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WWP2 regulates pathological cardiac fibrosis
by modulating SMAD2 signaling
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Cardiac fibrosis is a final common pathology in inherited and acquired heart diseases

that causes cardiac electrical and pump failure. Here, we use systems genetics to identify a

pro-fibrotic gene network in the diseased heart and show that this network is regulated by the

E3 ubiquitin ligase WWP2, specifically by the WWP2-N terminal isoform. Importantly, the

WWP2-regulated pro-fibrotic gene network is conserved across different cardiac diseases

characterized by fibrosis: human and murine dilated cardiomyopathy and repaired tetralogy

of Fallot. Transgenic mice lacking the N-terminal region of the WWP2 protein show improved

cardiac function and reduced myocardial fibrosis in response to pressure overload or myo-

cardial infarction. In primary cardiac fibroblasts, WWP2 positively regulates the expression of

pro-fibrotic markers and extracellular matrix genes. TGFβ1 stimulation promotes nuclear

translocation of the WWP2 isoforms containing the N-terminal region and their interaction

with SMAD2. WWP2 mediates the TGFβ1-induced nucleocytoplasmic shuttling and tran-

scriptional activity of SMAD2.
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Pathological cardiac fibrosis is a process characterized by an
excessive deposition of extracellular matrix (ECM) which in
turn can lead to the development of cardiac dysfunction,

arrhythmias, and heart failure (HF)1. Prolonged and extensive
cardiac fibrosis is associated with poor clinical outcome and is
an independent predictor of sudden cardiac death and overall
mortality2. Cardiac fibrosis can have several and sometimes
concurring triggers, including systemic hypertension, diabetes,
and native cardiac ischemic insults causing ischemic cardio-
myopathies and other forms of dilated cardiomyopathy (DCM).
Despite diverse etiologies (e.g., ischemic vs non-ischemic origin),
different heart conditions such as DCM and hypertrophic
cardiomyopathy develop myocardial fibrosis and may share
common pathogenic pathways that lead to the development of
HF3,4. The fibrotic remodeling of the myocardium is also a fea-
ture of congenital heart diseases and their surgical repair, such as
in repaired tetralogy of Fallot (rTOF)5 or in other conditions
causing progressive right ventricular dilation and failure6.
Therefore, there is a growing body of evidences supporting
cardiac fibrosis as a pathophysiological pathway common to
different heart diseases7.

The cardiac fibroblast is a key effector cell in cardiac fibrosis,
responsible for homeostasis of the ECM in the heart. Upon
triggering of the fibrogenic response, activated cardiac fibroblasts
ultimately differentiate into myofibroblasts, increase the synthesis
of ACTA2 and other ECM components, and reduce their pro-
liferation rate8. At the molecular level, the development of tissue
fibrosis comprises a complex signaling cascade, for which many
regulators have been proposed such as angiotensin II (AngII),
connective tissue growth factor (CTGF), bone morphogenetic
protein (BMP), WNT, and cytokines such as interleukin 11
(IL-11)9–12, and the transforming growth factor beta (TGFβ)
superfamily13. In particular, TGFβ1 binds directly to receptors for
signal transduction via downstream effector proteins known as
SMADs, which leads to the transcription of ECM proteins14.

Therapeutic targeting of cardiac fibrosis has been proposed for
alleviating the progression of cardiovascular diseases and
improving cardiac function15. Systemic and localized delivery of
drugs modulating TGFβ, endothelin-1, AngII, CCN2, and PDGF
are examples of anti-fibrotic therapies16. Moreover, targeting
multiple pro-fibrotic pathways may provide an additional ther-
apeutic approach to control cardiac fibrosis17. Since the physio-
logical fibrosis process is required for normal wound healing and
tissue repair, the identification of targets that regulate specifically
cardiac fibrosis under pathological conditions is important to
develop new therapies to improve clinical outcomes for patients
with heart disease.

Here, using systems genetics18 in the fibrotic heart we identify
WWP2, a E3 ubiquitin protein ligase, as a positive genetic reg-
ulator of a transcriptional ECM gene network, which is associated
with pathological cardiac fibrosis. We demonstrate a previously
unappreciated role for WWP2 in the pathophysiological cardio-
vascular system, and elucidate how this gene regulates SMAD
function and the downstream fibrogenic response in the diseased
heart. These findings suggest WWP2 as a potential target for
treating heart diseases.

Results
Coordinated regulation of ECM genes in the diseased heart.
We set out to identify transcriptional programs conserved across
species and associated to cardiac fibrosis. We first used a panel of
30 rat recombinant inbred (RI) strains19, which allows integrative
analyses of cardiac gene expression with quantitative pathophy-
siological traits (e.g., cardiac fibrosis), and genome-wide genetic
data20–22. This RI strains panel is an established model of

cardiovascular traits, including cardiac hypertrophy20, blood
pressure (BP)23, and heart remodeling21,24. We performed gene
co-expression network analysis in the rat RI strains left ventricle
(LV) transcriptome using RNA-sequencing (RNA-seq) data.
This identified 41 distinct gene co-expression networks (Fig. 1a,
Supplementary Data 1a, b). We then tested the association of
these gene co-expression networks with quantitative histopatho-
logic measurements of interstitial and perivascular fibrosis in the
rat heart (Supplementary Fig. 1). We identified five gene co-
expression networks associated with both interstitial and peri-
vascular cardiac fibrosis in the rat (adjusted P < 0.05, permutation
test in Gene Set Enrichment Analysis [GSEA]25) (Fig. 1b). To
uncover transcriptional programs relevant to the fibrogenic pro-
cesses in human heart disease, we performed a separate gene
network analysis using LV RNA-seq data generated from a cohort
of patients with DCM (n= 126) and a cohort of control heart
samples (n= 92 organ donors whose hearts were explanted for
transplantation26). We inferred gene co-expression networks in
the human DCM LV transcriptome, which resulted in 48 distinct
networks (Supplementary Data 2a, b). Then, we assessed which of
these human DCM gene networks was conserved in the rat LV.
This identified 14 human DCM networks as having some degree
of conservation with the rat networks (adjusted P < 0.05, Fisher’s
exact test [FET]) (Fig. 1c). To obtain additional evidences sup-
porting a role for these networks in human heart disease, we
formally tested which gene co-expression pattern was present
only in the LV from human DCM patients and not in LV from
controls, i.e., we tested for differential co-expression between
DCM and control hearts (see Methods). The differential co-
expression paradigm assumes that the disease state is linked to
perturbations of the structure of the regulatory network itself, and
might reflect the dysregulation of the underlying transcription
factors (TFs) in disease27. Here, we found that eight human gene
networks were both conserved across species and differentially
co-expressed between human DCM and controls (adjusted P <
0.05, permutation test). Despite the fact that several networks
were significantly conserved between rat and human DCM heart
(see Extended Analyses in Supplementary Note 1), only one
human network (Hs M47), containing 683 genes, was (1) sig-
nificantly conserved in the rat (sharing 72 genes with the rat
network M1, adjusted P= 8.4 × 10−45 in FET, Fig. 1d), (2)
associated with both interstitial and perivascular fibrosis in the rat
heart (Fig. 1b), and (3) differentially co-expressed in human
DCM heart (Fig. 1c, right panel).

The Hs M47 was functionally relevant for ECM regulation, as it
was significantly enriched for genes belonging to the specific
biological pathways and processes: “ECM-receptor interaction”,
“TGFβ signaling pathway”, and “focal adhesion” (Fig. 1e).
Henceforth, we will refer to Hs M47 as human ECM-network
(or hECM-network). This hECM-network contains 237 strongly
co-expressed genes annotated to encode for extracellular ECM
region proteins (Supplementary Data 3b), and among these we
highlight: 21 genes encoding for collagens; focal adhesion
molecules such as ITGB5, COMP, MAPK10, and THBS4; several
extracellular genes involved in TGFβ-signaling (e.g., DCN, CHRD,
TGFβ3); three members of the BMP family (BMP4, BMP6,
and BMP8B), and other important matricellular proteins, such
as CTGF and PDGFD, which contribute to the fibrogenic
response11,28.

We further investigated whether the hECM network was
specific to the ECM remodeling processes undergoing in DCM
and/or in LV tissue. To this aim, we considered a separate heart
condition, rTOF, which has a very different etiology from DCM
but is characterized by the presence of cardiac dysfunction and
diffuse and pathologic myocardial fibrosis of both the right
ventricle (RV) and LV29. We analyzed RNA-seq data from RV in
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Fig. 1 Co-expression networks analysis in rats and humans identifies a disease-associated pro-fibrotic ECM transcriptional program. a Hierarchical
clustering of the first principal component of the rat co-expression networks (M1 to M39) inferred in the LV of the RI rat strains. Each branch denotes a
distinct rat network with a different number of genes (full list in Supplementary Data 1a, b). b Level plot displaying the GSEA results with the significance of
the association of each network to interstitial and perivascular fibrosis. This level plot is colored by GSEA NES, representing the strength of enrichment
normalized by gene set size and white color denoting non-significant enrichment. c Each row represents a human co-expression network inferred in the LV
of DCM patients. Only DCM networks that are significantly intersecting (adjusted P < 0.05, FET) to any rat network are shown (full list of networks in
Supplementary Data 2a, b). The right panel highlights in red the human DCM modules that are significantly differentially co-expressed between DCM
and control LV samples (red denotes adjusted P < 0.05, permutation test). d Shortlisted rat and human networks: rat network M1 (rat ECM-network)
and human network Hs M47 (hECM-network). These two networks have a significant overlap and share 72 genes (adjusted P= 8.39 × 10−45, FET).
e Functional enrichment of the hECM-network shows significantly overrepresented terms (FDR < 0.05). f Heatmap of pairwise gene-gene expression
correlation estimates of the 683 genes included in the hECM-network in: left, LV cohort (DCM patients, n= 126 and controls, n= 92) and right, RV cohort
(rTOF patients, n= 27 and controls, n= 11). In both cases, patients are displayed in the upper-left triangular matrix whereas controls are displayed in
bottom-right triangular matrix. The P is from the differential co-expression test (see Methods for details). g Percentage of genes in the hECM-network
with significant differential expression (FDR < 0.05) in human ventricular cardiac (myo)fibroblasts after 24 h induction with either TGFβ1 or TGFβ2.
h Breakdown of SMAD targets enrichment in hECM-network. The network contains 683 genes; 43% of these genes are targets of any SMAD (i.e.,
considering SMAD1/2/3/4; full list of SMADs targets in Supplementary Data 3d)
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a cohort of adult patients with rTOF (n= 27) who underwent
surgery for pulmonary valve replacement and age-matched
control donor samples (n= 11), full details in Supplementary
Table 1. The hECM gene co-expression network found in DCM
LV was significantly conserved in rTOF RV (P < 1 × 10−5,
permutation test) but not in control RV (P ~ 1, permutation
test). The gene co-expression pattern of the hECM-network in
rTOF RV mirrored the pattern observed in DCM LV (i.e.,
strongest gene-gene co-expression in disease), and this was
significantly different between rTOF patients and controls
(Fig. 1f). The consistent differential gene co-expression in DCM
and rTOF heart thus suggests that the hECM network is
capturing common ECM remodeling processes taking place
across a wider range of human cardiac fibrotic diseases,
irrespective of the specific disease etiology and the heart tissue,
i.e., LV and RV. In addition, using longitudinal cardiac
transcriptome data from a mouse genetic model of HF30, we
show that this hECM network is enriched for genes upregulated
in DCM that progresses to HF. Compared with control heart, 54%
of the hECM-network genes are upregulated in DCM (P= 5.4 ×
10−59, FET) and 53% are upregulated in HF (P= 2.4 × 10−49,
FET). These results in human and mouse DCM/HF suggest that
the identified hECM-network recapitulates the maladaptive
fibrotic remodeling that promotes HF and adverse cardiovascular
outcomes.

Since the hECM network was enriched for genes involved in
the TGFβ signaling (Fig. 1e), we looked at whether the hECM
network was downstream of TGFβ-receptor activation. We
analyzed RNA-seq data generated from primary cultures of
human atrial cardiac (myo)fibroblasts exposed to TGFβ1 (24 h),
TGFβ2 (24 h) or control media. TGFβ1 and TGFβ2 induced the
differential expression of 46% and 49% of the genes in the hECM-
network: 315 and 335 genes, respectively (Fig. 1g, Supplementary
Data 3c). Given the key role of SMAD TFs downstream of TGFβ-
receptors activation31, we tested whether the hECM-network was
enriched for SMAD target genes. Using published chromatin
immunoprecipitation-sequencing data32, we found that the
hECM network was significantly enriched for SMAD-regulated
genes (n= 291, 43% of the network genes), especially for SMAD2,
SMAD3, and SMAD4 (Fig. 1h, Supplementary Data 3d).
Together, these analyses revealed a cross-species conserved gene
network, which might recapitulate the pathological ECM
remodeling undergoing downstream of TGFβ/SMAD signaling
activation in the diseased heart.

WWP2 regulates the pro-fibrotic gene network in heart. Gene-
gene co-expression suggests coordinated gene regulation by one
or more master regulator gene. To identify master regulators of
the hECM-network, we used advanced Bayesian genetic mapping
approaches33 to pinpoint genomic loci regulating the whole
ECM-network. In this, we consider the expression of the rat (or
human) genes in the ECM-network as a multivariate quantitative
trait, and then we test if the joint expression levels of the network
genes are associated with genome-wide genetic variants (i.e.,
single-nucleotide polymorphisms, SNPs). This Bayesian expres-
sion quantitative trait locus (eQTL) mapping (or network-eQTL
mapping) method was developed by our group to discover trans-
acting master genetic regulators of networks in disease, including
type 1 diabetes34, epilepsy35 and inflammatory disease36.

Here, we first mapped the ECM-network in the rat, and
identified a single locus on rat chromosome 19 regulating 219
genes of the network (median Bayes factor [BF]= 181.7, where
the BF represents the strength of genetic regulation versus no
genetic control of the network) (Fig. 2a). Then, we investigated
whether the regulatory locus for the rat ECM-network was

conserved in humans. In the DCM patient cohort where the
network genes are strongly co-regulated (Fig. 1f), we tested
whether the hECM-network genes were jointly mapping to the
human locus syntenic to the regulatory locus found in the rat (the
human syntenic locus is located on chromosome 16, Fig. 2b).
Network-eQTL mapping in human DCM detected a single
regulatory SNP (rs9936589) located within an intron of the
WWP2 gene, an E3 ubiquitin ligase. This SNP was strongly
associated with the expression of the hECM-network in DCM
heart (Fig. 2c) (median BF= 2004 for the 683 hECM-network
genes). This network-eQTL was not detectable in the heart from
control organ donors (Supplementary Data 3a), suggesting that
the genetic regulation of the hECM network is present (or is
detectable) only in diseased heart. This regulatory SNP
(rs9936589) and WWP2 have not been previously associated
with any fibrotic or heart disease.

These systems genetics analyses revealed a coordinated pro-
fibrotic ECM transcriptional program in the diseased heart, which
is regulated by a genetic variant within the WWP2 locus
(Fig. 2a–c). Therefore, we investigated whether the WWP2 gene
was a potential regulator of the hECM network in human fibrotic
heart disease. We correlated the expression levels ofWWP2 to the
expression levels of the 683 hECM-network genes in LV and RV
fibrotic hearts (i.e., in DCM and rTOF), and control hearts
separately. In both LV (DCM) and RV (rTOF) fibrotic hearts, we
observed a positive and significant shift in the distribution of the
correlations between WWP2 and the expression of the hECM-
network genes (Fig. 2d, e), suggesting a positive association
betweenWWP2 cardiac expression and the hECM-network genes
in disease. However, WWP2 cardiac expression was only
moderately increased in heart disease: human rTOF vs control,
fold change (FC)= 1.23; human DCM vs control26, FC= 1.02;
mouse HF vs WT control30, FC= 1.86. We also identified a core
set of genes in the hECM network that were positively and
consistently correlated with WWP2 expression in the heart (false
discovery rate [FDR] < 1%), irrespective of heart tissue of origin
(i.e., LV or RV) or disease (i.e., rTOF or DCM) (Fig. 2f,
Supplementary Data 3e). This core gene set comprises known
regulators of the pathological ECM remodeling, including matrix
metalloproteinases (e.g., MMP14, MMP2)37 and their tissue
inhibitors (e.g., TIMP2)38, several collagens (COL1A1, COL1A2,
COL5A1, COL6A2, COL8A2, and COL14A1) and their binding
partners (e.g., TGFβI)39, microfibrillar-associated proteins,
and pro-fibrotic cytokines (e.g., TGFβ3)30. In summary, these
findings show that increased expression of WWP2 is associated
with an elevated pro-fibrotic gene expression program in the
diseased heart.

Analysis of the cardiac expression levels of hECM-network
genes stratified by the genotypes of the regulatory SNP
rs9936589 showed increased expression associated with the TT
genotype (Fig. 2g). To investigate whether the effect of regulatory
SNP on the hECM network was mediated by WWP2, we tested
whether WWP2 cardiac expression was similarly regulated by the
same SNP. Three main WWP2 gene isoforms have been
characterized containing different protein domains: full-length
isoform (WWP2-FL, covering the entire gene), N-terminal
isoform (WWP2-N, containing the 5′ end of the protein) and
C-terminal isoform (WWP2-C, containing the 3′ end of the
protein)40 (Fig. 2h). All three isoforms are expressed in the heart
of DCM patients (Supplementary Data 3f). Isoform-specific
cis-eQTL mapping for each WWP2 isoform showed that only the
WWP2-N was regulated by the SNP rs9936589 in DCM heart
(Fig. 2i, right). Increased WWP2-N cardiac expression was
associated with the TT genotype (Fig. 2i, left), matching the
hECM-network regulation by SNP rs9936589 in DCM heart
(Fig. 2g). This concordance of genetic regulation suggests that the
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WWP2-N isoform, containing the N-terminal C2 and WW1
domains of WWP2, can be a positive regulator of the hECM
network in the diseased heart.

WWP2 regulates cardiac fibrosis in vivo. To identify the
pathophysiological processes regulated by the N-terminal region

of WWP2, we generated Wwp2 mutant mice (WWP2Mut/Mut) by
introducing a 4-bp deletion in exon 2 of Wwp2, which would lead
to disruption of WWP2-FL and WWP2-N isoforms (Fig. 3a,
Supplementary Fig. 2a–c). Consistent with previously reported
phenotype in Wwp2-null mice41, the WWP2Mut/Mut mice gen-
erated in our study showed reduced body weight, abnormal
craniofacial development and elongated teeth (Fig. 3b, c,
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Supplementary Fig. 2d). This 4-bp deletion in Wwp2 resulted in
ablation of WWP2 isoforms containing the Wwp2 N-terminal
region (i.e., Wwp2-FL and Wwp2-N isoforms, detected at the
mRNA level by isoform-specific primer pairs P1; Fig. 3a, d), and
lack of WWP2-FL and WWP2-N proteins (Fig. 3e, Supplemen-
tary Fig. 2e). The cardiac expression of WWP2-C protein was not
affected.

Our systems genetics analysis indicated that the WWP2-N
isoform positively regulates a pro-fibrotic transcriptional network
in diseased heart (Figs. 1 and 2). Therefore, we hypothesized that
loss-of-function (LOF) of WWP2-N/FL protein isoforms might
regulate the in vivo fibrogenic response. Upon chronic (4 weeks)
AngII treatment, AngII infusion resulted in increased tissue
fibrosis, ventricular remodeling, and worsened cardiac function
(Supplementary Fig. 3a–d). We also detected increased WWP2
transcripts and proteins levels in LV tissue (Supplementary
Fig. 3e–g). Compared with WT mice, WWP2Mut/Mut mice
showed a significant improvement of AngII-induced cardiac
fibrosis as shown by the lower percentage of tissues fibrosis
(Fig. 3f), which was accompanied by an attenuation of cardiac
hypertrophy (Fig. 3g, Supplementary Fig. 4). Cardiac function
was also improved in WWP2Mut/Mut mice, which showed
increased fractional shortening (FS%) and ejection fraction
(EF%) as compared with AngII-treated WT mice (Fig. 3h).

Bulk RNA-seq analysis in AngII-treated WT (n= 8) and
WWP2Mut/Mut mice (n= 8) hearts revealed that the mouse
orthologs of the hECM-network genes detected in DCM heart
have a different co-expression pattern with increased gene co-
expression in WT compared with WWP2Mut/Mut (P= 0.003 by
permutation test, Fig. 3i). This pattern of differential co-
expression (WWP2Mut/Mut vs WT) was remarkably similar to
the pattern observed in humans (i.e., between DCM or rTOF and
controls, Fig. 1f), where the WWP2Mut/Mut mice showed a co-
expression pattern similar to control heart. Consistent with
human data (Fig. 1e, g), the hECM network was significantly
enriched for differentially expressed (DE) genes between AngII-
treated WT and WWP2Mut/Mut mice (Supplementary Data 4b).
Among others, we detected “TGFβ signaling” and “extracellular
matrix” as two of the major downregulated pathways in
WWP2Mut/Mut mice upon AngII treatment (Fig. 3j, Supplemen-
tary Data 4a). WWP2Mut/Mut mice had reduced levels of
fibroblast activation and ECM protein markers, as shown by α-
smooth muscle actin (ACTA2), collagen1 (COL1A1), fibronectin
extracellular domain A (FN-EDA), and periostin (POSTN)
abundance in the heart after AngII treatment (Fig. 3k–m,
Supplementary Fig. 5).

We used a second in vivo fibrosis disease model (myocardial
infarction [MI] model, see Methods) and tested the potential

protective effect of the WWP2-N/FL LOF on cardiac fibrosis and
function post-MI. Histological analysis showed less post-MI
fibrotic remodeling in the WWP2Mut/Mut hearts compared with
WT (Fig. 3n). This was associated with reduced chamber dilation
and greater preservation of contractile function in WWP2Mut/Mut

mice compared with WT (Fig. 3o, p). Taken together, these data
suggest that LOF of the WWP2 isoforms containing N-terminal
region reduced cardiac fibrosis and improved cardiac function
following AngII treatment or MI. This is in keeping with a role
for WWP2 as a positive regulator of fibrosis in the diseased heart.

WWP2 regulates the TGFβ1-induced fibrotic response In vitro.
To investigate the regulation of WWP2 in cardiac cells, we
imaged WWP2-expressing cell(s) in heart sections by immuno-
fluorescence. WWP2-positive cells did not show the morphology
typical of a sarcomere-containing cardiomyocyte, and some
WWP2-positive cells expressed fibroblast-specific protein 1
(FSP1) (Fig. 4a, Supplementary Fig. 6a). Cultured (myo)fibro-
blasts isolated from the LV of WT mice showed co-expression of
WWP2 and FSP1 (Supplementary Fig. 6b). Single-cell RNA-seq
analysis in the WT heart following AngII treatment provided
additional evidence of WWP2 expression in (myo)fibroblasts, but
also in endothelial and immune cells (Fig. 4b). By contrast, and
consistent with our immunofluorescence data, WWP2 was not
expressed in cardiomyocytes.

TGFβ1 stimulation of primary murine LV (myo)fibroblasts
induced robust induction of Wwp2 transcription at 72 h of
treatment (Supplementary Fig. 7). We then investigated the
impact of WWP2 LOF in the response to prolonged (72 h)
TGFβ1 treatment in primary murine LV (myo)fibroblasts
(Fig. 4c). In (myo)fibroblasts, TGFβ1 stimulation increased pro-
fibrotic activity and ECM production (measured by ACTA2,
COL1A1, and POSTN), but the TGFβ1-induced pro-fibrotic
expressional changes at both the mRNA and protein levels were
largely prevented in WWP2Mut/Mut (myo)fibroblasts (Fig. 4d, e).
TGFβ1-stimulated WT (myo)fibroblasts presented a clear orga-
nization of ACTA2 into stress fibers, while WWP2Mut/Mut-
derived cells showed a diffuse expression of ACTA2 with
rare incorporation into stress fibers (Fig. 4f). TGFβ1 mildly
increased vimentin protein expression, which was reduced in
WWP2Mut/Mut cells (Supplementary Fig. 8a, b). However, we did
not detect differences in the mRNA level of vimentin and
Transcription Factor 21 (Tcf21) (Fig. 4d, Supplementary Fig. 8c).
Upon TGFβ1 treatment we also observed induction of TGFβ
receptors (Tgfbr1 and Tgfbr2) in cardiac (myo)fibroblasts from
WWP2Mut/Mut mice (Supplementary Fig. 8d), suggesting a
potential compensatory effect of WWP2 on TGFβ-signaling
activation. In addition, WWP2Mut/Mut cardiac (myo)fibroblasts

Fig. 2 Network-eQTL mapping in rats and humans reveals WWP2 as a positive regulator of the ECM transcriptional program. a Genome-wide mapping of
the rat ECM network (n= 219 genes) to the genome (1384 SNPs) identifies a trans-acting regulatory locus on rat chromosome 19q12 (spanning 6.22Mb).
b Genetic mapping of the hECM network in DCM patients (n= 96) to a ~10Mbp region (475 human SNPs) on human chromosome 16 that is syntenic to
the rat locus identified in panel a. c Zoom-in of panel b to the locus on human chromosome 16 with the SNP regulating the hECM network (rs9936589, in
red), and the linkage disequilibrium (LD) blocks in the genotyped samples (n= 187). d, e Density plot showing the distribution of the Spearman’s pairwise
correlations (ρ) betweenWWP2 expression levels and each of the genes in the hECM network in DCM (d, red) or rTOF hearts (e in red) and control hearts
(in gray). P for significance was calculated by Mann–Whitney U test. f Network graph showing the core set of hECM-network genes with strongest
significant correlation (FDR < 0.01) to WWP2 in both DCM and rTOF patients. Full results in Supplementary Data 3e. Nodes represent genes and edges
denote protein–protein interaction or co-expression in STRING database (https://string-db.org). Node color is mapped to the average correlation of each
gene withWWP2 in patients. Genes that are annotated as “extracellular matrix” (ECM) are highlighted with thicker border. g Boxplot of the hECM-network
genes (683 genes) summarized by median expression level of the hECM network in the DCM patients and broken down by genotype at the regulatory SNP
rs9936589. h Graphical overview of the three main WWP2 protein isoforms. i Left, boxplot of WWP2-FL, WWP2-N, and WWP2-C gene isoform
expression levels broken down by genotype at the regulatory SNP rs9936589 (following Kruskal–Wallis test for each WWP2 isoform, FDR corrects for the
18 isoforms detected in DCM heart). Right, Bayesian eQTL mapping, reported as marginal posterior probability of association (MPPI, y-axis) shows the
WWP2-N terminal isoform at the WWP2 regulatory locus (1 Mb region centered around the WWP2 gene). NS not significant (FDR > 0.05)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11551-9

6 NATURE COMMUNICATIONS |         (2019) 10:3616 | https://doi.org/10.1038/s41467-019-11551-9 | www.nature.com/naturecommunications

https://string-db.org
www.nature.com/naturecommunications


showed higher cell proliferation and migration compared to
controls (Supplementary Fig. 9), which is consistent with reduced
maturation in myofibroblasts42.

Our analysis of WWP2 in DCM heart suggested a role for the
WWP2 isoforms containing N-terminal region in fibrosis (Fig. 2i).

In line with this, murine cardiac (myo)fibroblasts responded to
TGFβ1 treatment with increased protein levels of the WWP2-FL/
N isoforms, but not of WWP2-C (Fig. 4g). Such induction of
WWP2-FL/N isoforms was consistent with the findings in mouse
heart following AngII infusion in vivo (Supplementary Fig. 3a–c).
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WWP2Mut/Mut mice lack WWP2-FL and WWP2-N protein
isoforms (Fig. 3d, e, Supplementary Fig. 2e), and this is sufficient
to alter the co-regulation of the hECM-network genes, reduce
cardiac fibrosis in vivo (Fig. 3f–p), and decrease the maturation of
myofibroblasts in vitro (Fig. 4c–f). These data combined suggest a
primary role for WWP2 gene isoforms containing N-terminal
region of the protein in regulating a transcriptional program
associated with cardiac fibrosis.

To confirm the differential effects of the WWP2-N-terminal
region on cardiac (myo)fibroblast activity, we designed siRNA
sequences to match either the 5′-terminal (siRNA-Wwp2-N′) or
3′-terminal (siRNA-Wwp2-C′) regions of the Wwp2 mRNA,
targeting different transcripts (Fig. 4h, Supplementary Fig. 10a).
We successfully decreased the expression of WWP2-FL/N and
WWP2-FL/C isoforms in cardiac (myo)fibroblasts, respectively
(Fig. 4j, Supplementary Fig. 10b). Compared with scrambled
control, both siRNAs mitigated the expression of ACTA2 in WT
primary cardiac (myo)fibroblasts treated with TGFβ1 (Fig. 4i, j).
In keeping with the WWP2Mut/Mut cardiac (myo)fibroblasts data
(Supplementary Fig. 8d), after WWP2 knockdown, the (myo)
fibroblasts showed increased mRNA expression of Tgfbr1 and
Tgfbr2 following TGFβ1 treatment (Fig. 4i). In human primary
cardiac (myo)fibroblasts, siRNA experiments targeting the 5′-
terminal of WWP2 mRNA (siRNA-WWP2-N′) confirmed that
WWP2-N/FL knockdown is able to reduce pro-fibrotic gene
expression (Fig. 4k). We then performed a rescue experiment
in mice, by re-introducing separately each of the two
isoforms containing WWP2 N-terminal region (i.e., WWP2-FL
and WWP2-N) in primary cardiac (myo)fibroblasts from
WWP2Mut/Mut mice (Fig. 4l). Both Wwp2-FL and Wwp2-N
individually increased the expression of pro-fibrotic genes in the
WWP2Mut/Mut (myo)fibroblasts treated with TGFβ1 (Fig. 4m, n),
supporting the role of these isoforms in regulating the fibrotic
response.

WWP2 regulates the nucleocytoplasmic shuttling of SMAD2.
We investigated the mechanisms through which WWP2 regulates
the fibrotic response downstream of TGFβ-signaling activation.
WWP2 is present in both the cytoplasm and nuclei in untreated
cardiac (myo)fibroblasts; however, upon TGFβ1 stimulation (16
h) we observed increased WWP2 expression localized pre-
dominantly to the nucleus (Fig. 5a). While the WWP2-FL and
WWP2-N protein isoforms were increased in the nucleus after

TGFβ1 stimulation, the WWP2-C isoform remained in the
cytoplasm (Fig. 5b, Supplementary Fig. 11a).

This TGFβ1-induced nuclear relocalization of WWP2 isoforms
suggest that WWP2 may be involved in regulating
gene expression, possibly targeting TFs for ubiquitination as
shown for other E3 ubiquitin ligases43. We have showed that the
pro-fibrotic transcriptional program (i.e., the hECM network)
regulated by WWP2 is enriched for transcriptional targets of the
TGFβ-signaling transducer SMAD TFs (Fig. 1h). In keeping with
this, the genes downregulated by WWP2 in vivo following AngII
treatment were enriched for “SMAD binding” (FDR= 0.003),
“SMAD protein signal” (FDR= 0.006), and “transcriptional
activity of SMAD2/3/4 heterotrimer” (FDR= 0.015) (Supple-
mentary Data 4). We did not observe any difference at the mRNA
level of SMAD2 in WWP2Mut/Mut cardiac (myo)fibroblasts or in
cells overexpressing or silencing the WWP2-N/FL isoforms
(Supplementary Fig. 11b, c), suggesting that WWP2 function
on cardiac fibrosis could be exerted through SMAD2 interaction
and ubiquitination at the protein level. When ectopically
expressed in NIH-3T3 mouse embryonic fibroblast cells, we
found that Flag-tagged WWP2-FL and WWP2-N, but not
WWP2-C, co-immunoprecipitated with SMAD2 protein (Sup-
plementary Fig. 11d). Mouse WT cardiac (myo)fibroblasts
responded to TGFβ1 stimulation with SMAD2 binding to
WWP2-FL and WWP2-N, but not to WWP2-C (Supplementary
Fig. 11e). These data are suggestive of an endogenous
physiological interaction between SMAD2 and WWP2-FL/N
protein isoforms. Further analysis of inhibitory SMAD7, a
preferred substrate for WWP2-FL and WWP2-C40, showed
co-immunoprecipitation with WWP2-FL and WWP2-C follow-
ing TGFβ1 stimulation (Supplementary Fig. 11d), which we
confirmed in primary (myo)fibroblasts (Supplementary Fig. 11g,
h). We also found that WWP2 directly interacts with p-SMAD2
(Supplementary Fig. 11f). Notably, the levels of SMAD2 and
p-SMAD2 proteins were similar in WT and WWP2Mut/Mut (myo)
fibroblasts treated with TGFβ1 (Fig. 5c). This would be consistent
with the monoubiquitination of SMAD2 by WWP2, resulting
in a post-translational modification that does not affect
SMAD2 protein levels. Ubiquitination assays followed by SMAD2
immunoprecipitation detected monoubiquitinated SMAD2
within 16 h of TGFβ1 stimulation (Supplementary Fig. 11i). We
confirmed SMAD2 monoubiquitination by WWP2 in mouse
primary cardiac (myo)fibroblasts, and show that this was reduced
in WWP2Mut/Mut cells (Fig. 5d).

Fig. 3 WWP2Mut/Mut mice are protected from cardiac fibrosis progression. a Representation of the open reading frame (ORF) of Wwp2-FL, Wwp2-N, and
Wwp2-C isoforms. The position of the 4 bp deletion introduced in the WWP2Mut/Mut mouse is shown alongside the position of the primer pairs (P1–P2–P3,
orange triangles) used for the qPCR analysis. b Body weight change of male WT and WWP2Mut/Mut mice (age range: 4–11 weeks). Repeated-measures t-
test (n= 8 for each group). c Presence of shortened snout (top, arrow) and overgrown mandibular incisor (below, arrow) in WWP2Mut/Mut mice. dWWP2
transcript level in WT and WWP2Mut/Mut hearts (n= 6 for each group). P1–P2–P3 as in panel a. e Western blot (WB) showing lack of right molecular
weight band for WWP2-FL (~110 kDa) and WWP2-N (~50 kDa) protein isoforms in WWP2Mut/Mut mice. f Left, schematic of AngII experiment. Middle,
representative Sirius red and Masson’s Trichrome staining of short-axis sections in LV. Scale bar: 0.5 mm. Right, Quantification of fibrosis area in
transverse histological sections with Sirius red staining at the mid-ventricular level. g LV mass index (LVMI), h echocardiogram-based quantification of LV
ejection fraction (EF%) and fractional shortening (FS%) after Saline (Control) and AngII infusion. i Heatmap of pairwise gene–gene expression correlation
(red, positive; blue, negative) of the hECM-network genes in mouse LV. Gene–gene correlations in WT and WWP2Mut/Mut mice (both with AngII
treatment) are shown in the upper and lower triangular matrix, respectively. j Top dysregulated biological processes in LV of WWP2Mut/Mut vs WT mice
after 28 days AngII treatment (full list in Supplementary Data 4a). After AngII infusion in WT and WWP2Mut/Mut mouse heart, k representative WB
showing ACTA2, (l) collagen content (HPA assay), and m representative WB showing Fibronectin extracellular domain A (FN-EDA, ~220 kDa) and
Periostin (POSTN, ~94 kDa). n Left, schematic of myocardial infarction (MI) experiment. Middle, representative Sirius red (top) and Masson’s Trichrome
staining (below) of short-axis sections in LV from WT and WWP2Mut/Mut mice after MI. Scale bar: 0.5 mm. Right, fibrosis quantification with Sirius red
staining in transverse histological heart sections at the infarct level. o Representative M-mode echocardiograms (middle LV long-axis) in WT and
WWP2Mut/Mut mice after MI. p Cardiac echocardiogram-based analysis of LV inner diameter (LVIDd), LV ejection fraction (EF%), and fractional
shortening (FS%) of WT and WWP2Mut/Mut mice after MI. Unless otherwise indicated, P values calculated by Mann–Whitney U test; *P < 0.05, **P < 0.01,
NS not significant; data reported as mean ± SD
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Monoubiquitination of SMADs by E3 ubiquitin ligases
reportedly affects their transcriptional activity44,45. To test if
WWP2 similarly affects SMAD2 transcriptional activity, we
performed SMAD2-dependent luciferase reporter activity assay in

primary cardiac (myo)fibroblasts from WT and WWP2Mut/Mut

mice. TGFβ1-dependent SMAD2 reporter activity was signifi-
cantly lower in WWP2Mut/Mut cardiac (myo)fibroblasts compared
to WT cells (Fig. 5e). TGFβ-receptor activation promotes the
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nuclear accumulation of SMAD2/3/4 and this process is not
necessarily accompanied by SMAD degradation in the nucleus46,
as SMADs are exported out of the nucleus upon depho-
sphorylation and dissociation of the SMAD complexes47. We
obtained nuclear and cytoplasmic fractions from cardiac (myo)
fibroblasts, and show the nuclear accumulation of SMAD2 upon
TGFβ1 stimulation (<16 h). Compared to WT cells, SMAD2 is
more localized to the nucleus in WWP2Mut/Mut cells (Fig. 5f).
SMAD4, which forms a heteromeric complex with SMAD2 after
TGFβ1 activation, showed similar protein level and subcellular
localization in WT and WWP2Mut/Mut (myo)fibroblasts. Thus,
despite the fact the SMAD2 protein is more abundant in the
nucleus of WWP2Mut/Mut (myo)fibroblasts, lack of WWP2-N/FL
was associated with a reduced transcriptional activity of SMAD2
downstream of TGFβ-receptor activation (Fig. 5e).

Monoubiquitination is also important for the proper sub-
cellular localization of SMADs, which in turn might regulate their
transcriptional activity in the nucleus44. We used SB431542, a
selective inhibitor of TGFβ superfamily type I activin receptor-
like kinase (ALK) receptors48, to study the nucleocytoplasmic
shuttling of SMAD2 (ref. 49). Using primary (myo)fibroblasts
from WWP2Mut/Mut and WT mice, we observed a delay in the
nuclear export of SMAD2 in WWP2Mut/Mut cells (Fig. 5g).
Compared with WT cells, WWP2Mut/Mut cardiac (myo)fibro-
blasts maintained sizeable levels of p-SMAD2 at 3 h treatment
with SB431542 (Supplementary Fig. 12). Taken together, these
data show that WWP2 interacts with SMAD2, promoting its
monoubiquitination, and modulates the nucleocytoplasmic shut-
tling and transcriptional activity of SMAD2 downstream of
TGFβ-signaling activation (Fig. 5h).

Discussion
The WW domain containing E3 ubiquitin protein ligase 2
(WWP2) gene, also known as atrophin-1-interacting protein 2
(AIP-2), is a multifunctional ubiquitin E3 ligase. It has been
previously reported to regulate various processes, including
palatogenesis50, craniofacial development41, TLR3-mediated
innate immune and inflammatory responses51, cell death and
tumorigenesis52, and tumor growth53. Common genetic variants
within the WWP2 locus have been associated with plantar fascial
disorders and osteoarthritis54,55, supporting the heterogeneous
functions associated with WWP2. Working in cancer cell lines,

Soond et al.40 implicated WWP2 in oncogenic TGFβ-induced
epithelial–mesenchymal transition (EMT), reporting the selective
and TGFβ-dependent targeting of SMADs by specific ectopic
WWP2 isoforms. The WWP2-N isoform was shown to enhance
the activity of WWP2-FL, which in turn degrades SMAD2/3.
Given the primary role of TGFβ-SMAD2/3 signaling in activating
tissue-resident cardiac fibroblasts and the fibrotic response56, the
data by Soond et al.40 might suggest that increased WWP2-N
protein isoform expression with concurrent increased activity of
WWP2-FL would lead to reduced fibrogenesis. However, any
possible fibrotic or anti-fibrotic function of WWP2 has never
been investigated, especially in cardiac pathophysiology.

Here, starting from the identification of a pro-fibrotic gene
network conserved in rat and human heart disease characterized
by diffuse myocardial remodeling and fibrosis, we identified
WWP2 as a regulator of pathological cardiac fibrosis. The
WWP2-reguated pro-fibrotic gene network was also conserved
across different heart fibrotic diseases and cardiac tissues, and was
upregulated in DCM that progresses to HF in mice30. The lack of
regulation of the pro-fibrotic gene network by WWP2 in human
control heart suggests that WWP2 exerts its regulatory role on
cardiac fibrosis upon disease. Interestingly, the hECM network
regulated by WWP2 in DCM heart is enriched for genes highly
expressed in fibroblasts (see Supplementary Fig. 13, Supplemen-
tary Methods). This might suggest that the power to detect
genetic regulation of the pro-fibrotic network in DCM was
enhanced because the heart tissues underwent strong remodeling
with concurrent changes in relative cellular composition (i.e.,
more fibroblasts). WWP2 mRNA expression was only marginally
increased the fibrotic heart disease (less than 2 folds in either
human DCM, rTOF, or mouse HF30). This might explain why
WWP2 passed undetected to GWAS, eQTL mapping, and genetic
screening studies of fibrotic diseases. Detailed systems genetics
analyses in the DCM heart allowed us to hypothesize that
increased expression of the WWP2 N-terminal isoform was
associated with the activation of a pro-fibrotic gene program
downstream of TGFβ/SMAD signaling activation (Figs. 1 and 2).
We tested and corroborated this hypothesis in primary cardiac
fibroblasts and in two preclinical models of fibrotic heart disease.
Our results provide the first indication of a role for WWP2 in
regulating pathophysiological processes in the heart. In detail, we
have demonstrated that WWP2-N/FL LOF improved cardiac
function and reduced myocardial fibrosis in vivo (Fig. 3). Upon

Fig. 4 WWP2 regulates pro-fibrotic gene activity in primary cardiac fibroblasts. a Immunofluorescence images of LV-section staining from WT mice after
AngII infusion, showing WWP2 expression (green, arrow) in non-myocytes (Left); WWP2 co-localization with FSP1-positive cells (red, arrow; Right). Scale
bar: 40 μm. b t-SNE displaying LV single-cell RNA-seq data (508 cells detected) in WT mice after AngII infusion. Each dot corresponds to a single-cell,
colored by Wwp2 expression level (Log2 normalized counts). Different cell subpopulations detected in mouse heart are indicated. c Primary cardiac (myo)
fibroblasts were taken from LV in WT and WWP2Mut/Mut mice and modeled in vitro by incubation with TGFβ1 (5 ng/ml, 72 h). d Relative mRNA
expression (normalized to 18S) of ECM and pro-fibrotic marker genes (Acta2, Col1a1, Tcf21, Ctgf, Postn, and EDA-Fn) in primary cardiac (myo)fibroblasts (n
= 5–6 for each group). e WB of ACTA2 and POSTN protein expression in WT and WWP2Mut/Mut cardiac (myo)fibroblasts. f Representative microscopy
images (left) and quantification analysis (right) with immunostaining for ACTA2 and COL1A1 after TGFβ1 stimulation in WT and WWP2Mut/Mut cardiac
(myo)fibroblasts (five biological replicates, nine images each; box-and-whisker plots). g Representative WB of WWP2-FL, WWP2-N and WWP2-C
isoforms expression in cardiac (myo)fibroblasts after 72 h TGFβ1 stimulation. h WT cardiac (myo)fibroblasts were incubated with TGFβ1 (72 h) and siRNA
pools (SiRNA-Wwp2-N′ and SiRNA-Wwp2-C′) against 5′- or 3′-region of Wwp2 mRNA. i WT (myo)fibroblasts, SiRNAs-Wwp2-N′/C′ attenuated TGFβ1-
induced pro-fibrotic responses, as shown by qPCR analysis of Acta2, Col1a1, and TGFβ receptors (n= 5–6 for each group). j Representative WB showing the
effect of siRNA-Wwp2-N′ and siRNA-Wwp2-C′ on each WWP2 isoform expression in WT (myo)fibroblasts and decrease of TGFβ1-induced ACTA2
protein level by siRNA-Wwp2-N′. k Cultured human RV primary cardiac (myo)fibroblasts: siRNA-mediated knockdown of WWP2 reduced the expression
of pro-fibrotic genes (COL1A1, COL1A2, and LUM). P1 tags both WWP2-N and WWP2-FL, P2 tags WWP2-FL only (n= 3 for each group). l Cardiac (myo)
fibroblasts from WWP2Mut/Mut were transfected with either Wwp2-FL or Wwp2-N plasmid expression (separately) and incubated with TGFβ1 (72 h).
m, n After transfection of either Wwp2-FL or Wwp2-N, transcript levels of Acta2, Col1a1, and TGFβ receptors were assessed by qPCR, in WWP2Mut/Mut

(myo)fibroblasts (n= 5 for each group) and ACTA2 protein levels. These fibrogenic markers were enhanced by either Wwp2-FL or Wwp2-N transfection
after 72 h TGFβ1 treatment. P values calculated by Mann–Whitney U test; *P < 0.05, **P < 0.01, NS not significant; data reported as means ± SD
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AngII treatment, a typical promoter of cardiac fibrosis, the
WWP2Mut/Mut mouse showed increased oxidative phosphoryla-
tion, and exacerbated cell cycle and interferon alpha and gamma
response in the heart. This suggests that depletion of the
N-terminal part of WWP2 might have a wider role in myocardial
fibrosis, preventing the glycolytic metabolic reprogramming

required for myofibroblast maturation57,58, and potentially
blocking the cell cycle arrest that has been shown to be a feature
of fibrosis59. We have also shown that WWP2 positively regulates
the expression of established pro-fibrotic markers in primary
(myo)fibroblasts cultures (Fig. 4). However, one limitation of our
study relates to the maintenance of a quiescent cardiac fibroblast
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phenotype using common cell culture methods, and the cultured
fibroblasts are prone to be converted to myofibroblasts before
TGFβ1 treatment60. In our study, we notice that the cultured cells
presented pro-fibrotic phenotype without TGFβ1 treatment,
which also explains why the pro-fibrotic response to TGFβ1
was relatively modest. Therefore, we referred to the in vitro
cultured cardiac fibroblasts as “(myo)fibroblasts”. However,
TGFβ1 stimulation increased (myo)fibroblasts maturation,
inducing the expression of pro-fibrotic markers and ECM genes,
which was significantly reduced in WWP2Mut/Mut cells. The
differential fibrotic response between WT and WWP2Mut/Mut

cardiac (myo)fibroblasts was corroborated by WWP2 siRNA
experiments and gain-of-function rescue experiments.

Poly-ubiquitination and proteasome-mediated degradation of
nuclear SMAD2 have been documented61. In addition, mono-
ubiquitination can regulate nuclear accumulation and the
nucleocytoplasmic shuttling of SMAD complexes, which are
crucial for transduction of TGFβ-superfamily signals62 and there
is mounting evidence supporting the role of monoubiquitination
of SMADs by E3 ubiquitin ligases in this context45,47. Here, we
reveal that TGFβ1 stimulation promotes the translocation of
WWP2 to the nucleus, where it interacts with SMAD2, possibly
promoting its monoubiquitination, as shown for other E3 ubi-
quitin ligases44,45. The regulatory consequences of E3 ligase-
mediated monoubiquitination appear to be complex and context
specific. Monoubiquitination can regulate protein localization,
activity, and protein interactions with binding partners63.
Monoubiquitination is also required for the activity and the
intrinsic nuclear import of target TFs41,64, and to disrupt specific
TFs interactions and their transcriptional activity65. In our stu-
dies, we did not observe SMAD2/3 degradation by endogenous
WWP2 in primary (myo)fibroblasts, suggesting a mechanism of
degradation-independent repression of SMAD2 activity down-
stream of TGFβ-signaling activation. Our data suggest that
blocking WWP2 function can delay the TGFβ1-induced nucleo-
cytoplasmic shuttling of SMAD2 (Fig. 5h). However, further
studies are required to prove whether WWP2-mediated mono-
ubiquitination of SMAD2 disrupts or directly regulates the
activity SMAD complex47,66 and to explain mechanistically how
this WWP2-monoubiquitination affects the nuclear export and
regulation of SMAD2 (ref. 67).

Ubiquitin ligases are involved in a wide range of diseases, and
targeting E3 ubiquitin ligases is thought to yield higher specificity
and less toxicity than other ubiquitins68. E3 ubiquitin ligases can
both degrade and activate specific substrates, and so may allow
for a specific regulation of currently “undruggable” protein tar-
gets69. To date, only a handful of small molecules for cancer
therapy (e.g., targeting MDM2 (ref. 70) and SKP2 (ref. 71)) have
been successfully developed using this type of enzymes. However,
several E3 ubiquitin ligases such as SMURF1, SMURF2,

ARKADIA, SYNOVIOLIN, NEDD4, and PELLINO1 (reviewed in
ref. 72) have been proposed as regulators of tissue fibrosis,
through several mechanisms including regulation of TGFβ-
signaling. This study adds to our understanding of the regula-
tion of cardiac fibrosis and uncovers a specific E3 ubiquitin ligase,
WWP2, as a regulator of ECM accumulation in the diseased heart
downstream of TGFβ/SMAD signaling. Since cardiac fibrosis has
been proposed as an important therapeutic target in HF
patients73,74, the identification of druggable targets that regulate
pathological fibrosis may provide new avenues to control the
progression to HF. Here, using our systems genetics approach
followed by functional validation studies in several cellular and
preclinical animal models, we have first identified and then
mechanistically explained that WWP2 is a novel and druggable
therapeutic target with the potential to control fibrosis in
pathological cardiac remodeling.

Methods
Data generation and processing in the rat. This cardiac expression data set
consists of RNA-sequencing in the heart (LV) from the 30 rat RI strains, which
were previously published75. Data were processed with TopHat 1.2.0 (https://ccb.
jhu.edu/software/tophat/), which was used to map the reads to the Brown Norway
(BN) reference genome RGSC 3.4 (known splice junctions in the Ensembl reference
database were supplied, de novo splice junction detection was also enabled). After
mapping the reads to the reference genome, Cufflinks 1.0.2 (http://cole-trapnell-
lab.github.io/cufflinks/releases/v1.0.2/) was used to assemble the aligned RNA-seq
reads into transcripts by using the Ensembl annotation of the rat transcriptome.
Cufflinks is able to reconstruct the set of transcripts that “explains” the reads
observed in our RNA-seq experiment, in our case, by using a transcriptome
reference annotation. The reason for using a reference-based transcriptome
assembly approach is that, comparative transcriptome assembly analyses have
shown that, overall, reference-based transcriptome assembly approaches have a
better performance than de novo approaches, in both sensitivity and the ability to
discover splicing patterns76. Cufflinks measures transcripts abundances in Frag-
ments Per Kilobase of transcript per Million mapped reads (FPKM). One of the
assumptions of reference-based transcriptome assembly approaches is that all the
isoforms of all the genes are known. However, transcriptomic reference sets are still
incomplete, more specially in the case of the rat transcriptome76. Hence, the
transcriptomic assembly is not very accurate in rat. Therefore, all the RNA-seq
expression data analyses in the rat have been carried out by summarizing
expression at the gene level. Six steps followed for gene level FPKM computation
and filtering of the data, as follows. (1) Replace the values of all the isoforms with
isoform quantification status not OK by missing values. The isoform quantification
status is part of the output from Cufflinks and it measures the successful decon-
volution of each isoform. (2) Remove all isoforms with more than 10 missing
values across all samples. (3) Impute all the missing values by using R function pca
from the pcaMethods R package 1.56.0 (https://bioconductor.riken.jp/packages/3.0/
bioc/html/pcaMethods.html). The initial number of isoforms was 39,492. After
removing those with more than 10 missing values across all samples, the number of
isoforms got reduced to 39,181. (4) Sum up all the FPKM values of all the isoforms
of each gene to get the FPKM value at the gene level (number of genes: 29,469). (5)
Filter out genes that did not have FPKM >1 in at least a 5% of the samples (i.e, in at
least two samples). (6) Replace 0s in the data by the minimum number in the data
set higher than 0. Afterwards, Log2 transform the data. By following these steps, we
ended up with a filtered data set of 12,061 genes. We also inspected the presence of
unmeasured confounding factors (i.e., potential sources of expression variation that
are not being measured in the study and they may be affecting gene expression)77.

Fig. 5WWP2 regulates the nucleocytoplasmic shuttling and TGFβ-signal transduction activity of SMAD2. a Immunofluorescence analysis of WWP2 in WT
primary cardiac (myo)fibroblasts shows nuclear localization after 16 h TGFβ1 stimulation. Scale bar: 20 μm. b Immunoblotting for WWP2 isoforms in WT
(myo)fibroblasts reveals that upon 16 h TGFβ1 stimulation, there is an increased amount of WWP2-FL and -N isoforms in the nuclear extraction.
c Representative WB of p-SMAD2 and SMAD2 protein levels in WT and WWP2Mut/Mut (myo)fibroblasts with or without TGFβ1. d In-cell ubiquitylation of
SMAD2 in primary (myo)fibroblasts from both WWP2Mut/Mut and WT mice. Cells were treated with MG132 (10 μM, 3 h) followed by TGFβ1 (5 ng/ml,
6 h). Lysates were prepared from WWP2Mut/Mut and WT (myo)fibroblasts and then were subjected to immunoprecipitation with anti-SMAD2 antibodies,
followed by western blotting probed with antibodies as indicated. e Quantification of TGFβ1-induced luciferase reporter activity of SMAD2 in WT and
WWP2Mut/Mut (myo)fibroblasts (P values calculated by Mann–Whitney U test; n= 4 for each group; data reported as means ± SD) fWB showing SMAD2
and SMAD4 protein distribution in cytoplasmic and nuclear fractions of WT and WWP2Mut/Mut (myo)fibroblasts after TGFβ1 stimulation (16 h). WCL
whole-cell lysis, Cyto cytoplasmic, Nuc nuclear. g Top: representative immunostaining of SMAD2 in WT and WWP2Mut/Mut (myo)fibroblasts treated with
TGFβ1 for 1 h and then with SB431542 for 5 h. Scale bar: 50 μm. Bottom: quantification analysis shows delayed exportat of SMAD2 from the nucleus in the
WWP2Mut/Mut group (five biological replicates, eight images each; P values calculated by Mann–Whitney U test; data reported as means ± SD).
h Schematic of the proposed model for the WWP2-mediated regulation of SMAD2 nucleocytoplasmic shuttling in cardiac fibrosis
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We computed the variability explained by each of the principal components (PCs)
of the transcriptomic data. We found out that the first PC was explaining a large
proportion of the variance present in the data (38%) and it was significantly
correlated to the library concentration of the Bioanalyser (a library quantification
measure, Spearman’s rank-order correlation= 0.70, P= 1.5 × 10−5). To account
for possible confounding effects introduced by the differences in library con-
centration, we adjusted the gene expression data for this first PC using a linear
regression model from which the residuals were computed. These residuals
obtained from the regression model represent the variability present in the data
after removing the effect of this first PC. These adjusted expression levels were the
ones considered in all analyses.

Histomorphometric measures of both interstitial and perivascular fibrosis were
collected in the LV of the 30 RI strains (total n= 180; n= 5–7 per strain, males at
30 weeks of age). After fixation, short-axis heart slices were processed for paraffin
embedding. Multiple 4-μm-thick sections were deparaffinized, rehydrated, and
picrosirius red-stained sections were prepared for evaluating fibrosis. The
presence, type, and extent of both interstitial and perivascular fibrosis was
quantified via thresholding automated analysis using ImageJ 1.43 (ref. 21). BP
measurements were published in ref. 20. Indwelling aortic radiotelemetry
transducers (Data Sciences International) at 8 weeks of age were implanted to
measure arterial pressure in conscious, unrestrained rats. Radiotelemetry BP was
collected in 5-s bursts every 10 min and recorded over a period of 8 days, using
6–12 rats for each RI strain. The obtained BP measurements were averaged within
each RI strain and across eight sequential readings. Median BP effects were
removed from the interstitial and perivascular fibrosis measurements by
performing standard multiple linear regression and then taking the residuals of the
model. Fibrosis and BP measurements are included in Supplementary Data 1c.

Within the rat RI panel, SNPs are a comprehensive source of genetic diversity
available for genetic association studies. The genetic map of the rat BXH/HXB RI
strains was generated by the STAR Consortium as described in ref. 20. This genetic
map was generated from over 13,000 SNPs that led to 1,384 unique blocks of
adjacent SNPs with identical strain distribution patterns.

Data generation and processing in the human cohorts. These DCM and control
heart data represent a retrospective cohort of patients diagnosed with DCM
(obtained from the Royal Brompton and Harefield NHS Foundation Trust Tissue
bank: EC Ref: 09/H0504/104 +5) and healthy LV donors (healthy with respect to
myocardial diseases such as DCM and HCM). Control left ventricular samples
(healthy LV donors) were collected from healthy human hearts of non-related
organ donors whose hearts were explanted to obtain pulmonary and aortic valves
for transplant, valve replacement surgery, or explanted for transplantation but not
used due to logistical reasons. In both DCM patients (“cases”) and controls only
adult subjects (≥16 years old) were selected. The study was done in compliance
with ethical regulation and was approved by the UK National Research Ethic
Service (NRES) Committee London-Fulham. All patients gave informed consents.

Human LV RNA-seq data were collected in 128 DCM patients and 106
controls. In addition, genotyping data were collected in 96 DCM and 91 controls
samples. We performed a quality control step (QC) in the RNA-seq data and
removed outlier samples (see section “RNA extraction, sequencing and RNA-seq
data processing”). After QC, the final cohort size used for co-expression analyses
was 126 DCM patients and 92 control samples. The number of samples used for
genetic mapping was 96 DCM and 91 controls (i.e., samples for which we have
both RNA-seq and genotyping data). These data were published in Heinig et al.26

and are available at the European Genome-phenome Archive under the accession
number EGAS00001002454.

Reads were mapped to the human genome with TopHat 1.4.1. TopHat was run
using annotation from Gencode release 19 (GRCh37.p13) and allowing only two
mismatches per 100 bp. In addition, TopHat was run with option -r 0, which
specifies as zero the expected mate inner distance (as fragment size was 200 bp and
read length was 100 bp). Option -M was also set, which removes multimapping
reads before aligning to the transcriptome. Default options were chosen for the rest
of parameters. TopHat mapping resulted in a mean of 173M reads per sample
being uniquely mappable (a mean of 92% of the total number of reads with all the
samples having a mapping percentage higher than 60%) in the samples from DCM
patients. Controls samples resulted in a mean of 185M reads per sample being
uniquely mappable (a mean of 90% of the total number of reads with all the
samples had a mapping percentage higher than 60%). RNA-seq read gene counts
were computed with HTSeq software 0.5.3p3 (https://htseq.readthedocs.io/). In
HTSeq the mode “intersection-nonempty” was selected (mode suitable to quantify
overlapping transcripts on different strands). To compute gene counts with HTSeq,
we used the Gencode human annotation version 19 with a custom TTN
annotation26. Steps followed for processing of the data: (1) Gene selection: From
HTSeq output, only “protein coding” genes with “known” status in Ensembl genes
(GRCh37.p13 data set) were consider in the analyses (n= 19,456). (2) Filtering of
low expressed genes: Transcript lengths were downloaded from Biomart Ensembl
genes (GRCh37.p13 data set). FPKM was computed with DESeq2 1.6.3R package
(https://bioconductor.riken.jp/packages/3.0/bioc/html/DESeq2.html) by
considering for each gene, the average length of all the transcripts. An FPKM-based
gene filtering criterion was then applied (we only kept genes with FPKM >1 in at
least 5% of the samples, considering DCM and controls samples together). This

yielded a final number of 14,281 genes that were considered to be expressed in the
samples cohort. (3) Normalization and data transformation: After the FPKM
filtering, gene raw counts were normalized and variance-stabilized transformed
(VST) by using DESeq2 1.6.3. (4) Covariates adjustment: VST data was split into
DCM patients and healthy controls. Then, the data were adjusted separately for
relevant technical (“RIN score” and “library preparation day”) and clinical (“sex”
and “age at tissue collection”) covariates by using a multivariate linear model. In
the case of the healthy controls, the data were also adjusted for the center from
which the tissue had been collected by adding this information as an additional
covariate. (5) Outlier samples removal (samples QC): Outlier samples were
inspected by clustering the samples’ gene expression levels. The DCM and control
samples were independently clustered by hierarchical clustering with the R
function flashClust from flashClust 1.01-2R package (https://rdrr.io/cran/
flashClust/), the agglomeration method used was set to “average”). The obtained
dendrograms were cut at the 99th percentile of the dendrogram height distribution
removing all the samples assigned to small clusters: 2 DCM patients and 14 healthy
donors. By following these steps, we ended up with two LV adult cohorts of 126
DCM patients (cases) and 92 healthy donors (controls). Within the 126 DCM
patients, 106 were males and 20 were females. In the healthy donors group there
were 55 males and 37 females. The mean age in DCM patients was 41.3 ± 13.3 years
(16–64); mean age in the controls was 42.6 ± 13.6 years (17–72).

A subset of the DCM and control LV samples from the CEU population (96
DCM samples and 91 control samples26) were typed by using genotyping arrays.
After imputation and quality control, the final number of SNPs in the DCM
patients and healthy controls LV samples was 1,309,892 SNPs. In order to run
genetic mapping, we carried out a pairwise linkage disequilibrium (LD) filtering
(with an R2 threshold of 0.8) based on the 1000 Genomes pilot 1 CEU population.
Pairwise SNPs LD was computed using SNAP 2.2 (http://www.broad.mit.edu/mpg/
snap/) using the SNP identifiers as input. The SNP data set chosen to run SNAP
was the 1000 Genomes pilot 1 in the CEU reference population with an R2

threshold of 0.8 and a distance limit of 500 bp. From SNAP output, SNPs returning
a warning message as not present in the SNAP database were removed and not
considered further analyses (the number of missing SNPs was 101,020 SNPs).
SNAP web tool outputs the input SNPs clustered in LD blocks (a total number of
126,922 LD blocks were returned by SNAP). To obtain a genomic map filtered by
LD, we selected one single SNP for each of the LD blocks (R2= 0.8). SNPs that
were not included in any of the LD blocks (not clustered by SNAP) were added at
the end. For each LD block we followed these steps: (1) Get all the SNPs in the LD
block and compute their pairwise Spearman’s ranked correlation. (2) As
representative of the LD block, take the SNP that has the highest average
Spearman’s ranked correlation with the rest of SNPs included in the LD block.
With this procedure we obtained a set of 126,922 SNPs, each of them representing
a SNP-LD block. Finally, we added to these SNPs the ones that were not included
by SNAP in any of the LD blocks (41,315 SNPs). Then, the final number of SNPs in
our LD-pruned (R2= 0.8) genetic map was 168,237 SNPs.

The rTOF cohort consists of 27 patients with rTOF (mean age 32.0 ± 10.6 years,
78% male). Summary of the clinical information of these patients is included in
Supplementary Table 1. All the patients aged ≥16 years old and were scheduled for
elective pulmonary valve replacement. They were also under the care of the Adult
Congenital Heart Disease service at the Royal Brompton Hospital, UK. For the
rTOF patients, the clinical data from non-invasive investigations (performed as
part of the surgical work-up) were available. This clinical information included
electrocardiography, chest radiograph, echocardiography, and CMR. RV
myocardial tissue samples from the 27 patients were snap-frozen in liquid nitrogen
at the time of tissue sampling intra-operatively. RV tissue from 11 structurally
normal hearts donated for cardiac transplantation was also collected (age donors:
34.0 ± 13.0, sex, male/female: 6/5). RV myocardial biopsies were made available via
the Cardiovascular Biomedical Research Unit Biobank of the Royal Brompton &
Harefield NHS Foundation Trust. Donor RV control tissue was collected and
stored at the time of surgery following similar procedures as with the TOF tissue
samples.

rTOF RV expression data are a cohort of RV RNA-seq samples with rTOF
patients (fibrotic RV) and control samples. TOF is a congenital heart disease
(i.e., problem in the structure of the heart) characterized by pulmonary artery
stenosis and ventricular septal defect (a hole between the LV and RV and an
overriding aorta, which allows blood from both ventricles to enter the aorta
leading to cyanosis and RV hypertrophy). TOF needs to be treated surgically in
the first year of life to increase the size of the pulmonary valve and arteries and
repairing the septal defect. All eligible patients were under the care of the Adult
Congenital Heart Disease service at the Royal Brompton Hospital, UK. The
Royal Brompton & Harefield NHS Trust and National Heart & Lung Institute
Ethics Committee approved this protocol, with informed consent obtained from
all study participants. Tissue studies were compliant with UK Human Tissue Act
guidelines. Patients provided specific signed permission for RV myocardial
biopsies to be taken intra-operatively under direct vision during open-heart
surgery when judged technically feasible by the operating surgeon. However,
surgical repaired TOF is usually followed by cardiac fibrosis in both ventricles.
Additionally, TOF cases are operated several times during heart post-natal
development because the prostatic material used at surgeries is unable to grow
with the growing of the heart and valve. Therefore, surgery leftover samples can
be collected at different ages of the patients.
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TRIzol (Life Technologies) was used for total RNA extraction from the frozen
samples by following the manufacturer’s protocol. RNA was quantified by
ultraviolet spectrophotometry and RNA quality was assessed on the Agilent 2100
bioanalyser. RINs ranged from 6.3 to 9.1 (mean 8.2 ± 0.6). One microgram of total
RNA was used to prepare the RNA-Seq libraries. RNA-Seq libraries were prepared
with Illumina TruSeq RNA sample preparation kits by using the protocol for poly-
A enriched mRNA. To avoid batch effects, samples were pooled (4–5 samples/pool,
2 lanes per pool). Finally, paired-end 2 × 100 bp sequencing was performed on the
Illumina Hi-Seq platform (mean sequencing depth of 196M). TopHat 2.0.12
(https://ccb.jhu.edu/software/tophat/) with Bowtie2 2.2.3 (http://bowtie-bio.
sourceforge.net/bowtie2/) and Samtools 0.1.18 (https://sourceforge.net/projects/
samtools/files/samtools/0.1.18/) was run by using human genome version GRch38
(hg38.78) reference genome. RNA-seq read counts were computed with HTSeq
0.6.1 (https://htseq.readthedocs.io/). The percentage of reads mapping to the
human genome was higher that 80% (above 70% is considered an acceptable
mapping percentage for paired-end sequenced reads). Steps followed for the
normalization, filtering, and adjustment of the data: (1) Gene selection: From
HTSeq output, only “protein coding” genes with status “known” in Ensembl genes
(GRCh37.p13 data set) were selected (18,964 genes). (2) Filtering of low expressed
genes: FPKMs were computed with DESeq2 1.6.3R package using the average
transcript length of each gene, which were retrieved from Ensembl Biomart
(GRCh37 version). We used a FKPM-based filtering criterion by keeping only
those genes with a value of FPKM >1 in at least 5% of the samples (in this case
2 samples). Following these criteria, the number of genes got reduced from 18,964
genes to 13,936 genes. (3) Data transformation: Size factors normalization and VST
was applied to the raw gene counts by using DESeq2 R package 1.6.3. Then, the
gene counts that passed the filtering criteria described in the previous step were
selected. (4) Covariates adjustment: After normalization and filtering, the data were
split into TOF patients and controls. Gene expression counts of TOF patients were
adjusted for: (1) age at which the tissue was collected (age of operation) and (2) sex.
This adjustment was performed by taking the residuals of a multivariate linear
model, in which both age and sex were added as predictors. Among the control
samples, some had with missing values for age. More specifically, three samples had
missing age. The sex of the sample with missing value was imputed by clustering
the expression levels of selected sex specific genes (as described in ref. 78).
Therefore, the gene expression counts of the control samples were adjusted only for
sex by taking the residuals of a linear model in which sex was added as a predictor.

Differentially expressed genes between rTOF patients (n= 27) and controls
samples (n= 11) were computed using the R package DESeq2 1.6.3 and adding
sex as covariate in the model (age was not added as there were several RV control
samples with missing age values). CooksCutoff DeSeq2 parameter was set to False.
The rest of parameters were left to default.

Gene co-expression network analysis. Co-expression networks were inferred by
using weighted gene correlation network analysis (WGCNA) 1.42 (https://horvath.
genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/). Two inde-
pendent WGCNA runs were carried out in the processed RNA-seq LV data (as
described in previous sections): one in rat (RI panel, n= 30) and one in the DCM
cohort (n= 126). In both rat and human runs, WGCNA was run using Turkey’s
biweight midcorrelation. Biweight midcorrelation estimates are more robust to
outliers than the standard Pearson correlation as it assigns lower weights to points
further from the center of the distribution79. In the rat run, among all the soft
threshold values (β) with R2 > 0.8, we chose the β that presented the highest mean
connectivity (β= 8). For the human run, the automatic value of β returned by the
WGCNA function pickSoftThreshold was selected (β= 6). In both cases, a network
merge height of 0.25 was chosen as suggested in the original WGCNA guidelines.
For the rest of WGCNA parameters, default settings were used. Once the WGCNA
networks were obtained, they were alphabetically sorted by name and renamed as
M1-M (number last network, Hs-M in the case of human networks) removing the
gray cluster (the gray cluster contains all the non-clustered genes). The full list of
rat and human co-expression networks can be found in Supplementary Data 1a, b
and 2a, b. Gene-annotation enrichment analysis of the rat (n= 41) and human
(n= 48) networks was performed by carrying out functional gene list enrichment
analysis using the R DAVID Web Service 1.4.0 (https://bioconductor.riken.jp/
packages/3.0/bioc/html/RDAVIDWebService.html).

Rat networks were queried independently from human networks for Gene
Ontology (Biological Process, BP, Molecular Function, MF, and Cellular
Component, CC) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
annotation categories. The gene reference background was set to the group of genes
from which the gene co-expression networks were inferred. In the rat data this
background was constituted by the genes robustly expressed in the rat LV data (i.e.,
after the filtering procedure described in previous sections, n= 12,061), whereas in
the human data the background used was the set of genes robustly expressed in the
human LV RNA-seq cohort (i.e., after the filtering procedure previously described,
n= 14,281). In this analysis results were deemed significant if DAVID FDR/100 <
0.05 (i.e., % FDR). For each network, the results for the top significant GO (BP
only) and KEGG terms can be seen in Supplementary Data 1a (rat networks) and
Supplementary Data 2a (human DCM networks). The full list of KEGG terms
enriched in the Hs-M47 (human ECM-network, hECM-network) is found in
Fig. 1e.

Genome-wide gene expression levels in the RI strains LV were correlated with
both interstitial and perivascular fibrosis using Spearman’s ranked correlation
(after correcting for average BP effects as described in the previous sections). Here
we used the measurements of interstitial and perivascular fibrosis in the rat after
normal transformation (qqnorm R function used) and adjustment for mean BP.
Student P values were obtained for each correlation estimate by using the function
corAndPvalue from the R package WGCNA 1.42. All the rat co-expression
networks were tested for enrichment of genes varying with fibrosis in the rat heart
by carrying out GSEA25. In this analysis, each of the rat co-expression networks
was considered as a gene set. The corresponding Student P values of the
Spearman’s ranked correlation between each of the robustly expressed rat genes
and each of the fibrosis measurements were used for ranking all the rat genes (n=
12,061) and run GSEA. GSEA 2.1.0 was run in classic, pre-ranked mode with
10,000 iterations. To consider all the co-expression networks, maximum gene set
size was set to 5,000 and minimum gene set size was set to 10. As the genes were
ranked by P value, in this GSEA test a significant (FDR < 0.05) negative normalized
enrichment score (which corresponds to weighted Kolmogorov–Smirnov-like
statistic) denotes significant association. The results of the association between the
rat co-expression networks and interstitial or perivascular fibrosis measurements
can be found in Supplementary Data 1c and are displayed in Fig. 1b.

To assess whether the co-expression networks inferred in the rat were also
conserved in the DCM patients, we computed the intersection between rat and
human co-expression networks by carrying out a Fisher’s exact test (FET). The
gene background used in these tests was composed by the genes with one-to-one
human-rat ortholog relationships that were both robustly expressed in rat and
human LV. For the generation of this gene background, rat–human one-to-one
orthologs relationships were downloaded from Ensembl archive (Ensembl 69). The
common set of genes in both the rat LV expressed genes set (n= 12,061) and
human LV expressed genes (n= 14,281) yielded a common set of 8,840 genes
(this will be the rat–human orthologs background). Genes in the rat and human
networks that were not included in this rat–human orthologs background were
removed. For each rat (n= 41), human (n= 48) network pair, a FET was
computed with the R function fisher.test and setting the “alternative” parameter to
“greater” (as we are interested in overrepresentation). The gene background used
for computing the contingency table was the rat–human orthologs background
(8,840 genes). Nominal FET P values were adjusted for the number of tests carried
out (number of rat networks × number of human networks= 1,968 tests) by using
the R function p.adjust and the B&Y method. Figure 1c shows only the human
DCM co-expression networks that had some degree of conservation with the rat
(adjusted P < 0.05), the full list of human DCM co-expression networks can be
found in Supplementary Data 2a, b.

Differentially co-expressed networks (i.e., gene networks where the genes as a
whole present divergent pattern of co-expression between cases and controls) can
point to different disease response. We carried out the following empirical
differential co-expression test to assess the differential co-expression of the human
networks between DCM patients and controls samples. First, we computed Tukey’s
biweight pairwise gene–gene correlations from the DCM and controls expression
matrices. Then, for each of the DCM co-expression networks these steps were
carried out: (1) Compute the network’s dispersion value (DCM versus controls
samples) as described in the Section 3 of Supplementary Material of ref. 80. The
dispersion value quantifies the difference between the co-expression of the network
in cases and controls. (2) Generate a null distribution of dispersion values for the
network by randomly sampling networks with the same number of genes as the
network being tested and then compute the corresponding dispersion value of each
randomly sampled network as described in step 1. (3) Compute the empirical P
value for the network under testing: P= (r+ 1)/(n+ 1), where n is the number of
simulated dispersion values (number of permutations) and r is the number of
simulated dispersion values that are higher than the actual dispersion value of the
network of interest. This differential co-expression test was run with 100,000
permutations, which yields a minimum nominal significance level of 1 × 10−5.
Bonferroni-adjusted P values were computed by correcting the nominal empirical
P values for the number of DCM co-expression networks tested (n= 48). p.adjust
R function was used to adjust the P values for multiple testing. The complete list of
differentially co-expressed networks (Bonferroni-adjusted P < 0.05) can be found in
Supplementary Data 2a. A gene–gene correlation heatmap for the hECM-network
can be seen in Fig. 2f. In this heatmap, the top triangular matrix shows the
correlation levels for each pair of genes in the hECM network in the DCM patients
whereas the lower triangular matrix shows the correlation levels in the LV controls.
This differential co-expression test was also carried out for the hECM-network in
the rTOF/controls RV cohort. In this case the input was the sex-adjusted VST
counts for the genes in the hECM-network. The test was also performed for
100,000 permutations. The gene–gene correlation heatmap of the hECM network
can be seen in Fig. 2f. In this heatmap, the top triangular matrix shows the
correlation levels in the rTOF patients whereas the lower triangular matrix shows
the correlation levels in the controls. Additional details on enrichment analyses and
functional annotations of the human networks is reported in Supplementary
Note 2.

Bayesian network-expression QTL (network-eQTL) analysis. Co-expression
networks suggest coordinated genetic regulation, which can be exploited to uncover
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genetic regulators of these transcriptional programs. Moreover, conserved genetic
regulation can be driving fundamental biological mechanisms. In keeping with
previous studies in the rat, where the BXH/HXB rat panel yielded increased power
to carry out genetic mapping of gene networks34, we used multivariate Bayesian
genetic mapping approaches to map the rat and human ECM-networks to the rat
and human genomes. We first considered the expression of the rat ECM-network
genes as a multivariate quantitative trait and jointly mapped this to the rat genome.
Then, we inspected whether the regulatory locus identified in the rat was inde-
pendently replicated in human DCM heart by joint mapping of the genes in the
ortholog human network (e.g., hECM network) to the human locus that is syntenic
to the rat regulatory loci. This two-step strategy (mapping in rats first followed by
mapping in humans) has been previously used to identify trans-acting genetic
regulators of transcriptional networks underlying complex disease34. The mapping
of the rat and human networks was carried out by using HESS33. HESS is a sparse
Bayesian multiple linear regression method in which mRNA expression levels for
multiple genes are regressed against all SNPs to identify the minimum (non-
redundant) set of SNPs that predicts the mRNA expression variability. This
method has the following features: (1) it takes into account the LD structure of the
genotype data (the dependence of the genetic determinants or predictors), allowing
to reduce the number of tests to be carried out and pinpoint the putative causal
genetic variant; (2) it makes possible to map several responses in one single test;
therefore, with HESS is possible to map to the genome (i.e., all genome-wide
genetic markers) expression levels of several genes jointly (for instance, map the
expression levels of genes included in a co-expression network, without having to
summarize their variability by PC analysis); and (3) it exploits multidimensional
dependencies within the responses (i.e., correlation of the gene expression levels).
This can be used to boost detection of moderate trans-acting eQTL effects. The
output of this method is a marginal posterior probability of inclusion (MPPI) for
each gene-SNP pair tested, which represents the posterior probability of association
of each SNP given the data. From this MPPI, the BF can be computed. BF
represents the evidence of genetic regulation versus no genetic control and it is
defined as the ratio between the posterior odds and the prior odds or ratio between
the strengths of these models34. In our case, the prior probability (π) for the jth

SNP associated with the gth gene is defined as: π ¼ E pgð Þ
p , where p is the number of

SNPs we are testing and E(pg) is the a priori expected number of control points for
the gth gene, in our case we fix E(pg)= 2. For instance, in the case of the rat RI
strains, as the number of genome-wide SNPs is p= 1384 and the prior probability
becomes π= 1.4 × 10−3. The BF is defined as the ratio between the posterior odds

and the prior odds: BF ¼
MPPIgj= 1�MPPIgjð Þ

π= 1�πð Þ , where MPPIgj represents the marginal

posterior probability of inclusion for the gth gene and the jth SNP. By using this BF
formula, we can compute the BF for each response-predictor pair (i.e., gene and
SNP under testing) from the output MPPIs of HESS. Genome-wide mapping of the
rat networks in the RI strains. The gene expression levels of the genes included in
each of the rat co-expression networks built in the LV of interest were jointly
mapped to the rat genome with HESS, i.e., rat networks conserved in human,
overrepresented for genes correlating with fibrosis and with a pattern of co-
expression not present in human control LV tissue: M1, M2, and M12 rat net-
works. The expression data used was the RNA-seq data in the RI strains (log2
transformed FPKM adjusted for the first PC). These runs were carried out with
1,384 genome-wide SNPs markers in 29 RI strains (instead of 30, as there is one RI
strain with RNA-seq expression but no available genotype information).

For each of the rat networks that had regulatory loci with median BF of the
genes in the rat networks >100 (i.e., rat networks M1 and M2), the rat regulatory
SNPs were selected. In humans, two independent HESS runs were carried out, one
for the DCM patients and one for controls. The human expression data input to
HESS was the expression level of the genes in the human networks that were
significantly intersecting the rat modules of interest (RNA-seq data in the DCM/
controls after the processing described above). This was done in the n= 96 DCM
and n= 91 control heart samples for which we had both gene expression and
genotype information. The genetic data input to HESS was the set of SNPs tagging
the human locus syntenic to the identified rat locus in each case. To identify each
the human syntenic locus, we follow these steps. (1) Obtain the start and end
positions of the rat haplotype that contained the regulatory SNP (rat Ensembl
version 69). (2) Compute the central genetic coordinate of the rat haplotype as:
center haplotype= start haplotype+ (end haplotype-start haplotype)/2. (3) Get the
closest rat gene to that coordinate, then get the human start/end coordinates of the
human ortholog gene. (4) In humans (human Ensembl version GRCh37), compute
the center of the selected gene: center gene= start gene+ (end gene-start gene)/2.
Take a window of 10 Mb (±5Mb) around the center gene, which in the case of the
hECM network yielded the region Hs-chr16: 64415969..74415969 (human Ensembl
version GRCh37). This was the region that we mapped in the human DCM data
(which comprises 475 SNPs from our LD-pruned genetic map). Additional details
on the HESS runs are reported in Supplementary Methods.

Correlation analyses between WWP2 and hECM-network genes. WWP2
transcript levels in the LV cohorts (DCM/control) and RV cohorts (rTOF/control)
were correlated separately in patients and controls to the genes included in the
hECM network. We computed the Spearman’s ranked correlation and P value
using the WGCNA R package function corAndPvalue WGCNA 1.4. The resulting

correlation distributions were plotted as a density plot and tested for differences by
using a two-sample non-parametric Mann–Whitney U test by using the R function
wilcox.test. See the density plots with the obtained P values in Fig. 2d, e. The
correlation between WWP2 and all the genes in the hECM-network in LV DCM
and RV rTOF patients is included in Supplementary Data 3e. Nominal WWP2-
gene correlation P values were corrected for multiple testing by using the R
function p.adjust (method “fdr”). In this multiple testing correction, we corrected
for the number of genes in the hECM-network, i.e., 683. A core set of genes
correlated to WWP2 was extracted by taking all the genes with correlation FDR <
0.01 in both DCM and rTOF patients (326 genes). STRING protein–protein
interaction database 10.0 (https://string-db.org) was queried with this set of genes
on the 05/09/18. The resulting network was retrieved and imported into Cytoscape
2.8.1 (https://cytoscape.org/) to generate a network visualization graph (see Fig. 2f,
only the largest connected component is displayed, 40 genes). To obtain this
network graph from STRING database, we only considered experimental con-
nections and co-expression interactions with a minimum interaction score of 0.4.
In the network graph, each node corresponds to a gene and color was mapped to
the correlation between WWP2 and each gene (the average correlation in DCM
and rTOF patients). Genes annotated in STRING with Gene Ontology Cellular
Component (CC) term “extracellular matrix” were also retrieved and highlighted
with thicker node border.

Expression QTL (eQTL) mapping of WWP2 isoforms in DCM. WWP2 isoform
expression levels were quantified in the DCM patients from the TopHat output
with Sailfish 0.6.3 (http://www.cs.cmu.edu/~ckingsf/software/sailfish/). Sailfish was
run with default parameterizations. The expression levels in DCM patients of all
interred WWP2 isoforms (in Reads Per Kilobase Million, RPKM) are included in
Supplementary Data 3. These data were adjusted for relevant technical (“RIN
score” and “library preparation day”) and clinical (“sex” and “age at tissue col-
lection”) covariates by using a multivariate linear model and then mapped to the
regulatory locus identified in human chromosome 16 (1 Mb centered around
WWP2). In this case we mapped the 27 SNPs tagging this region in our genetic
map. From the output MPPIs, BFs were computed as described above. Results of
this test for the three WWP2 isoforms with highest expression in the DCM heart
are included in Fig. 2i along with a boxplot showing the expression level by gen-
otype at the regulatory SNP rs9936589 (the expression level is displayed after
controlling for clinical covariates effects as described above). In each boxplot a
non-parametric Kruskal–Wallis test was computed by using the R function kruskal.
test. The obtained P values were corrected for the number tests carried out (i.e., the
number ofWWP2 isoforms inferred in the DCM heart with an average RPKM level
higher than 0.18 isoforms). P values were corrected by using the R function p.adjust
and the correction method “fdr”. The obtained FDRs are displayed in the boxplots
in Fig. 2i.

Animal studies. Mice were bred and maintained in a specific pathogen-free (SPF)
environment. We complied with all relevant ethical regulations according to the
guidelines issued by the National Advisory Committee on Laboratory Animal
Research. Protocol with IACUC number 2016/SHS/1170 was approved by Insti-
tutional Animal Care and Use Committee of National University of Singapore,
Duke-NUS Medical School. Steps were taken to minimize animal suffering.
WWP2Mut/Mut mouse generation: WWP2Mut/wt mice were generated by CRISPR/
Cas9 technology based on C57BL/6J strain in the laboratory of Dr. Weiping Yu at
Agency for Science, Technology and Research (A*STAR), Singapore. Briefly,
mutant animals were generated by co-injection of Cas9 mRNA and individual
gRNAs into one-cell mouse embryos. Founder animals carrying the indel muta-
tions were identified first by PCR and T7 endonuclease I assay, and then by deep
sequencing of the PCR products. Founders carrying the desired reading frame shift
mutations were used to generate mutation-segregated heterozygous F1 animals by
crossing with the wild-type animals. Homozygous mutant animals were generated
by heterozygote crossing and used for experiments in comparison with the wild-
type littermates.

To look into the specific function of individual Wwp2 isoforms, three gRNAs
were designed to targeting coding Exon 2, aiming to introduce mutations in
individual domains of the protein, which in humans have different functions and
are encoded by the three different gene isoforms. Here, a reading frame shift
mutation in Exon 2 would render Wwp2-FL and Wwp2-N functionally null, but is
unlikely to affect Wwp2-C function (see Supplementary Fig. 2). WWP2Mut/wt mice
were crossbred to generate WWP2Mut/Mut and WWP2wt/wt (WT) mice in vivarium
at Duke-NUS Medical School, Singapore. Details on AngII (Angiotensin II) infusion
model: Alzet miniosmotic pump (Model No. 1004, Durect Corporation) was
subcutaneously implanted in eight-week-old mice anesthetized with 2% isoflurane.
Miniosmotic pumps loaded with saline or Angiotensin II (Sigma Aldrich, #A9525)
were implanted to deliver AngII at 500 ng/kg/min for a period of 4 weeks. Details
on myocardial Infarction (MI) model: MI was induced in 8–10-week-old mice after
anesthetizing with ketamine and xylazine and intubated with a 22GX1″ SURFLO
Flash I.V. catheter (TERUMO), which was connected to an artificial rodent
ventilator MINI VENT type 845 (Harvard Apparatus, USA). After exposing the
heart via thoracotomy at the fourth left intercostal space, the left coronary artery
was permanently ligated with an 8-0 nylon monofilament suture. The thorax was
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closed with 6-0 coated vicryl suture and mice were followed for 4 weeks after
surgery.

For both models, mice were sacrificed after weighing them at indicated time
points. Hearts were harvested for weight measurement, histological studies,
collagen determination, and molecular biology analyses. Samples sizes were
determined by power analysis and n ≥ 8 mice per group were used to account for
the inherent variability in the fibrotic response of mice. Mice that died undergoing
surgery before the sample collection were excluded from statistical analysis. Data
from the animal studies were collected in a blinded manner.

Cell culture experiments. Murine cardiac fibroblasts were taken from the LV of
mice. Minced LV pieces (1–3 mm3) were placed in 6 cm dishes with DMEM
supplemented with 20% fetal bovine serum for less than 10 days to generate mice
cardiac fibroblasts (P0) and passaged to P1 and P2 DMEM supplemented with 10%
fetal bovine serum for experiments. In each experiment, all the cells from
WWP2Mut/Mut and WWP2wt/wt (WT) heart were cultured at the same time with
same generation. Human cardiac fibroblasts were isolated from the right atrium
(RA) appendage obtained from patients on cardiopulmonary-by-pass during car-
diac surgery operations by digesting the tissue with Collagenase II. Cardiac
fibroblasts are obtained by growing the homogenized tissue suspended in DMEM
supplemented with 20% fetal bovine serum in a humidified atmosphere. However,
fibroblast-to-myofibroblast conversion occurs with each cell passage using a
common cell culture method60. Our primary cardiac cells isolated and cultured
presented myofibroblasts features, and thus we refer to them as “(myo)fibroblasts”.

C2C12 mouse myoblast cell line, gifted by Dr. Lisa Tucker Kelloggs’ laboratory,
Duke-NUS Medical School, Singapore, were grown in DMEM medium
supplemented with 10% fetal bovine serum. The cells were passaged twice before
being used for experiments.

To mimic the in vivo cardiac (myo)fibroblast activity, cells were treated with
TGFβ1 human (Sigma Aldrich, #T7039) at a concentration of 5 ng/μl for 16–72 h.
For siRNA and plasmid transfection, primary cardiac (myo)fibroblasts were seeded
on a six-well plate (∼70%) and were transiently transfected with siRNA duplexes
(20 nM) designed for targeting 5′ or 3′ in WWP2 mRNA (Qiagen) using
Lipofectamine RNAiMAX (Life technologies holdings, #13778075) in a serum-free
medium for 48–72 h according to the manufacturer’s instructions. In parallel,
WWP2-FL and -N plasmids were transiently transfected using Lipofectamine 2000
(Life Technologies Holdings, #11668019) for 48–72 h according to the
manufacturer’s instructions. For siRNA transfection in human cardiac (myo)
fibroblasts, primary human cardiac (myo)fibroblasts were seeded on a 12-well plate
(70,000 cells/well) and were transiently transfected with siRNA duplexes (20 nM)
designed for targeting 5′ or 3′ in WWP2 mRNA (Qiagen) using Lipofectamine
RNAiMAX (Life Technologies holdings, #13778075) in a serum-free medium for
24 h according to the manufacturer’s instructions.

For ubiquitination analysis, cells were treated with proteosomal inhibitor
MG132 (Sigma Aldrich, #M7449) following stimulation with TGFβ1 for 4 h before
harvesting. SB431542 (Stem Cell Technologies, #72234) was used to inhibit TGFβ1
effect.

Echocardiography analysis. Transthoracic echocardiography was performed on
day 28 after AngII infusion and MI model using Vevo 2100 (VisualSonics, VSI,
Toronto, Canada) and a MS400 linear array transducer, 18- to 38-MHz under
anesthetized condition. An average of 10 cardiac cycles of standard two dimension
(2D) was acquired and stored for subsequent analysis using Vevo Imaging
Workstation version 1.7.2 (VisualSonics, VSI, Toronto, Canada). All images
acquisition and analysis were performed by a blinded operator. For the AngII
infusion model, 2D-guided M-mode of parasternal short-axis short (middle) were
selected for visualization of the papillary muscle during end systole and end dia-
stole. For the MI model, the parasternal long axis was analyzed at three levels
(basal, mid, and apical) and all measurements were averaged over three consecutive
cardiac cycles. LVEF and FS were calculated using the modified Quinone method,
using the following formulas: LVEF= (LVIDed2−LVIDes2)/LVIDed2; FS= (LVI-
Ded−LVIDes)/LVIDes, where LVIDed is left ventricular internal diameter at end
diastole and LVIDes is left ventricular internal diameter at end systole.

Single-cell RNA-sequencing analysis in mouse heart. Single-cell suspension was
prepared from the adult LV of one mouse with Angiotensin II infusion for 28 days.
After removal of dead cells with MACS dead cell removal kit (Miltenyi Biotec,
#130-090-101), cells were lysed and subsequently RNA was reverse-transcribed and
converted into cDNA libraries for RNA-seq analysis using a Chromium Controller
and a Chromium Single Cell 3′ v2 Reagent kit (Genomics 10× ) following the
manufacturer’s protocol. The library was sequenced using the Illumina Hi-Seq3000
sequencing platform.

The reads were mapped to the mouse genome (m38, Ensembl version 89) and
quantified using Cell Ranger 2.1.1 (10x Genomics). We provided to Cell Ranger a
custom built reference transcriptome generated by filtering the Ensembl
transcriptome (Ensembl file: Mus_musculus.GRCm38.89.gtf) for the gene biotypes:
protein coding, lincRNA, and antisense. Cell Ranger was run with the expect
number of cells parameter (expect-cells) set to 3000. Cell Ranger out filtered
matrices (i.e., genes.tsv and barcodes.tsv) were then input into R and genes with

zero counts in all cells were discarded. Three cell quality control filtering steps were
implemented. We removed: (a) cells with less than the 50th percentile of the
distribution of the total cells library size, (b) cells with less than the 50th percentile
of the distribution of total of number of detected genes, (c) cells with more than
50% of their total gene count coming from mitochondrial genes. This resulted in a
final number of 508 cells. After applying these cell filtering steps, we carried out
additional gene quality control steps on the remaining cells: (a) we only kept
“detectable” genes, defined as genes detected with more than one transcript in at
least two cells, (b) we removed genes with low average expression in the data (i.e.,
genes with an average expression below 0.01, this cutoff was set based on the total
distribution of average gene expression across all cells and all genes), (c) we
removed genes encoded on the mitochondrial genome and the gene “Malat1” as it
was an outlier in the gene expression distribution.

After all the gene quality control steps, the resulting number of genes was 6,728.
Gene counts were normalized with scran 1.8.4R package (https://bioc.ism.ac.jp/
packages/3.7/bioc/html/scran.html). Scran size factors were computed from cell
pools by doing a pre-clustering of the data with the quickCluster function (the
output object of this function was provided to the computeSumFactors function
and then run the normalize function was run, all of them with default
parameterizations). t-SNE was computed by providing the Log2 scran-normalized
data to the function plotTSNE from scater 1.8.4R package (http://packages.renjin.
org/package/org.renjin.bioconductor/scater). Two tSNE components were
computed setting a random seed of 123456 using automatic perplexity (after
removing an imposed minimum of 50, i.e., floor (number cells/5)). In the t-SNE
graph, each cell was colored by Wwp2 expression level (Log2 scran-normalized
gene counts). See this t-SNE graph in Fig. 4b. Cardiac cell subpopulations were
identified by using established cell marker genes. Specifically, we used: Aplnr and
Pecam1 (endothelial cells); Lum (fibroblasts); Ttn (cardiomyocytes); Hbb-bs
(eritrocytes); Ccr2, Cd163, and Ptprc (immune cells).

Analysis of WWP2Mut/Mut mouse RNA-seq data. Total RNA from tissue was
isolated from LVs of nine WWP2Mut/Mut and nine WT mice with 28 days of
Angiotensin II infusion. mRNA libraries were constructed from poly(A)-selected
RNA using the NEBNext Ultra Directional RNA library prep kit (Illumina, New
England BioLabs) and sequenced on Illumina Hi-Seq3000 sequencing (150 × 2 bp,
seven samples were loaded per lane).

RNA-seq reads were assessed for quality, aligned to m38 (Ensembl Gene
annotation build 89) using STAR 2.5.2b (https://github.com/alexdobin/STAR) and
quantified with RSEM 1.2.31 (https://github.com/deweylab/RSEM/). The average
mapping rate (unique and multimapping) was 94.5%. Gene annotation was
retrieved from Ensembl version 89 (m38) using the R library biomaRt 2.30.0
(https://bioconductor.riken.jp/packages/3.4/bioc/html/biomaRt.html). Ribosomal
genes (Ensembl gene biotype “rRNA”) and mitochondrial genes were removed
(391 genes). Gene counts were rounded using the R function round and differential
expression analysis was performed with DESeq2 1.14.1 with a pre-filtering step in
which we considered only genes with more than 1 count when summing up across
all samples. DESeq2 was run pairwise comparing WWP2Mut/Mut with Angiotensin
II against WT mice with Angiotensin II using the Wald test, with the outlier
correction parameter cooksCutoff set to false (default parameterizations for the rest
of parameters). In the DESeq2 model, we added RNA concentration and
sequencing lane as covariates. Functional enrichment analysis of the differential
expression results was performed with GSEA25 software v 2-2.2.2. From all genes
included in DESeq2 output, we selected those with one-to-one mouse–human
ortholog relationships (as downloaded from Biomart, 14,820 genes) and then we
mapped them to human gene symbols. Then ranked all the genes by the
corresponding DESeq2 output Wald statistic (i.e., the estimate of the log2 fold
change divided by its standard error). GSEA was run to assess the overrepresentation
of the following gene sets and pathways derived from the Molecular Signatures
Database gene sets 5.1 (http://software.broadinstitute.org/gsea/msigdb/collections.jsp)
(gene sets were queried using gene symbols): Hallmark gene sets (i.e., coherently
expressed gene signatures derived from the aggregation of many MSigDB gene sets
to represent well-defined biological states or processes), Gene Ontology, and
Reactome databases. GSEA was run in classic pre-rank mode with 10,000
permutations to assess false discovery rate (FDR). In the GSEA runs, maximum
gene set size was set to 5,000 and minimum gene set size was set to 10. In this test,
upregulated processes and pathways in the WWP2Mut/Mut will be positively
enriched, whereas downregulated processes will be negatively enriched. Gene sets
were deemed as enriched if FDR < 0.05. All Hallmark enriched gene sets are
displayed in Fig. 3j. The rest of the results can be found in Supplementary Data 4a.
In addition, GSEA was run a second time using the same parameterization but this
time testing for overrepresentation of all the human co-expression networks. In
this last run, we further reduced the background to the common set of genes with
one-one mouse–human ortholog relationship that were also present in both the
DESeq2 mouse output and in the initial set of human genes considered for network
inference in the human data. This background reduction was applied to both the
ranked list and the human networks, resulting in a total number of 10,449 genes.
Results of this test are included in Supplementary Data 4b.

We tested whether the hECM-network genes displayed differential co-
expression upon Angiotensin II infusion when comparing the WWP2Mut/Mut

mouse with control mice. To this aim, we followed the same procedure as we
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previously did to compute differential co-expression of the hECM-network genes
in the two human cohorts (DCM/controls and rTOF/controls, see previous
sections). We applied a filtering step and removed lowly expressed genes (i.e., we
only retained genes with FPKM > 1 in at least 2 out of the 18 samples), this resulted
in 12,659 genes. Then, as the hECM network was inferred in humans, out of these
12,659 genes, we only considered the ones with one-to-one ortholog relationship to
humans (10,271 genes). From these genes we took the set of genes included in the
hECM-network (415 genes). We added an offset of 1 and computed the Log2
FPKM. Then we computed gene-gene pair Turkey’s biweight midcorrelation
separately in the WT-Angiotensin II and WWP2Mut/Mut-Angiotensin II mice and
carried out the same test for differential co-expression used for the human
networks. The P value and the heatmap showing the correlation in the hECM-
network genes in these mice can be seen in Fig. 3i.

Histology and immunofluorescence. LVs harvested from the mice were fixed in
10% neutral buffered formalin (NBF) for 24 h at RT, processed with a Leica
automatic tissue processor, paraffin-embedded and sectioned with thickness of 5
μm. After dewaxing and rehydration, slides were stained with Sirius Red Collagen
kit (Chondrex, Inc., #9046) and Masson’s Trichrome staining kit (Sigma Aldrich,
#HT15) as per the manufacturer’s instructions. Sections were stained using anti-
ACTA2 (1:100) and anti-S100A4 (1:100) to identify cell and biochemical features.
Bovine Anti Rabbit IgG-CFL 488 (Santa Cruz Biotechnology, #sc-362260) and
Bovine Anti Mouse IgG-CFL 488 (Santa Cruz Biotechnology, #sc-362256) were
used as secondary antibodies for immunofluorescence. Rhodamine Wheat Germ
Agglutinin (WGA, Vector laboratories, #RL-1022) was used to stain the myocytes.
Cells were grown in a eight-well chamber slide with a removable silicone chamber
(ibidi) up to 70% confluence. After fixation with ice cold acetone and blocking with
1% BSA for 30 min at RT, the slides were incubated with primary antibodies anti-
WWP2-FL/N(1:100), anti-ACTA2 (1:100), anti-S100A4(1:100), anti-Vimentin
(1:100), and anti-FLAG(1:100) overnight at 4 °C. Following washing steps, the
slides were incubated with Bovine Anti Rabbit IgG-CFL 488 (Santa Cruz Bio-
technology, #sc-362260) and Bovine Anti Mouse IgG-CFL 488 (Santa Cruz Bio-
technology, #sc-362256) for 2 h at RT. VectaShield Mounting Medium (Vector
laboratories, #H-1200) with DAPI was used to stain the nuclei and the slides were
covered by coverslip. Slides were imaged on a Leica fluorescence microscope and
image was processed using ImageJ software with the Fiji package.

With merge function, the positive Sirius red staining in the whole section of the
LV was quantified using custom semiautomated image analysis routine. To
measure the fluorescence intensity of ACTA2 and COL1A1 in different cellular
sections, images were taken using ×20 Plan Fluor objective. Fluorescence intensity
was measured by taking the integrated intensity of a region of interest and
subtracting the background intensity, and normalized to cell number. For each
group, at least six fields were analyzed per section. To measure fluorescence
intensities of SMAD2, 1-μm Z-stacks through cells of fields interested were
acquired. A region was drawn around each cell and nucleus to be measured, and
background without fluorescence was subtracted. The nuclear/cellular fluorescence
intensity ratio was calculated. Each field represented around 8–10 cells and at least
four fields were analyzed for each section.

Hydroxyproline assay. The amount of total collagen in the LV was quantified
using the Quickzyme Total Collagen assay kit (Quickzyme Biosciences). The assays
were performed according to the manufacturer’s protocol.

Luciferase assay. Cells were transfected with a luciferase reporter gene plasmid
with SMAD binding sites (Yeasen, SMAD-Luc, #11543ES03) and co-transfected
with pGMLR-TK (Yeasen, #11557ES03) as a normalization control. Thirty hours
after transfection, cells were treated with vehicle or TGFβ1 for 16 h and harvested.
Luciferase assays were performed using the Dual-Luciferase Reporter Assay System
(Yeasen, #11402ES60).

Cell proliferation and migration assays. Cell proliferation was quantified by MTS
assay (Promega) according to the manufacturers’ protocol. For migration assay,
cells were seeded at a density of 10,000 cells/well in a 96-well plate. A uniform,
reproducible wound was created using Incucyte, Essen Bioscience (USA). The 96-
well plate was placed in the Incucyte ZOOM apparatus and the images of cell
migration was captured every 2 h for up to a total of 48 h.

RT-qPCR analysis. Total RNA was extracted from snap-frozen fibrotic cardiac
tissue and primary cardiac (myo)fibroblasts using the RNeasy mini kit (Qiagen,
#74106) and cDNA was prepared using the iScript cDNA synthesis kit (primer
specific, BIORAD, #170-8897) according to the manufacturer’s instructions. Fast
SYBR-Green master mix (BIORAD, #170-8880AP) was used for the analysis of
gene expression using the BIORAD CFX RT- PCR system. The primers used in the
experiment are listed the in Supplementary Table 2. 18S was used to normalize the
relative gene expression and the 2−ΔΔCt method was used to measure the fold
change.

Western blotting. Protein extracts were isolated from heart tissue and cells using
RIPA buffer (Thermofischer, #89900) supplemented with protease (Sigma Aldrich,
#11836170001) and phosphatase inhibitors cocktails (ROCHE, #PHOSS-RO).
Nuclear and cytoplasmic extracts were obtained using NE-PER kit (Pierce, #78833)
according to the manufacturer’s instructions. Co-immunoprecipitation was per-
formed with the cell lysates subjected to different treatment conditions with Pierce
Direct Magnetic IP/CO-IP kit (Pierce, #88828) according to the manufacturer’s
protocol. Immunoprecipitates were washed from conjugated beads and boiled in
5× SDS-PAGE buffer for further WB analysis. After quantification with the
Bradford method, protein lysates were loaded onto a 4–12% acrylamide gel sub-
jected to SDS-PAGE and then transferred onto a nitrocellulose membrane. After
blocking in 5% nonfat dry milk, blotting was performed with anti-WWP2 targeting
N-terminal region (Santa Cruz Biotechnology, #sc30052,1:500), anti-WWP2 tar-
geting C-terminal region (Aviva Systems Biology, #ARP43089_P050,1:500), anti-
TGFβ1 (Santa Cruz Biotechnology, #sc52893,1:500), anti-ACTA2 (Sigma Aldrich,
#A5228,1:10,000), anti-S100A4 (Abcam, #ab41532, 1:500), anti-Vimentin (Abcam,
#ab45939,1:500), anti-Periostin (Novus Bio, # NBP1-30042, 1:500), anti-
Fibronectin (Sigma, #SAB4500974, 1:500), anti-p-SMAD2 (CST, #18338,1:500),
anti-SMAD2/3 (CST, #3102, 1:500), anti-SMAD-4 (Santa Cruz Biotechnology, #sc-
7966, 1:500), anti-Ubiquitin (CST, #3933, 1:500), and anti-FLAG (Sigma Aldrich,
#F7425, 1:1000). Loading control was blotted with anti-tubulin (Sigma Aldrich,
#T5168, 1:5000) and anti-GAPDH (Abcam, #ab8245, 1:5000). Anti-Lamin
A/C (Abcam, #ab8984, 1:5000) and anti-PARP (Abcam, #ab6079,1:5000) were used
as nuclear controls. Blots were visualized by labeling with anti-Rabbit HRP (Bethyl
Laboratories, #A120-101P, 1:5000 or Thermo Fisher # 101023, 1:1000) and anti-
Mouse HRP (Bethyl laboratories, #A90-116P, 1:5000) and developed on a Kodak
automated developer with the ECL and Femto Detection Systems (Pierce) and
quantified using densitometry with ImageJ (version 2.0.0-rc-43). The unprocessed
scans of the western blots are shown in Supplementary Fig. 18.

Statistical analyses. Data are expressed as mean ± standard deviation (SD). The
applied statistical tests were dependent on the number of groups being compared
and the study design, and are detailed in each figure legend. Unless otherwise
indicated, a two-tailed Mann–Whitney U test was used to compare two groups,
with * denoting P < 0.05, and ** denoting P < 0.01. When comparing mice groups
with different genotypes, male littermate mice were assigned to the WT and Mut/
Mut mice groups according to the results of genotyping (Supplementary Fig. 2) and
mice with the same genotype were randomly assigned to the control, AngII infu-
sion, or MI group using a simple random-sampling approach. All experiments
requiring the use of animals, directly or as a source of cells, were subjected to
randomization. The experimenters were blinded to the grouping information. All
in vitro experiments were independently replicated at least three times as indicated
in the figure legends.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the data generated in this study supporting the main findings have been deposited to
NCBI’s Gene Expression Omnibus (GEO) and accessible through GEO Series accession
number GSE133017, including GSE130468 (bulk RNA-seq data from mouse heart) and
GSE133015 (single-cell RNA-seq data from mouse heart). The rest of the data are
available from the authors on reasonable request, please refer to author contributions for
specific data sets.

Code availability
We used published algorithms. See Methods section for full description of each analysis
including input data, library, and algorithm version used, for which we provide
corresponding web links.

Received: 10 October 2018 Accepted: 19 July 2019

References
1. Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac

fibrosis: the fibroblast awakens. Circ. Res. 118, 1021–1040 (2016).
2. Gulati, A. et al. Association of fibrosis with mortality and sudden cardiac death

in patients with nonischemic dilated cardiomyopathy. JAMA 309, 896–908
(2013).

3. Garfinkel, A. C., Seidman, J. G. & Seidman, C. E. Genetic pathogenesis of
hypertrophic and dilated cardiomyopathy. Heart Fail. Clin. 14, 139–146
(2018).

4. Harvey, P. A. & Leinwand, L. A. The cell biology of disease: cellular
mechanisms of cardiomyopathy. J. Cell Biol. 194, 355–365 (2011).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11551-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3616 | https://doi.org/10.1038/s41467-019-11551-9 | www.nature.com/naturecommunications 17

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133017
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130468
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133015
www.nature.com/naturecommunications
www.nature.com/naturecommunications


5. Gyongyosi, M. et al. Myocardial fibrosis: biomedical research from bench to
bedside. Eur. J. Heart Fail. 19, 177–191 (2017).

6. Reddy, S. et al. miR-21 is associated with fibrosis and right ventricular failure.
JCI Insight 2, 91625 (2017).

7. Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis—a common pathway to organ
injury and failure. N. Engl. J. Med. 372, 1138–1149 (2015).

8. Baum, J. & Duffy, H. S. Fibroblasts and myofibroblasts: what are we talking
about? J. Cardiovasc. Pharm. 57, 376–379 (2011).

9. Schafer, S. et al. IL-11 is a crucial determinant of cardiovascular fibrosis.
Nature 552, 110–115 (2017).

10. Leask, A. Getting to the heart of the matter: new insights into cardiac fibrosis.
Circ. Res. 116, 1269–1276 (2015).

11. Wang, Q. et al. Cooperative interaction of CTGF and TGF-beta in animal
models of fibrotic disease. Fibrogenes Tissue Repair 4, 4 (2011).

12. Piersma, B., Bank, R. A. & Boersema, M. Signaling in fibrosis: TGF-beta,
WNT, and YAP/TAZ converge. Front. Med. 2, 59 (2015).

13. Leask, A. TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc.
Res. 74, 207–212 (2007).

14. Ross, S. & Hill, C. S. How the Smads regulate transcription. Int. J. Biochem.
Cell Biol. 40, 383–408 (2008).

15. Fan, Z. & Guan, J. Antifibrotic therapies to control cardiac fibrosis. Biomater.
Res. 20, 13 (2016).

16. Leask, A. Potential therapeutic targets for cardiac fibrosis: TGFbeta,
angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation.
Circ. Res. 106, 1675–1680 (2010).

17. Gyorfi, A. H., Matei, A. E. & Distler, J. H. W. Targeting TGF-beta signaling for
the treatment of fibrosis. Matrix Biol. 68–69, 8–27 (2018).

18. Moreno-Moral, A., Pesce, F., Behmoaras, J. & Petretto, E. Systems genetics as a
tool to identify master genetic regulators in complex disease. Methods Mol.
Biol. 1488, 337–362 (2017).

19. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for
identification of genes underlying disease. Nat. Genet. 37, 243–253 (2005).

20. Petretto, E. et al. Integrated genomic approaches implicate osteoglycin (Ogn)
in the regulation of left ventricular mass. Nat. Genet. 40, 546–552 (2008).

21. Mancini, M. et al. Mapping genetic determinants of coronary microvascular
remodeling in the spontaneously hypertensive rat. Basic Res. Cardiol. 108, 316
(2013).

22. Langley, S. R. et al. Systems-level approaches reveal conservation of trans-
regulated genes in the rat and genetic determinants of blood pressure in
humans. Cardiovasc. Res. 97, 653–665 (2013).

23. Pravenec, M. et al. Identification of renal Cd36 as a determinant of blood
pressure and risk for hypertension. Nat. Genet. 40, 952–954 (2008).

24. Moreno-Moral, A., Mancini, M., D’Amati, G., Camici, P. & Petretto, E.
Transcriptional network analysis for the regulation of left ventricular
hypertrophy and microvascular remodeling. J. Cardiovasc. Transl. Res. 6,
931–944 (2013).

25. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. USA 102, 15545–15550 (2005).

26. Heinig, M. et al. Natural genetic variation of the cardiac transcriptome in non-
diseased donors and patients with dilated cardiomyopathy. Genome Biol. 18,
170 (2017).

27. Rotival, M. & Petretto, E. Leveraging gene co-expression networks to pinpoint
the regulation of complex traits and disease, with a focus on cardiovascular
traits. Brief. Funct. Genomics 13, 66–78 (2014).

28. Zhao, T. et al. Platelet-derived growth factor-D promotes fibrogenesis of cardiac
fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 304, H1719–H1726 (2013).

29. Pradegan, N. et al. Myocardial histopathology in late-repaired and unrepaired
adults with tetralogy of Fallot. Cardiovasc. Pathol. 25, 225–231 (2016).

30. Burke, M. A. et al. Molecular profiling of dilated cardiomyopathy that
progresses to heart failure. JCI Insight 1, e86898 (2016).

31. Massague, J. & Wotton, D. Transcriptional control by the TGF-beta/Smad
signaling system. EMBO J. 19, 1745–1754 (2000).

32. Lachmann, A. et al. ChEA: transcription factor regulation inferred from
integrating genome-wide ChIP-X experiments. Bioinformatics 26, 2438–2444
(2010).

33. Bottolo, L. et al. Bayesian detection of expression quantitative trait loci hot
spots. Genetics 189, 1449–1459 (2011).

34. Heinig, M. et al. A trans-acting locus regulates an anti-viral expression
network and type 1 diabetes risk. Nature 467, 460–464 (2010).

35. Johnson, M. R. et al. Systems genetics identifies Sestrin 3 as a regulator of a
proconvulsant gene network in human epileptic hippocampus. Nat. Commun.
6, 6031 (2015).

36. Kang, H. et al. Kcnn4 is a regulator of macrophage multinucleation in bone
homeostasis and inflammatory disease. Cell Rep. 8, 1210–1224 (2014).

37. Matsumura, S. et al. Targeted deletion or pharmacological inhibition of MMP-
2 prevents cardiac rupture after myocardial infarction in mice. J. Clin. Invest.
115, 599–609 (2005).

38. Peterson, J. T., Li, H., Dillon, L. & Bryant, J. W. Evolution of matrix
metalloprotease and tissue inhibitor expression during heart failure
progression in the infarcted rat. Cardiovasc. Res. 46, 307–315 (2000).

39. Schwanekamp, J. A. et al. TGFBI functions similar to periostin but is uniquely
dispensable during cardiac injury. PLoS ONE 12, e0181945 (2017).

40. Soond, S. M. & Chantry, A. Selective targeting of activating and inhibitory
Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates
TGFbeta signalling and EMT. Oncogene 30, 2451–2462 (2011).

41. Zou, W. et al. The E3 ubiquitin ligase Wwp2 regulates craniofacial
development through mono-ubiquitylation of Goosecoid. Nat. Cell Biol. 13,
59–65 (2011).

42. Schmidt, M. et al. Controlling the balance of fibroblast proliferation and
differentiation: impact of Thy-1. J. Invest. Dermatol. 135, 1893–1902 (2015).

43. Horwitz, A. A., Affar, E. L. B., Heine, G. F., Shi, Y. & Parvin, J. D. A
mechanism for transcriptional repression dependent on the BRCA1 E3
ubiquitin ligase. Proc. Natl Acad. Sci. USA 104, 6614–6619 (2007).

44. Xie, F., Zhang, Z., van Dam, H., Zhang, L. & Zhou, F. Regulation of TGF-beta
superfamily signaling by SMAD mono-ubiquitination. Cells 3, 981–993 (2014).

45. Tang, L. Y. et al. Ablation of Smurf2 reveals an inhibition in TGF-beta
signalling through multiple mono-ubiquitination of Smad3. EMBO J. 30,
4777–4789 (2011).

46. Xu, L. & Massague, J. Nucleocytoplasmic shuttling of signal transducers. Nat.
Rev. Mol. Cell Biol. 5, 209–219 (2004).

47. Inman, G. J., Nicolas, F. J. & Hill, C. S. Nucleocytoplasmic shuttling of Smads
2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol. Cell 10,
283–294 (2002).

48. Inman, G. J. et al. SB-431542 is a potent and specific inhibitor of transforming
growth factor-beta superfamily type I activin receptor-like kinase (ALK)
receptors ALK4, ALK5, and ALK7. Mol. Pharm. 62, 65–74 (2002).

49. Schmierer, B. & Hill, C. S. Kinetic analysis of Smad nucleocytoplasmic
shuttling reveals a mechanism for transforming growth factor beta-dependent
nuclear accumulation of Smads. Mol. Cell Biol. 25, 9845–9858 (2005).

50. Nakamura, Y. et al. Wwp2 is essential for palatogenesis mediated by the
interaction between Sox9 and mediator subunit 25. Nat. Commun. 2, 251
(2011).

51. Yang, Y. et al. E3 ligase WWP2 negatively regulates TLR3-mediated innate
immune response by targeting TRIF for ubiquitination and degradation. Proc.
Natl Acad. Sci. USA 110, 5115–5120 (2013).

52. Maddika, S. et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nat. Cell Biol. 13,
728–733 (2011).

53. Fukumoto, C. et al. WWP2 is overexpressed in human oral cancer,
determining tumor size and poor prognosis in patients: downregulation of
WWP2 inhibits the AKT signaling and tumor growth in mice. Oncoscience 1,
807–820 (2014).

54. Kim, S. K. et al. Two genetic variants associated with plantar fascial disorders.
Int J. Sports Med. 39, 314–321 (2018).

55. Styrkarsdottir, U. et al. Meta-analysis of Icelandic and UK data sets identifies
missense variants in SMO, IL11, COL11A1 and 13 more new loci associated
with osteoarthritis. Nat. Genet. 50, 1681–1687 (2018).

56. Khalil, H. et al. Fibroblast-specific TGF-beta-Smad2/3 signaling underlies
cardiac fibrosis. J. Clin. Invest. 127, 3770–3783 (2017).

57. Bernard, K. et al. Metabolic reprogramming is required for myofibroblast
contractility and differentiation. J. Biol. Chem. 290, 25427–25438 (2015).

58. Selvarajah, B. et al. Metabolic shift during TGF-β induced collagen synthesis.
QJM 109, S3 (2016).

59. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest
and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

60. Santiago, J. J. et al. Cardiac fibroblast to myofibroblast differentiation in vivo
and in vitro: expression of focal adhesion components in neonatal and adult
rat ventricular myofibroblasts. Dev. Dyn. 239, 1573–1584 (2010).

61. Lo, R. S. & Massague, J. Ubiquitin-dependent degradation of TGF-beta-
activated smad2. Nat. Cell Biol. 1, 472–478 (1999).

62. Hill, C. S. Nucleocytoplasmic shuttling of Smad proteins. Cell Res. 19, 36–46
(2009).

63. Schnell, J. D. & Hicke, L. Non-traditional functions of ubiquitin and
ubiquitin-binding proteins. J. Biol. Chem. 278, 35857–35860 (2003).

64. Trotman, L. C. et al. Ubiquitination regulates PTEN nuclear import and
tumor suppression. Cell 128, 141–156 (2007).

65. Inui, M. et al. USP15 is a deubiquitylating enzyme for receptor-activated
SMADs. Nat. Cell Biol. 13, 1368–1375 (2011).

66. Tang, L. Y. & Zhang, Y. E. Non-degradative ubiquitination in Smad-
dependent TGF-beta signaling. Cell Biosci. 1, 43 (2011).

67. Brooks, C. L., Li, M. & Gu, W. Mechanistic studies of MDM2-mediated
ubiquitination in p53 regulation. J. Biol. Chem. 282, 22804–22815 (2007).

68. Jia, L. & Sun, Y. SCF E3 ubiquitin ligases as anticancer targets. Curr. Cancer
Drug Targets 11, 347–356 (2011).

69. Huang, X. & Dixit, V. M. Drugging the undruggables: exploring the ubiquitin
system for drug development. Cell Res. 26, 484–498 (2016).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11551-9

18 NATURE COMMUNICATIONS |         (2019) 10:3616 | https://doi.org/10.1038/s41467-019-11551-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


70. Carvajal, L. A. et al. Dual inhibition of MDMX and MDM2 as a therapeutic
strategy in leukemia. Sci. Transl. Med. 10, eaao3003 (2018).

71. Ding, L. et al. Inhibition of Skp2 suppresses the proliferation and invasion of
osteosarcoma cells. Oncol. Rep. 38, 933–940 (2017).

72. Huang, X. L. et al. E3 ubiquitin ligase: a potential regulator in fibrosis and
systemic sclerosis. Cell Immunol. 306-307, 1–8 (2016).

73. Segura, A. M., Frazier, O. H. & Buja, L. M. Fibrosis and heart failure. Heart
Fail. Rev. 19, 173–185 (2014).

74. Edgley, A. J., Krum, H. & Kelly, D. J. Targeting fibrosis for the treatment of
heart failure: a role for transforming growth factor-beta. Cardiovasc. Ther. 30,
e30–e40 (2012).

75. Rintisch, C. et al. Natural variation of histone modification and its impact on
gene expression in the rat genome. Genome Res. 24, 942–953 (2014).

76. Martin, J. A. & Wang, Z. Next-generation transcriptome assembly. Nat. Rev.
Genet. 12, 671–682 (2011).

77. Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies
by surrogate variable analysis. PLoS Genet. 3, 1724–1735 (2007).

78. Heidecker, B. et al. The gene expression profile of patients with new-onset
heart failure reveals important gender-specific differences. Eur. Heart J. 31,
1188–1196 (2010).

79. Hardin, J., Mitani, A., Hicks, L. & VanKoten, B. A robust measure of
correlation between two genes on a microarray. BMC Bioinformatics 8, 220
(2007).

80. Choi, Y. & Kendziorski, C. Statistical methods for gene set co-expression
analysis. Bioinformatics 25, 2780–2786 (2009).

Acknowledgements
The research was primarily supported by National Medical Research Council (NMRC)
Singapore grant NMRC/CBRG/0106/2016 (to E.P.) and the British Heart Foundation
(BHF) Ph.D. Studentship grant FS/11/25/28740 (to E.P). We acknowledge additional
funding support from European Union FP7 CardioNeT-ITN-289600 (to E.L.-P., S.A.C.,
and P.J.R.B.), Heart Research UK (to P.J.R.B.), NIHR CV BRU of Royal Brompton and
Harefield, NHS Foundation Trust (to S.A.C. and P.J.R.B.), BHF (to S.A.C.), Leducq
Foundation (to S.A.C.), MRC UK (to S.A.C.), BHF Program Grant no. RG/15/5/31446
(to C.E. and E.P.). M.P. was supported by Praemium Academiae award of the Czech
Academy of Sciences and grant 14-36804G from the Czech Science Foundation. We wish
to thank Dr. Jacques Behmoaras for contributing critical and constructive comments to
the manuscript.

Author contributions
E.P. conceived and supervised the study, obtained and managed funding for the project.
Mouse animal and cell experiments were carried out by H.C. and N.D. with the assis-
tance of E.T. A.M.-M. conceived and carried out Systems Genetics and Bioinformatics
analyses with the assistance of M.R., P.K.S., N.H., K.S., O.J.R., S.S., and L.B. F.P.

processed and carried out the network analyses in the DCM cohort with the assistance of
A.M.-M. X.S. and S.A.C. generated human fibroblasts data. G.A., C.B., and C.E. collected
human primary fibroblasts and carried out the experiments in human cells. M.M. gen-
erated rat histomorphometric data. M.P. provided rat data. E.L.H. generated human
rTOF data. S.A.C., P.B., N.H., S.S., and L.E.F. provided DCM patient data. E.L.-P. gen-
erated heart cells data in mice. N.G.Z.T. carried out the mice heart echocardiography
measurements. W.P.Y. generated the WWP2Mut/wt mouse. E.P., H.C., and A.M.-M.
designed all analyses, experiments, and wrote the manuscript, which was critically revised
by C.E. and S.A.C., and with inputs from co-authors.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-11551-9.

Competing interests: E.P. and A.M.-M. have filed a patent (application number
1908544.8; status: “provisional application”; date 14 June 2019) concerning the treatment
and/or prevention of disease through inhibition of the pro-fibrotic functions of WWP2.
The remaining authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Ian Dixon, Bin Zhang and
other anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11551-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3616 | https://doi.org/10.1038/s41467-019-11551-9 | www.nature.com/naturecommunications 19

https://doi.org/10.1038/s41467-019-11551-9
https://doi.org/10.1038/s41467-019-11551-9
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	WWP2 regulates pathological cardiac fibrosis by�modulating SMAD2�signaling
	Results
	Coordinated regulation of ECM genes in the diseased heart
	WWP2 regulates the pro-fibrotic gene network in heart
	WWP2 regulates cardiac fibrosis in�vivo
	WWP2 regulates the TGFβ1-induced fibrotic response In vitro
	WWP2 regulates the nucleocytoplasmic shuttling of SMAD2

	Discussion
	Methods
	Data generation and processing in the rat
	Data generation and processing in the human cohorts
	Gene co-expression network analysis
	Bayesian network-expression QTL (network-eQTL) analysis
	Correlation analyses between WWP2 and hECM-network genes
	Expression QTL (eQTL) mapping of WWP2 isoforms in DCM
	Animal studies
	Cell culture experiments
	Echocardiography analysis
	Single-cell RNA-sequencing analysis in mouse heart
	Analysis of WWP2Mut/Mut mouse RNA-seq data
	Histology and immunofluorescence
	Hydroxyproline assay
	Luciferase assay
	Cell proliferation and migration assays
	RT-qPCR analysis
	Western blotting
	Statistical analyses
	Reporting Summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests




