction of the CC-related artifact 
from the corrupted ECG waveform, using a LMS filter 
reported by Irusta (24) and de Gauna (25) (Figure 1D). In 
contrast with these 2 studies, we estimated the fundamental 
frequency of CC by the average time interval of the peaks 
in time domain, rather than from the spectral analysis of 
ECG or CPR reference. Additionally, the candidate spikes 
that might have been produced by CC were detected and 
suppressed, as described in our previous study (26).

The fourth step was AMSA calculation. The original/
filtered VF signal was converted from the time to the 
frequency domain by fast Fourier transformation, using a 
Tukey window. The AMSA was calculated as the sum of 
the products of individual frequencies and their amplitudes, 
between 2 Hz and 48 Hz (16). 

Performance evaluation

Data from the training set were employed to tune the 
parameters of the algorithm, including the coefficients for 
SQI calculation, threshold of SQI for quality assessment, 
number of harmonics used to model CC-related artifacts, 
and threshold of AMSA for the prediction of a successful 
shock. Data from the testing set were employed to evaluate 
the algorithm, including the ability to detect CC-corrupted 
VF and the estimated AMSA during CC and CC pause, and 
the ability to predict the defibrillation outcome. 

For each 4-second segment, the AMSA calculated from 
original VF signal using the traditional method (AMSA_t) 
was compared with calculated using the proposed method 
(AMSA_p). The AMSA_t calculated from the 4-second 
segment without CC also served as the true AMSA value of 
the preceding 4-second segment of ongoing CC.

The performance of SQI for detection of the CC-
corrupted VF was evaluated using sensitivity and 
specificity. The correlations between AMSA_t and AMSA_
p were evaluated by correlation analysis. The predictive 
performance of AMSA was evaluated by sensitivity, 
specificity, accuracy, and area under the receiver operating 
characteristic curve (AUC).

Statistical analysis

The Kolmogorov-Smirnov test was used to verify the 

VF waveform

Pre-processing

Signal quality assessment

SQI > threshold?
Yes

No

Chest compression related 
artifact suppression

Fast Fourier transformation

AMSA calculation

Figure 2 Flowchart of the proposed method. VF, ventricular 
fibrillation; SQI, signal quality index; AMSA, amplitude 
spectrum area.
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Figure 3 Evaluation of the proposed method. (A) The SQI between segments with CC and without CC. (B) AMSA values calculated using 
the traditional method (AMSA_t) and the proposed method (AMSA_p) during CC. (C) AMSA values calculated using AMSA_t and AMSA_p  
without CC. (D) Scatter plots of AMSA_t during CC and without CC. (E) Scatter plots of AMSA_p and AMSA_t during CC. (F) Scatter 
plots of AMSA_p and AMSA_t without CC. SQI, signal quality index; CC, chest compression; AMSA, amplitude spectrum area; AMSA_t, 
AMSA calculated using the traditional method; AMSA_p, AMSA calculated using the proposed method. *, P<0.01.

normality of quantitative variables. The continuous data are 
reported as the means ± standard deviations for variables with 
a normal distribution or as medians (interquartile ranges) for 
variables with a skewed distribution. The normally distributed 
continuous variables between groups were compared using 
Student’s t-test, while those with a skewed distribution were 
analyzed using Wilcoxon test. The categorical variables are 
reported as percentages and were compared using chi-square 
test. The correlations between continuous variables were 
investigated by Pearson’ correlation analysis. The AUCs 
were compared using the Hanley and McNeil method. Two-
sided P values ≤0.05 were considered statistically significant, 
and all analyses were performed using SPSS 22 (IBM Corp., 
Armonk, NY, USA).

Results

A total of 1,008 countershocks were included for analysis, 
and the median CC rate prior to shock delivery was 2.25 
(2.0–2.75) compressions per minute. For each episode, the 
fundamental frequency of the VF signal calculated from the 
4-second CC-corrupted segment was significantly lower 

than that calculated from the adjacent 4-second-artifact-
free segment [2.5 (2.0–4.75) Hz vs. 3.75 (2.75–6.75) Hz, 
P<0.01]. Among the 1,008 ECG episodes, 311 (30.9%) 
were extracted from successful defibrillations while the 
remaining 697 (69.1%) were extracted from unsuccessful 
ones according to the definition of defibrillation. The 
AMSA values calculated from segments without CC using 
AMSA_t was significantly higher in successful shocks than 
in unsuccessful shocks, both in the training [9.3 (6.3–14.0) 
vs. 5.7 (4.1–8.6) mVHz, P<0.01] and in the testing [9.9 
(7.3–13.6) vs. 6.0 (4.3–9.4) mVHz, P<0.01] sets.

A SQI threshold of 0.55 was established to identify 
the CC-corrupted VF signal, and an AMSA threshold 
of 8.0 mVHz was used to predict a potentially successful 
defibrillation shock with optimal balance between sensitivity 
and specificity using the training data, as reported in 
previous clinical studies (9,16). Additionally, the lowest 
LMS error was achieved when the first 5 harmonics was 
used to model the CC-related artifact.

The testing results are summarized in Figure 3. The SQI 
was significantly lower when the VF signal was corrupted 
by CC (Figure 3A) [0.15 (0.04–0.61) vs. 0.75 (0.61–0.83), 
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P<0.01]. The SQI identified the CC-corrupted low-quality 
VF segments with a sensitivity of 81.4% and a specificity 
of 82.2%. In segments with CC (Figure 3B), AMSA_t  
was significantly higher than AMSA_p [11.2 (7.7–16.2) 
vs. 7.1 (5.0–15.2) mVHz, P<0.01] and true AMSA [11.2 
(7.7–16.2) vs. 7.2 (4.9–10.6) mVHz, P<0.01], but there 
was no statistical difference between AMSA_p and true 
AMSA [7.1 (5.0–15.2) vs. 7.2 (4.9–10.6) mVHz, P=0.24]. 
The correlation coefficient was 0.53 between AMSA_t  
and true AMSA (Figure 3D), was 0.77 between AMSA_p  
and true AMSA (Figure 3E). In segments without CC 
(Figure 3C), AMSA_p was significantly lower than the true 
AMSA [6.8 (4.2–10.3) vs. 7.2 (4.9–10.6) mVHz, P<0.01]. 
The correlation coefficient between AMSA_p and the true 
AMSA was 0.98 (Figure 3F).

The predictive performances of AMSA calculated from 
the VF waveform with and without CC are listed in Table 1. 
Compared with true AMSA, the sensitivity was significantly 
increased but the specificity, accuracy and AUC were 
markedly decreased when AMSA_t with CC were used to 
predict the defibrillation outcome. On the contrary, no 
statistical differences in sensitivity, specificity, accuracy, 
and AUC were observed when either AMSA_p with CC or 
AMSA_p without CC was compared with the results of true 
AMSA.

Figure 4 shows 4 examples of continuous AMSA 
monitoring with a time interval of 1 second during 
CPR. The AMSA values calculated using AMSA_t were 
overestimated during CC and returned to normal levels 
during CC pause in all cases. The overestimated AMSA 
value would keep prompting a defibrillation shock since 

it was always greater than the predefined defibrillation 
threshold during CC. However, AMSA values estimated 
using AMSA_p stayed in a relatively stable state both 
during CC and during CC pause, apart from a few 
improper and unsuccessful suppressions. The resuscitation 
effort, therefore can be monitored by the absolute AMSA 
value and its relative change during CPR. For instance, 
AMSA value was constantly increased and exceeded the 
defibrillation threshold after 2 minutes of CC, which 
resulted in a successful defibrillation in Figure 4A. On the 
contrary, the defibrillation shock could be delivered before 
CC in Figure 4B because of the high initial AMSA value. 
In Figure 4C, AMSA value was constantly increased during 
CC but steadily dropped during the prolonged CC pause, 
which led to an unsuccessful shock. In Figure 4D, although 
CC was consistently implemented, the steadily decreasing 
AMSA value indicated that either the quality of CC needed 
to be improved or other interventions were necessary to 
successfully resuscitate the victim.

Discussion

This study introduced an algorithm to estimate AMSA 
during CPR by assessing the VF signal quality based solely 
on the surface ECG waveform recorded from AEDs. We 
demonstrated that CC-corrupted low quality VF signals 
can be correctly identified and that AMSA can be reliably 
estimated from the VF signals both during ongoing CC and 
during CC pause. Furthermore, the method was validated 
by preserving the predictive performance of defibrillation 
success in patients with presenting shockable rhythms.

Early and uninterrupted CPR, together with early 
defibrillation, is critical for a successful outcome after 
cardiac arrest. A recent study further confirmed that 
the analysis of real-time variations and trends of ECG 
features could help in selecting the timing of defibrillation 
to avoid unnecessary shocks and improve outcomes in 
extended cases of refractory VF (27). However, the CC-
produced artifact modifies the underlying ECG and 
precludes reliable waveform analysis, either for shockable 
rhythm identification or for determining the probability 
of defibrillation success evaluation (20). Earlier studies 
indicated that the CC-produced artifact is an additive noise, 
predominantly arising from the electrode skin interface (28). 
The corrupted ECG waveform might also include signals 
generated by direct impact of the compressions on the chest 
wall and signals generated by the contraction of thoracic 
muscles. The characteristics of CC-induced artifact has been 

Table 1 Performance of AMSA calculated from VF signal with and 
without CC for the prediction of defibrillation success

Indices
With CC Without CC

AMSA_t AMSA_p AMSA_t AMSA_p

Sensitivity, % 87.8* 66.0# 67.3 66.0

Specificity, % 33.1* 67.5# 66.1 69.9

Accuracy, % 49.2* 67.0# 66.5 68.2

AUC 0.647* 0.713# 0.734 0.732

*, P<0.01 compared with AMSA_t without CC; #, P<0.01 
compared with AMSA_t with CC. AMSA, amplitude spectrum 
area; VF, ventricular fibrillation; CC, chest compression; AMSA_t,  
AMSA calculated using traditional method; AMSA_p, AMSA 
calculated using the proposed method; AUC, area under the 
receiver operating characteristic curve.
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Figure 4 Examples of continuous AMSA monitoring during CPR. (A) A successful defibrillation with low initial AMSA value and increased 
AMSA during CPR. (B) A successful defibrillation with high initial AMSA value and increased AMSA during CPR. (C) A failed defibrillation 
with low initial AMSA value and prolonged pause of CPR. (D) A failed defibrillation with low initial AMSA value and unchanged AMSA 
during CPR. AMSA, amplitude spectrum area; CPR, cardiopulmonary resuscitation; AMSA_t, AMSA calculated using the traditional 
method; AMSA_p, AMSA calculated using the proposed method.
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deeply investigated by previous studies through analysis 
ECG waveforms recorded on patients with the underlying 
cardiac rhythm of asystole (24,26,29). In the time domain, 
the artifact presents an almost periodic waveform, with slow 
changes in waveform from cycle to cycle. In the frequency 
domain, the energy content is concentrated around the 
harmonics, with a fundamental frequency being that of the 
CC. Through the analysis of the power spectral density of 
the CC artifact recorded from cardiac arrest patients with 
other cardiac rhythms, the CC-related artifact was revealed 
to have an important spectral overlap with human ECG, 
either for non-shockable or shockable rhythms (29). Recent 
studies investigating quantitative VF signal measures during 
CC have confirmed a remarkable reduction in defibrillation 
predictive performance compared with that during CC 
pause (11,30). The CC-induced artifact challenges the 
routine use of real-time quantitative VF signal measures to 
guide resuscitation during uninterrupted CPR.

In order to perform reliable and accurate VF signal 
analyses without interrupting CPR, numerous strategies 
have been developed to suppress the CC-related artifacts. 
One study used the fact that the fundamental frequency 
of CC is approximately 2 Hz to successfully remove the 
CPR artifact from animal ECGs using high-pass digital 
filters with cut-off frequencies between 4–4.5 Hz (31). In 
the human VF signal, however, the fundamental frequency 
range is 3–8 Hz, and the harmonics of the CC artifacts lie 
within the spectral range, making the separation of VF and 
artifacts by such filters infeasible (32,33). Subsequently, 
adaptive filtering techniques have been adopted to clean the 
CC-induced artifact using references that are synchronously 
recorded with ECG, such as the compression depth, 
compression force, transthoracic impedance, and arterial 
blood pressure waveform (28,34). These methods have 
significantly improved the signal-to-noise ratio (SNR) 
of the artifact-corrupted ECG, as well as the accuracy 
of rhythm classification. However, the acquisition of the 
reference signals requires AED hardware alterations, and 
most current AEDs only record and use the surface ECG 
waveforms for rhythm interpretation. Efforts therefore 
have been made to adaptively filter the CC artifact based 
on the ECG alone. For instance, Ruiz de Gauna et al. (25)  
designed an artifact suppression method based on the 
Kalman filter, in which the artifact was modeled using 
the fundamental frequency of the compressions and the 
relative power content of the artifact from the spectral 
analysis of the corrupted ECG. Amann et al. (35) adopted 
the coherent line removal algorithm to reduce the CC-

related artifact in VF, using a windowed Fourier transform 
to capture characteristic features of VF signal and CC 
artifact. However, the adaptive filters based only on 
the ECG waveform had relatively poorer performance 
compared with those using additional references, when 
evaluated by accuracy of shockable rhythm classification and 
improvement in SNR. Additionally, little is known about 
how these filters preserving the VF quantitative features 
and their prognostic performances. In order to estimate 
AMSA from the CC-corrupted VF, Lo et al. (36) developed 
a method combining empirical mode decomposition and 
LMS filtering. Using an additive data model, the authors 
demonstrated that the method could preserve the cut-off 
value for the CC artifact with a power ratio to VF ranging 
from 0 to 6 dB. However, the authors did not assess the 
predictive ability of AMSA calculated with their proposed 
method. Additionally, the method was designed to filter the 
CC-related artifact from the corrupted ECG, but the CPR 
artifact suppression method based only on the recorded 
ECG has no way of determining whether or not the CC is 
being given. 

In the current study, we proposed a method consisting of 
an LMS technique which has been previously used to filter 
CPR artifacts for the estimation of AMSA during CPR 
(24,25,37). In contrast to previous studies, the algorithm 
assessed the signal quality of VF in order to determine 
whether it was corrupted by CC. As reported in a previous 
study, autocorrelation could detect and extract minuscule 
periodic components present in the ECG waveform, which 
may show an apparently irregular type of activity (7). For a 
periodic signal, the peaks of its autocorrelation function lie 
exactly on a straight line. In contrast, the autocorrelation 
function of an aperiodic signal has peaks that are not 
linearly distributed. Based on the knowledge that clean VF 
exhibits a stochastic signal but presents an almost periodic 
signal when corrupted by the CC artifact, we inferred that 
the distribution of peaks of the autocorrelation of the VF 
signal can be used to detect whether or not it has been 
contaminated by a CC artifact. Our results confirmed that 
the peaks of the autocorrelation of a clean VF showed an 
irregular interval and scattered amplitude distribution. 
However, the autocorrelation of a corrupted VF showed 
characteristic peaks that occurred at regular intervals and 
had successively escalating amplitudes. To generate a more 
quantitative distinction between the VF with and without 
CC, a sigmoid function that combined linear regression fit 
and peak interval was adapted to SQI. During CC pause, 
SQI is high because the aperiodic and irregular nature of 
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VF is retained. Therefore, AMSA can be calculated from 
the original VF signal. Conversely, SQI is low during 
ongoing CC because VF is governed by the periodic and 
regular artifact. Thus, artifacts need to be constructed and 
suppressed from VF before AMSA calculation. Our results 
indicated that the presence or absence of CC could be 
reliably detected and AMSA could be accurately estimated 
using the proposed method. The AMSA calculated directly 
from the CC-corrupted VF signal increased sensitivity 
but decreased specificity. As a result, both the accuracy 
and AUC were significantly reduced compared with those 
calculated from the clean VF. The defibrillation outcome-
predicting ability of AMSA was well preserved both 
during ongoing CC and during CC pause, as shown in 
the comparable sensitivity/specificity and accuracy/AUC 
using the proposed method. This method, therefore, is 
eligible for incorporation into AEDs and has the potential 
to implement a real-time AMSA-driven protocol of 
defibrillation and CPR.

There were several limitations to the current study. First, 
although SQI was significantly lower for CC-corrupted VF, 
the sensitivity/specificity for identifying a CC-corrupted 
VF using SQI still needs to be improved. Additionally, 
the artifact produced by mechanical CC may differ from 
that of manual CC in morphology and SNR. Therefore, 
the efficacy of the algorithm during mechanical versus 
manual CC still requires evaluation. Second, although the 
proposed method has the potential to provide more detailed 
information about the dynamic changes of AMSA during 
CPR, this was a retrospective study, and improvements are 
still needed before real-time application, as there was abrupt 
change of the AMSA curve induced by improper detection 
and unsuccessful suppression of the artifact. Third, the 
algorithm cannot be utilized without the help of a reliable 
VF detection algorithm. Although several algorithms 
have demonstrated the capability to correctly distinguish 
VF from other rhythms during CC using only the ECG 
waveform, the performance of combining the current 
algorithm with the VF detection algorithm also needs to be 
validated in future studies. 

Conclusions

This study introduced an algorithm to estimate AMSA 
through the signal quality assessment-based artifact 
suppression method using solely the ECG waveform. The 
CC-corrupted low-quality signal can be reliably detected 
and AMSA can be accurately estimated both during ongoing 

CC and during CC pause from VF. The preservation of 
defibrillation outcome-predicting performance indicated 
that this algorithm is eligible for incorporation into AEDs 
for the purpose of continuously and precisely monitoring 
AMSA during uninterrupted CPR.
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