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Universal Algorithm for Simulating and Evaluating Cyclic
Voltammetry at Macroporous Electrodes by Considering
Random Arrays of Microelectrodes
Tim Tichter,*[a] Jonathan Schneider,[a] Dirk Andrae,[b] Marcus Gebhard,[c] and Christina Roth[c]

An algorithm for the simulation and evaluation of cyclic
voltammetry (CV) at macroporous electrodes such as felts, foams,
and layered structures is presented. By considering 1D, 2D, and 3D
arrays of electrode sheets, cylindrical microelectrodes, hollow-
cylindrical microelectrodes, and hollow-spherical microelectrodes
the internal diffusion domains of the macroporous structures are
approximated. A universal algorithm providing the time-depend-
ent surface concentrations of the electrochemically active species,
required for simulating cyclic voltammetry responses of the
individual planar, cylindrical, and spherical microelectrodes, is
presented as well. An essential ingredient of the algorithm, which
is based on Laplace integral transformation techniques, is the use

of a modified Talbot contour for the inverse Laplace trans-
formation. It is demonstrated that first-order homogeneous
chemical kinetics preceding and/or following the electrochemical
reaction and electrochemically active species with non-equal
diffusion coefficients can be included in all diffusion models as
well. The proposed theory is supported by experimental data
acquired for a reference reaction, the oxidation of [Fe(CN)6]

4� at
platinum electrodes as well as for a technically relevant reaction,
the oxidation of VO2

+ at carbon felt electrodes. Based on our
calculation strategy, we provide a powerful open source tool for
simulating and evaluating CV data implemented into a Python
graphical user interface (GUI).

1. Introduction

Cyclic voltammetry (CV) is the predominantly used technique for
investigating the kinetics of novel electrode materials. Subsequent
quantitative data evaluation is usually performed by applying the
irreversible Randles-Ševčík relation[1–3] valid only for an electro-
chemically one-step electron transfer reaction occurring at a planar
electrode in semi-infinite diffusion space.[4,5] However, the diffusion
domain of many investigated electrode types, such as foams and
felts, significantly differs from such a planar geometry.[1–3,6–12]

Consequently, the Randles-Ševčík equation cannot be used, since
the unique relation between peak current and potential sweep
rate becomes ambiguous. This simple analysis gets even more
questionable, if the electrode reaction is coupled to homogeneous
chemical reactions.[5] We propose a different strategy for quantita-

tive data evaluation, including the effects of electrode geometries,
diffusion domains and homogeneous chemical equilibria in terms
of a fitting routine, well founded on basic principles, that
minimizes the standard deviation of simulated data to experimen-
tally acquired data. This approach appears to be advantageous, as
the entire dataset will be considered, rather than only position
and magnitude of the peak current. In this manner, very few CV
experiments can already be sufficient in order to determine
electrode kinetics, diffusion coefficients and homogeneous chem-
ical reaction rates simultaneously, as we have demonstrated in our
recent work.[13] However, such a strategy for data evaluation
requires an appropriate way of CV calculation. The required CV
simulations, solving the underlying partial differential equations
(PDEs) for concentration profiles at electrode surfaces, are usually
based on two strategies, alternating direction implicit (ADI)
techniques or integral transformation methods. The latter are
based on Laplace transformation techniques,[4,5,14–19] and have the
advantage that different boundary conditions, representing the
different diffusion models, as well as fast electrochemical kinetics
can be implemented readily. However, the difficulty in these
calculations is usually linked to the inverse Laplace transform step
required for finding the time-dependent surface concentrations of
all the species involved. More recent approaches in calculating CV
responses, also in porous media consisting of random arrays of
microelectrodes or catalytically active nanoparticles, were based
on ADI techniques.[20–28] Their advantage is that no Laplace
transformation and consequently no inversion is required. How-
ever, in contrast to the integral transformation methods, an
implementation of non-stationary boundaries, fast electrochemical
kinetics, homogeneous preceding and following chemical reac-
tions can get vastly complex while setting up the matrices of ADI
schemes.[21]
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In this paper the problem of simulating CV responses is
revisited, with emphasis on systems involving porous electrodes.
By numerically performing the inverse Laplace integral trans-
formation using the modified Talbot contour proposed in Refs.
[29–31], the difficulty in obtaining the required time-dependent
surface concentrations of all electrochemically active species is
overcome. The advantage of this procedure is that, once the
solution to a diffusion problem is known in the Laplace domain,
inversion always follows exactly the same scheme. In this manner,
simulation of CV responses in a) planar semi-infinite, b) planar
finite, c) cylindrical external semi-infinite, d) cylindrical external
finite, e) cylindrical internal finite, f) spherical external semi-infinite,
and g) spherical internal finite diffusion space can be performed
readily. It is demonstrated that the absolute error in the peak
current of the CV simulations, introduced by performing the
inverse Laplace transform using the modified Talbot contour, is
less than 10� 4%. The simulation of practically relevant porous
electrode systems is carried out, by considering arrays of planar
electrode sheets, hollow cylinders, hollow spheres and cylindrical
microelectrodes, distributed according to a suitably chosen and
parametrized 1D, 2D and 3D nearest-neighbor density distribution
function.[32–34] It is shown that homogeneous chemical reactions
preceding and following the electron transfer step, limited
heterogeneous electron transfer kinetics as well as electrochemi-
cally active species with non-equal diffusion coefficients can be
included in all diffusion models. The proposed theory is supported
by fitting experimental data acquired for the reference reaction,
the oxidation of [Fe(CN)6]

4� at planar as well as random-wire-
network platinum electrodes and for the technically relevant
reaction, the oxidation of VO2

+ at carbon felt electrodes. Finally,
our algorithm has been implemented into a powerful open source
software package named Polarographica[35] running under Python
2.7, which allows for facile simulation and analysis of cyclic
voltammetry data via a graphical user interface (GUI).

2. Theory and Derivation

This section is split in two parts. Subsection 2.1. describes the
CV simulation for non-porous electrodes with a) planar semi-
infinite, b) planar finite, c) cylindrical external semi-infinite, d)
cylindrical external finite, e) cylindrical internal finite, f) spherical
external semi-infinite, and g) spherical internal finite diffusion
domains by means of Laplace integral transform techniques. In

subsection 2.2. porous electrodes will be treated as arrays of
electrodes with statistically distributed diffusion domains.

2.1. Non-Porous Electrodes

For all considerations we assume the following reaction
sequence to take place at a stationary electrode:

E G

kp

k� p

H R)* Oþ ne� G

kf

k� f

H P

(E: educt, R: reduced, O: oxidized and P: product). It is assumed
further that mass transfer follows Fick’s law, that species E and R
have the common diffusion coefficient DR and species O and P
have the common diffusion coefficient DO: Let ci denote the
concentrations of i ¼ E; R;O; P, and kp, k� p, kf and k� f be the rate
constants for forward and backward homogeneous chemical
equilibria that precede and follow the electrochemical redox
reaction. Then the partial differential equations (PDEs) describing
diffusion and reaction in planar, cylindrical and spherical electrode
geometry can be summarized as shown in Table 1.

With ci* denoting a bulk concentration, ctot ¼
P

i ci denot-
ing the total concentration, I tð Þ denoting the time-dependent
current and A denoting the electrode surface area the required
boundary conditions for all cases a)-g) are given in Tables A1–
A3 in the Appendix. Solving the diffusion equations of Table 1
(with consideration of the respective boundary conditions) by
means of Laplace integral transformation, provides the func-
tions for the surface concentrations �cO;S and �cR;S (index S for
surface) in the Laplace domain, with s being the Laplace
transformed variable related to time t. For all diffusion models
these functions are listed in Tables A4–A6 in the appendix. Four
new variables are introduced, namely Kp ¼ kp=k� p and
Kf ¼ kf=k� f as equilibrium constants and p ¼ kp þ k� p and
f ¼ kf þ k� f as apparent rate constants of preceding and
following homogeneous chemical reactions.

We include homogeneous chemical equilibria for all
diffusion models by following the approach proposed by
Koutecký and Brdička[36] that has been, up to now, only adapted
for planar electrodes in semi-infinite diffusion space by Nicolson
and Shain.[5] Equations in Tables A4–A6 highlighted with an
asterisk are derived in the literature without considering
preceding and following chemical reactions. It should be noted
that the expressions derived in this paper reduce for large

Table 1. Diffusion-reaction equations for species E, R, O, and P for different electrode geometries.

Species Planar diffusion[a] Cylindrical diffusion[b] Spherical diffusion[c]

E @cE
@t ¼ DR

@2cE
@x2 � kpcE þ k� pcR

@cE
@t ¼ DR

@2cE
@r2 þ

1
r
@cE
@r

h i
� kpcE þ k� pcR

@cE
@t ¼ DR

@2cE
@r2 þ

2
r
@cE
@r

h i
� kpcE þ k� pcR

R @cR
@t ¼ DR

@2cR
@x2 þ kpcE � k� pcR

@cR
@t ¼ DR

@2cR
@r2 þ

1
r
@cR
@r

h i
þ kpcE � k� pcR

@cR
@t ¼ DR

@2cR
@r2 þ

2
r
@cR
@r

h i
þ kpcE � k� pcR

O @cO
@t ¼ DO

@2cO
@x2 � kf cO þ k� f cP

@cO
@t ¼ DO

@2cO
@r2 þ

1
r
@cO
@r

h i
� kf cO þ k� f cP

@cO
@t ¼ DO

@2cO
@r2 þ

2
r
@cO
@r

h i
� kf cO þ k� f cP

P @cP
@t ¼ DO

@2cP
@x2 þ kf cO � k� f cP

@cP
@t ¼ DO

@2cP
@r2 þ

1
r
@cP
@r

h i
þ kf cO � k� f cP

@cP
@t ¼ DO

@2cP
@r2 þ

2
r
@cP
@r

h i
þ kf cO � k� f cP

[a] x represents the distance to a planar electrode surface. [b] r represents the distance to the center of a cylinder. [c] r represents the distance to the center of
a sphere.
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values of Kp and low values of Kf to these previously known
expressions. Inversion of Laplace transformation yields for all
cases considered here the following general expressions for the
time-dependent surface concentrations in terms of convolution
integrals [Eqs. (1) and (2)]:

cR;S ¼
Kpctot
1þ Kp

� � �
1

1þ Kp

� �
nFA

ffiffiffiffiffi
DR

p

�

Zt

0

I tð Þ Kp � g t � tð Þ þ h t � tð Þ
� �

dt

(1)

and

cO;S ¼
1

1þ Kfð ÞnFA
ffiffiffiffiffiffi
DO

p

�

Zt

0

I tð Þ y t � tð Þ þ Kf � z t � tð Þ½ �dt

(2)

The functions g; h; y and z, implicitly defined here, are the
inverse Laplace transforms of respective terms easily identified
in the square brackets of the equations in Tables A4–A6.
However, it should be noted that a closed form analytic
expression for ci;S only exists for the case of planar semi-infinite
diffusion.[4,5] The case of a planar finite diffusion leads to
expressions involving Jacobi theta functions.[16,17] In case of
semi-infinite and internal finite cylindrical or spherical diffusion
domain, asymptotic series expansions for approximating the
inverse Laplace transform are proposed, which may be inverted
term by term to provide the time-dependent solution.[37–38]

Another strategy for obtaining the time-dependent surface
concentrations proposed by Montella involves the Gaver-
Stehfest inversion formula.[39]

Alternatively, we propose in this paper to perform the
inverse Laplace transform of the surface concentrations for all
diffusion models a)-g) numerically by using a modified Talbot
contour.[29–31] Following the concept of one of our recent
works,[13] we use the modified cotangent contour suggested by
Dingfelder and Weideman [31] implemented into a Python script
by F. Nieuwveldt.[40] In this manner we obtain the inverse
Laplace transform of the functions of interest at any desired
point in time as Equation (3) [using Eqs.(4) and (5)]:

f tð Þ �
1

i � 24

X24

k¼1

�F s qkð Þð Þexp t � s qkð Þð Þ
ds qkð Þ

dq

� �

(3)

where

s qð Þ ¼
24
t
� 0:6122þ 0:5017qcot 0:6407qð Þ þ i � 0:2339qð Þ (4)

qk ¼ � pþ 2p
k � 0:5ð Þ

24 � p < qk < pð Þ: (5)

Using the Laplace transformation property
L� 1 f sþ uð Þf g tð Þ ¼ L� 1 f sð Þf g tð Þ � e� ut , we note that h(t� τ)=
g(t� τ)exp(� p(t� τ)) and z(t� τ)=y(t� τ)exp(� f(t� τ)).

Defining further �G sð Þ ¼ �g sð Þ=s and �Y sð Þ ¼ �y sð Þ=s, we can
rewrite Equations (1) and (2) as Equations (6) and (7):

cR;S ¼
Kpctot
ð1þ KpÞ

�
1

ð1þ KpÞnFA
ffiffiffiffiffi
DR

p

� Kp

Z t

0

Gðt � tÞ
dðlðtÞÞ
dt

� �
2

4 dt

þ

Z t

0

Gðt � tÞ
dðlðtÞÞ � e� pðt� tÞ

dt

� �

dt

3

5

(6)

and

cO;S ¼
1

ð1þ Kf ÞnFA
ffiffiffiffiffiffi
DO

p

�

Z t

0

Yðt � tÞ
dðlðtÞÞ
dt

� �

dt

2

4

þKf

Z t

0

Yðt � tÞ
dðlðtÞÞ � e� fðt� tÞ

dt

� �

dt

3

5

(7)

The inversion from G sð Þ to G tð Þ and Y sð Þ to Y tð Þ is then
performed numerically for 300 points on a logarithmic grid
spanning a time range from t ¼ 10� 5 s to t ¼ 105 s, covering
the timescales of almost any realistic CV experiment. For the
subsequent CV simulations, a cubic spline interpolation is used
in order to obtain values of the functions G tð Þ and Y tð Þ at any
desired time. The effect of finite heterogeneous kinetics is
included by modifying the Butler-Volmer equation from

I ¼ nFAk0

� cR;Sexp
anF E � E0ð Þ

RT

� �

� cO;Sexp
� 1 � að ÞnF E � E0ð Þ

RT

� �� �
(8)

to

I ¼ nFAk0

� cR;S
kmax exp

anFðE� E0Þ
RT

� �

kmax þ k0 exp anFðE� E0Þ
RT

� �

0

@

� cO;S
kmax exp

� ð1� aÞnFðE� E0Þ
RT

� �

kmax þ k0 exp � ð1� aÞnFðE� E0Þ
RT

� �

1

A

(9)

In Equations (8) and (9), k0 represents the standard hetero-
geneous rate constant according to the Butler-Volmer model. In
Equation (9), kmax stands for the maximum heterogeneous
reaction rate constant present in the case of limited electron
transfer kinetics. This quantity can be thought as a deviation of
the electrode kinetics from the standard Butler–Volmer behav-
ior at large overpotentials. The idea results from the deviation
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of experimental data from the classical model that can be
explained by considering a certain turnover frequency of a
catalyst material that cannot be surpassed. Details on this study
are part of a manuscript in preparation. It can be seen that for
large values of kmax Equation (9) reduces to the standard
formalism of Equation (8). Calculation of the CVs follows by
substituting cR;S and cO;S from Equations (6) and (7Þ into
Equation (9). Subsequent discretization of the time variables t
and t (t ¼ id and t ¼ jd with 0 � j � i) allows evaluation of the
convolution integrals accurately as Riemann–Stieltjes integrals.

With the definition of the dimensionless electrode potential
as x tð Þ ¼ nF

RT E tð Þ � E0ð Þ where E tð Þ ¼ Ein þ nt � S tð Þ is the time-
dependent electrode potential, Ein being the initial electrode
potential, n being the potential sweep rate of an experiment
and S tð Þ being the function reverting the sweep-direction at the
upper/lower potential limit, we obtain the recurrence relation
[Eq. (10)] for the time-dependent current I tð Þ at t ¼ id for all
diffusion models considered in this paper.

ð10Þ

It should be noted that in recurrence relation [Eq. (10)] the
simplifications given in Equations (11) and (12) were made:

dGi;j ¼ G i � j þ 1ð Þdð Þ � G i � jð Þdð Þ (11)

dYi;j ¼ Y i � jþ 1ð Þdð Þ � Y i � jð Þdð Þ (12)

Via the recurrence relation (Eq. 10), CV responses including
preceding and following homogeneous chemical reactions,
non-equal diffusion coefficients and finite heterogeneous
kinetics can be calculated for all diffusion models a)–g)
presented in Tables A4–A6 in the Appendix.

2.2. Simulation of CV at Porous Electrodes

The simulation of CV at porous electrodes is performed by
considering arrays of electrode sheets (Figure 1A), cylindrical
microelectrodes (Figure 1B), cylindrical pores (Figure 1C), and
spherical pores (Figure 1D) distributed according to a three-
parameter generalized gamma distribution [Eq. (13)].[33]

p yð Þ ¼ c �
ba=c

G
a
c

� � � ya� 1 � exp � b � ycð Þ (13)

In Equation (13), the dimensionless variable y represents the
ratio of the distance xi between two electrode centers and its
average distance according to y ¼ xi=xav . The average distance
xav is defined for the respective diffusion models by the
expressions given in Table 2.

The parameters a, b and c (given in Table 3) modify the
shape of the distribution function p yð Þ for the distributions in
1D, 2D and 3D, also depicted in Figure 1.

The CV simulation of a porous electrode under study is
carried out after discretizing the variable x into m sub-intervals
with a width of Dx each. The integral of p yð Þ over each interval
spanning from iDx to iþ 1ð ÞDx with i=0,1,2,…,m� 1 describes
the probability Pi of finding a pair of microelectrode centers
with a distance in that range [Eq. ( 14)].

Figure 1. Visualization of porous electrode systems as A) layered structure, B) array of cylindrical microelectrodes, C) array of cylindrical pores, and D) array of
hollow spheres with midpoint distance distributions as depicted and following Equation (13).
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Pi ¼

Z iþ1ð ÞDx=xav

iDx=xav
p yð Þdy (14)

The mean distance xi is calculated according to Equa-
tion (15) and converted back into individual diffusion domain
sizes as it is shown in Table 4.

xi ¼ xav

Z iþ1ð ÞDx=xav

iDx=xav
y � p yð Þdy (15)

Before simulating the entire current response Itot of a porous
electrode, the statistical contributions of the individual current
responses belonging to each diffusion domain size need to be
calculated. In case of a planar finite and a cylindrical external

finite diffusion domain of size di with fixed sheet thickness or
microelectrode radius, the statistical weight of one particular
IðdiÞ to Itot is simply the statistical weight Pi. However, in case of
the internal finite diffusion models (internal cylindrical and
internal spherical), the accessible electrode area has to be
considered as a function of the individual electrode radius ai.
Consequently, the statistical weight of a particular IðaiÞ to Itot is
obtained as shown in Table 5.

In this manner a suitable statistical weighting of the
individual CV responses in differently sized internal spherical
and internal cylindrical diffusion domains is obtained as well.
Subsequently, the entire CV of a porous electrode is obtained
by adding the individual current responses corresponding to
the respective diffusion domain sizes multiplied by their
statistical weight.

This CV simulation strategy can also be used for data
evaluation. By calculating a current response that minimizes the
standard deviation of simulated data (index sim) to experimen-
tally acquired data (index exp) according to Equation (16) a set
of parameters fitting the experimental result as closely as
possible can be obtained:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

Ii;exp � Ii;sim
Imax;exp

� �2

v
u
u
t (16)

In this manner information about electrode kinetics as well as
electrode porosity is obtained simultaneously. CV simulation and
data evaluation via this strategy using our designed software
Polarographica is discussed in the Supporting Information.

3. Results and Discussion

This section is split into three parts. In subsection 3.1., the
numerical accuracy of our calculation strategy is demonstrated.
Subsection 3.2. documents the effect of statistically distributed
diffusion domains. Finally, in subsection 3.3., simulated data is
compared to experimental data acquired for the chosen
reference reaction.

3.1. Accuracy of the Calculations

In our CV calculation strategy two error sources have to be
considered, a) the error introduced by the numerical inversion
of the Laplace transformation and b) the discretization error
introduced by the choice of the increment d in recurrence
relation [Eq. (10)]. Both types of error are depicted in Figure 2.
Therein, Figure 2A shows the convolution functions Y tð Þ for the
examples of a planar semi-infinite diffusion domain (black
curves) as well as for three planar finite diffusion domains (grey
d ¼ 300 mm, red d ¼ 200 mm and blue d ¼ 100 mm curves).
Functions were calculated either from the Talbot contour
(dotted lines) or are represented by their analytic analogs (solid
lines). To visualize the error introduced by the numerical
inversion of the Laplace transformation using the Talbot

Table 2. Definition of the average distance xav in 1D, 2D and 3D.

1D, Planar finite
(layered porous electrode)

Np electrode sheets
per unit length

xav ¼
1
Np

2D, Cylindrical finite
(external!felt)
(internal!tube network)

Nc midpoints of
cylindrical microelectrodes
per unit area

xav ¼ 2 �
ffiffiffiffiffi
1

pNc

q

3D, Spherical internal finite
(electrode foam)

Ns midpoints of hollow
spherical microelectrodes
per unit volume

xav ¼ 2 �
ffiffiffiffiffiffiffi
3

4pNs

3

q

Table 3. Parameters a, b, and c controlling the shape of the nearest-
neighbor distance distribution function p yð Þ in 1D, 2D and 3D taken from
Ref. [33].

a b c

1D 2 2 1
2D 3.3095 3.0328 1.0787
3D 4.8065 4.06342 1.16391

Table 4. Individual diffusion domain size for the respective diffusion
models.

Diffusion model Diffusion domain size

Planar finite di ¼
xi
2 � a

Cylindrical external finite di ¼
xi
2 � a

Cylindrical internal finite ai ¼
xi
2

Spherical internal finite ai ¼
xi
2

Table 5. Calculation of the statistical weight for finite internal cylindrical
and internal spherical diffusion domains.

Diffusion model Number of
microelectrodes

Statistical weight
of A(ai)

Internal cylindrical diffusion Ntot ¼
Atot

2p
P

Piai
P A aið Þð Þ ¼

PiaiP
Piai

Internal spherical diffusion Ntot ¼
Atot

4p
P

Pia2i
P A aið Þð Þ ¼

PiNtot4pa2i
Atot
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contour, Figure 2B depicts the difference between numerical
and analytic result. It can be seen that for all cases the
introduced error is DY < 2 � 10� 5 at the timescale of the
simulation and is largest in case of planar semi-infinite diffusion.
Before investigating the influence of the error in the function
Y tð Þ on the CV calculation, the discretization error, which is
caused by the choice of the time increment d in recurrence
relation [Eq. (10)], is depicted in Figure 2C for a reversible
electrochemical reaction. For this purpose, d is chosen to
provide dimensionless increments Dx ¼ nFnd=RT of 0.001, 0.1,
0.5 and 1, where n ¼ 1 and n ¼ 1 mV=s and T ¼ 298 K.

It should be noted that one obtains in case of Dx ¼ 0:001 a
dimensionless reversible peak height of cmax ¼ 0:44629, being
identical to the value given in Ref [20]. In case of Dx ¼ 0:01 a
peak height of cmax ¼ 0:44627 is calculated, being 99.996% of
the reference value. Since simulations with Dx ¼ 0:001 cause a
60-fold increase in the computation time, compared to

Dx ¼ 0:01, we restricted all calculations on which we report in
sections 3.2–3.3 to a resolution of Dx ¼ 0:01. This is being
considered sufficiently accurate for comparison with experimen-
tal data.

To investigate the influence of the error in the function Y tð Þ
introduced by the numerical inversion of the Laplace trans-
formation, d was adjusted to provide Dx ¼ 0:001. For the
simulation, the planar semi-infinite diffusion model was chosen,
since this case shows the largest error in Y tð Þ. The difference
between a CV simulated with the analytic Y tð Þ and a CV simulated
with the numerical Y tð Þ is depicted in Figure 2D. It can be seen
that the error is in the range of Dc < 10� 6 at the timescale of the
simulation, which is similar to the accuracy reported in Ref. [41]. It
is worth to mention that such an accuracy appears to be beyond
experimental accuracy and would not be the limiting factor when
comparing experimental and simulated data. It is thus demon-
strated that calculating Y tð Þ numerically provides sufficient

Figure 2. A) Functions Y tð Þ for planar semi-infinite (black curve) and planar finite diffusion domains (grey, red and blue curves) calculated via numerical
inversion of the Laplace transformation using a modified Talbot contour (dots) as well as their analytic analoga (solid curves). B) Difference of analytic and
numerical Y tð Þ. C) Dimensionless representation of a forward-scan CV with different increments Dx. D) Difference between CV curves simulated with numerical
and with analytic Y tð Þ for a planar semi-infinite diffusion domain.
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accuracy for simulating CV data and that the most critical
parameter during the numerical calculation is the choice of the
time increment δ.

3.2. Statistical Diffusion Domain Effects

This subsection discusses the effect of electrode porosity by
considering 1D, 2D and 3D arrays of electrode sheets, cylindrical
microelectrodes, hollow-cylindrical microelectrodes and hollow-
spherical microelectrodes in statistically distributed diffusion
domains. This reflects the variety of electrodes being used in
real-life applications e.g. fuel cells and redox-flow batteries. All
CV calculations were performed with parameter values as given
in Table 6. The influence of varying the individual parameters
shown in Table 6, is provided for the sake of completeness in
the Supporting Information section S1.

To investigate the influence of the discretization of the
distribution function, CV simulations were performed both, for
different number of discretization intervals as well as for
different average diffusion domain sizes. From Figure 3, consid-
ering an array of electrode sheets with a statistically distributed
planar finite diffusion domain, it can be seen that increasing the
amount of discretization intervals in the distribution function

Table 6. Parameters used for simulation of CV in statistically distributed
diffusion domains.

n T K½ � A cm2½ � ctot M½ � DR ½cm
2 s� 1� DO ½cm

2 s� 1�

1 298 1 0:1 1 � 10� 6 1 � 10� 6

k0 ½cm s� 1� a kmax ½cm s� 1� n ½mV s� 1� Kp Kf

10� 3 0:5 no bound 10 neglected if
not stated
otherwise

neglected if
not stated
otherwise

Figure 3. Effect of the number of discretization intervals of the distribution function on the CV response of a layered structure with a randomly spaced 1D
diffusion domain.
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leads to a decreased peak separation, a decreased peak height
and a slower decay in the CV’s diffusion tail, compared to the
non-statistically weighted case (single interval, no discretiza-
tion).

This discretization effect is investigated further for all
diffusion models with different average diffusion domain sizes
in Figure 4 by focusing on the dependence of the CV’s peak
height on the amount of discretization intervals. It can be seen
that for larger average diffusion domain sizes more discretiza-
tion intervals are required, until the peak height remains
constant. In this manner it could be demonstrated that at least
7 discretization intervals should be used in the simulations.
Furthermore, it can be seen that in case of arrays of electrode
sheets (Figure 4A: planar finite statistically weighted diffusion
domains) and arrays of cylindrical microelectrodes (Figure 4B:
external cylindrical finite, statistically weighted diffusion do-
mains) the peak height decreases, when the statistically
distributed diffusion domain is considered.

In contrast, in case of arrays of cylindrical pores (Figure 4C:
internal cylindrical finite, statistically weighted diffusion do-
mains) and arrays of spherical pores (Figure 4D: internal
spherical finite, statistically weighted diffusion domains) the
opposite trend is observed.

We explain these features by considering the asymmetry of
the distance distribution functions, which assigns higher
statistical weight to small, and lower statistical weight to large
diffusion domains.

Since in case of planar finite and cylindrical external finite
diffusion domains the statistical weight of an individual
diffusion domain equals the statistical weight of the corre-
sponding CV, the entire current response behaves rather like
the small diffusion domain case. Contrarily, in case of internal
cylindrical and internal spherical finite diffusion domains, the
statistical weight of an individual CV is determined by the
statistical weight of its relative electrode surface area. As larger
electrode radii (linked to larger diffusion domains) contribute
more individual electrode surface area, the statistical weight of

Figure 4. Dependence of the dimensionless peak currents for porous electrodes possessing statistically distributed diffusion domains with A) planar finite, B)
cylindrical external finite, C) cylindrical internal finite, and D) spherical internal finite symmetry on the number of discretization intervals of the respective 1D,
2D, and 3D distribution function. All simulations were performed using parameters as given in Table 6.
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CVs with large electrode radii increases and the entire current
response behaves rather like a large-diffusion-domain CV.

In order to visualize the effect of a statistically distributed
diffusion domain on the entire current response, Figure 5
depicts the dimensionless currents for arrays of microelectrodes
in A: planar finite, B: cylindrical external finite, C: cylindrical
internal finite, and D: spherical internal finite diffusion domains.
For all diffusion models Ni was adjusted to provide an average
diffusion domain size of 15 μm and 50 μm, respectively, and the
range of the distribution function was split up either into 10
intervals (statistical effect considered) or 1 interval (statistical
effect not considered). In case of the external cylindrical
diffusion model the fiber electrode’s radius a was set to 5 μm.
From Figure 5 it can be seen, that peak separation and peak
height decrease in the order of cylindrical external finite, planar
finite, cylindrical internal finite and spherical internal finite
electrode geometries. Furthermore, it can be seen that
decreased peak height and peak separation are caused by

decreasing the average diffusion domain size, also in case of
statistically weighted diffusion domains. These known
features[16,17] are expected to occur, as a porous electrode is an
assembly of individual microelectrodes. However, it is worth to
mention that the diffusion tail in the CV is less steep in all
diffusion models with a statistically distributed diffusion
domain, in comparison to the non-statistically distributed case.
This feature can be explained in the following way.

While the individual CVs with high statistical weight and
small diffusion domain sizes decay rapidly after the peak, the
large-diffusion-domain CVs with low statistical weight are still
providing a current signal that finally forms the slowly decaying
diffusion tail.

Figure 5. Simulated dimensionless current responses vs. dimensionless potentials for porous electrodes possessing statistically distributed diffusion domains
with planar finite (black curves), cylindrical external finite (red curves), cylindrical internal finite (orange curves), and spherical internal finite (blue curves)
symmetry. All simulations were performed using the parameters given in Table 6. Solid curves are calculated for a non-statistically weighted diffusion domain.
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3.3. Simulated versus Experimental Data

Taking into account all types of electrode geometries, random
network diffusion domains as well as the known influence of
electrode kinetics and of coupled chemical kinetics, we under-
line that it is impossible to judge the electrode kinetics by
simply comparing peak-to-peak separations and peak heights
especially when it comes to porous electrodes. We propose
instead to perform CV evaluation by fitting of experimental
data. For this purpose, we embedded our CV simulation
strategy into an open source software tool,[35] written in Python
2.7 programming language and providing a graphical user
interface for facile CV simulation and evaluation. Data evalua-
tion with our software can be performed by minimizing the
standard deviation between simulated data and experimentally
acquired data, as it will now be shown in this section.

In order to prove the concept of our theory section, CV
measurements were conducted for the chosen reference
reactions, a) the oxidation of [Fe(CN)6]

4� at platinum surfaces
and b) the technically relevant oxidation of VO2

+ at carbon felt
electrodes. As electrodes, we used a Pt disc electrode (Metrohm
Autolab, 6.1204.310), a folded Pt-mesh electrode, and a
commercial GFD carbon felt (SGL carbon) electrode. While the
Pt disc serves as model of a planar semi-infinite diffusion
domain, the folded Pt-mesh and the carbon felt are regarded
here as examples of a statistically distributed finite external
cylindrical diffusion domain. Electrolyte solutions were a) 0.1 M
KCl supporting electrolyte containing 0.01 M K4[Fe(CN)6] and b)
2 M H2SO4 supporting electrolyte containing 0.16 M VO2

+ ions.
Measurements were performed using a Gamry Reference600
Potentiostat (Gamry instruments). As reference, an Ag/AgCl
electrode was used. All measurements are corrected for the
solution resistance during the measurements using positive
feedback mode. Experimental data (dots) as well as the fitting
results (solid curve) are depicted in Figure 6 for reaction a) and
in Figure 7 for reaction b).

Details of the manual multi-parameter fitting process are
given in the supporting information. In brief, firstly all known
parameters (n; T , n, ctot , E

0, the electrode surface area A in case
of the planar Pt electrode, fiber radius a in case of the random
wire network) are assumed as fixed values. The carbon fiber
thickness of the carbon felt used for reaction b) was estimated
from SEM images. For the diffusion coefficient of the electro-
chemically active species, in the present case a) the [Fe(CN)6]

4� -
ion, literature data from Ref. [42] and b) from Ref. [13] were
used. Consequently, for the semi-infinite diffusion in Figure 6A
the only missing parameters to be determined are a and k0. As
the peaks appear rather symmetric in the experimental data the
initial guess a ¼ 0:5 was made. Adjusting of a and k0 results in
a minimum standard deviation (given by the parameter s in
Figure 6) of simulated and experimentally acquired data for
a ¼ 0:5 and k0 ¼ 2 � 10� 3 cm

s . In case of the random wire network
electrode the extra difficulty is that the internal electrode
surface area is unknown. However, as the CV response scales
linearly with the electrode area (assuming a given concentra-
tion) and does not change its shape, the electrode area can be
distinguished from the other parameters in a straightforward
way. Furthermore, it might be approximated as stated in the
supporting information. In this manner, minimizing the
standard deviation between simulated data and experimentally
acquired data, an electron transfer coefficient of a ¼ 0:5 and a
rate constant of k0 ¼ 2 � 10� 3 cm

s are found, being in good
agreement with values found for the planar semi-infinite case.
However, regarding the diffusion tails of the fitted CV curve, it
can be noted that no complete match between experimentally
acquired data and simulation was achieved. This can be
explained by the fact that the contribution of the external
diffusion component (towards and from the folded Pt mesh) is
not implemented in the model, which only takes into account
the diffusion inside the fiber network. Nevertheless, since the
kinetic region of the CV as well as the redox peaks are fitted
properly and the estimated kinetic parameters are in agreement

Figure 6. Fit (solid curves) and measured data (dots) for the oxidation of [Fe(CN)6]
4� in 0.1 M KCl solution at A) planar platinum electrodes with semi-infinite

diffusion domain and B) a random Pt-wire network described by a statistical external cylindrical diffusion domain.
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with the planar semi-infinite diffusion case, the fitting results
are assumed reasonable.

To further validate our model we also investigated the
oxidation of VO2

+ at carbon felt electrodes as a technical
relevant reaction in all-vanadium redox flow batteries. Since a
carbon felt electrode provides an internal electrode area being
much larger than the external electrode surface area, the
proposed model is expected to fit the experimental data much
more accurately than in the case of the folded Pt-mesh. This
can be seen indeed in Figure 7 where simulated data provides a
much better fitting to experimentally acquired data. Estimated
values of k0 and a are independent of the sweep rate and the
values of k0 are in good agreement with the literature.[43] The
complete set of parameters obtained from the fitting process is
provided for the sake of completeness as Table S1 in the
supporting information.

Since the potential sweep rate has a large influence on the
CVs’ shape, especially in porous networks,[43] obtaining the
same kinetic data for various sweep rates underlines the validity
of our model. Consequently, it could be shown that investigat-
ing the electrode kinetics of porous electrodes can be
performed by fitting simulated data in a reliable way. However,
it has to be underlined that during such a multi-parameter
fitting process a basic set of information on the system of
interest has to be known and that all parameters have to be
kept at realistic values if one wishes to obtain meaningful
results. Hence, we recommend to crosscheck the kinetic
information obtained using our data evaluation strategy by
performing the experiments at different experimental condi-
tions (for example at different potential scan rates) and by
comparing the data with other models, for example the
approach described by Friedl.[43]

4. Conclusions

In this paper we present a universal algorithm for simulating
and evaluating cyclic voltammetry (CV) data at planar, cylin-
drical and spherical electrodes in semi-infinite and finite
diffusion domains with coupled homogeneous chemical ki-
netics. The algorithm, which first provides the time-dependent
surface concentrations of all relevant species, is based on
Laplace integral transform techniques. It uses a modified Talbot
contour for performing the most crucial inverse Laplace trans-
formation step numerically at high accuracy and hence avoids
the difficulty of finding an analytic inversion. By considering 1D,
2D and 3D arrays of microelectrodes in statistically distributed
diffusion domains we provide a way of simulating CV responses
of porous electrodes like felts and foams, extensively used in
the battery community. It is demonstrated that finite heteroge-
neous kinetics deviating from classical Butler–Volmer kinetics
and electrochemically active species possessing non-equal
diffusion coefficients can be readily included in the simulations
as well. Our CV simulation strategy has been implemented into
an open source tool (written in Python 2.7 programming
language), providing a graphical user interface to facilitate CV
data analysis. Based on numerous CV simulations the individual
influence of random diffusion domains, electrode kinetics and
homogeneous chemical kinetics is unraveled. Eventually a
strategy for evaluating experimental CV data is outlined that
provides the experimentalists community with a powerful
alternative to classical data evaluation.

Keywords: convolution · cyclic voltammetry · diffusion ·
porous electrodes · modified Talbot contour

Figure 7. A) Fit (solid curves) and measured data (dots) for the oxidation of VO2
+ in 2 M H2SO4 solution at a commercial GFD-carbon felt electrode performed

at different potential sweep rates, B) and C) SEM images of the carbon felt electrode for estimating the fiber diameters. Kinetic parameters determined from
the fitting are independent of the potential sweep rate, validating our model.
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