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Abstract
The efficacy of targeted therapy in non-small-cell lung cancer (NSCLC) has been impeded by various mechanisms of resist-
ance. Besides the mutations in targeted oncogenes, reversible lineage plasticity has recently considered to play a role in 
the development of tyrosine kinase inhibitors (TKI) resistance in NSCLC. Lineage plasticity enables cells to transfer from 
one committed developmental pathway to another, and has been a trigger of tumor adaptation to adverse microenvironment 
conditions including exposure to various therapies. More importantly, besides somatic mutation, lineage plasticity has also 
been proposed as another source of intratumoural heterogeneity. Lineage plasticity can drive NSCLC cells to a new cell 
identity which no longer depends on the drug-targeted pathway. Histological transformation and epithelial–mesenchymal 
transition are two well-known pathways of lineage plasticity-mediated TKI resistance in NSCLC. In the last decade, increased 
re-biopsy practice upon disease recurrence has increased the recognition of lineage plasticity induced resistance in NSCLC 
and has improved our understanding of the underlying biology. Long non-coding RNAs (lncRNAs), the dark matter of the 
genome, are capable of regulating variant malignant processes of NSCLC like the invisible hands. Recent evidence suggests 
that lncRNAs are involved in TKI resistance in NSCLC, particularly in lineage plasticity-mediated resistance. In this review, 
we summarize the mechanisms of lncRNAs in regulating lineage plasticity and TKI resistance in NSCLC. We also discuss 
how understanding these themes can alter therapeutic strategies, including combination therapy approaches to overcome 
TKI resistance.
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SCLC	� Small-cell lung cancer
EMT	� Epithelial-to-mesenchymal transition
NCAM1	� Neural cell adhesion molecule 1
RB1	� RB transcriptional corepressor 1
TP53	� Tumor protein p53
CRPC	� Castration-resistant prostate cancer
AR	� Androgen receptor
NEPC	� Neuroendocrine prostate cancer
ZEB	� Zinc finger E-box-binding homeobox
TGFβ	� Transforming growth factor-β
IL-6	� Interleukin 6
LSD1	� Lysine-specific demethylase 1
DNMT1	� DNA methyltransferase 1
CDKN1A	� Cyclin-dependent kinase inhibitor 1A
YAP1	� Yes-associated protein 1
PRC2	� Polycomb repressive complex 2
REST	� RE1-slienicng transcription factor
TFBS	� Transcription factor biding site
LUAD	� Lung adenocarcinoma
E2F1	� E2F transcription factor 1
INSM1	� Insulinoma-associated-1
ASCL	� Achaete-scure complex homolog 1
ASH1	� Achaete-scute homolog 1
CAF	� Cancer-associated fibroblast
HGF	� Hepatocyte growth factor
MET	� Mesenchymal–epithelial transition factor 

receptor
GAS6	� Growth arrest specific 6
EGF	� Epidermal growth factor
HB-EGF	� EGF-like growth factor
ECM	� Extracellular matrix
CXCL12	� CXC-chemokine ligand 12
TAM	� Tumor-associated macrophage
MAPK	� Mitogen activated kinase-like protein
NF-κB	� Nuclear factor kappa B
RAS	� Resistance to audiogenic seizures (RAS)
COX2	� Cytochrome coxidase subunit II
PGE2	� Nr5a1 enhancer region in intron 6
HIF1α	� Hypoxia-inducible factor 1α
VEGF	� Vascular endothelial growth factor
PDL1	� Programmed cell death 1 ligand 1
HDAC	� Type-2 histone deacetylase 2
H3K9me3	� Trimethylation of lysine 9 on histone

Introduction

Lung cancer is the leading cause of cancer-associated mor-
tality worldwide, with non-small-cell lung cancer (NSCLC) 
as the main histological subtype with a poor 5 year survival 
[1]. Improved understanding of the molecular classification 
of lung cancer has revolutionized the treatment of NSCLC. 
Almost two-thirds of patients with NSCLC are oncogene 

addicted, approximately half of whom are exquisitely sensi-
tive to targeted therapies [2, 3]. These include activating 
mutations or fusions in epidermal growth factor receptor 
(EGFR), serine/threonine-protein kinase b-raf (BRAF), 
anaplastic lymphoma kinase (ALK), and ROS1 receptor 
tyrosine kinase [3].

Although agents that target the tyrosine kinase domain 
of these oncogenes improve clinical outcomes of patients 
with NSCLC, responses to these drugs are generally tempo-
rary and limited by emergence of resistance [4]. Resistance 
to tyrosine kinase inhibitors (TKI) are generally associated 
with acquired somatic mutations, including genetic altera-
tions that enable bypassing target inhibition through inef-
fective binding of the drugs, as well as activation of collat-
eral or alternative survival pathways [3, 5, 6]. In addition to 
these genetic mechanisms of drug resistance, non-mutational 
mechanisms termed lineage plasticity are also associated 
with TKI resistance. Lineage plasticity refers to as the abil-
ity of cells transferring from one committed developmental 
pathway to another. It enables the adaptation and survival of 
tumors under adverse conditions including hypoxia and tar-
geted therapies. Therefore, it is proposed as a mechanism of 
tumor cells escape from targeted dependency. Lineage plas-
ticity can be both dependent on and a driver of intratumoral 
heterogeneity [7, 8]. In contrast to genetic mechanisms of 
TKI resistance, lineage plasticity-associated resistance pri-
marily relies on phenotype switching, with one single geno-
type gives rise to different phenotypes upon drug treatment. 
It enables cancer cells to reversibly convert to new or hybrid 
lineages that is independent of TKI-targeted pathway [9].

Data from single-cell profiling and lineage tracing tech-
nologies suggest that a single cell can give rise to multiple 
states. Mechanistically, epigenetic modifications and tran-
scriptomic transitions may mediate the emergence of new 
cell states. Long non-coding RNAs (lncRNAs) the dark mat-
ter of the genome, are capable of regulating variant malig-
nant processes of NSCLC through epigenetic modification 
[10]. Importantly, lncRNAs often offer distinct advantages 
over proteins for some forms of epigenetic regulation [11]. 
Recent studies show the transcriptional heterogeneity regu-
lated by lncRNAs might drive the phenotypic switch from 
one histological category to another, contributing to the line-
age plasticity-mediated TKI resistance.

Targeting lineage plasticity provides a new opportunity 
to prevent the emergence of drug-tolerant cell states and 
enables TKI to achieve deeper responses. In this review, we 
performed a literature review covering the publication of the 
last 15 years on the topic of “long non-coding RNAs regu-
lated lineage plasticity in lung cancer”. The keywords used 
for searching were “cell plasticity”, “cancer” and “non-cod-
ing RNAs”. We summarize current understanding of lineage 
plasticity as a mechanism of TKI resistance in NSCLC and 
discuss the implications of lncRNAs in lineage plasticity. 



1985Long non-coding RNAs in lung cancer: implications for lineage plasticity-mediated TKI…

1 3

Finally, we also discuss potential therapeutic strategies to 
circumvent lineage plasticity in NSCLC.

Lineage plasticity in response to targeted 
therapies

Lineage plasticity, the ability of cells to reversibly transfer 
from a certain developmental pathway to another, has been 
regarded as a source of intratumoral heterogeneity and of 
tumor adaptation to adverse tumor microenvironment such 
as hypoxia and exposure to targeted therapies [7]. Histo-
logical transformation of adenocarcinomas to neuroendo-
crine and epithelial–mesenchymal transition are two well-
known phenotypes of lineage plasticity in NSCLC upon TKI 
treatment [7, 12]. NSCLC cells has been reported to hijack 
developmental process involved in epigenetic modification 
and transcriptional reprogramming to become phenotypi-
cally plastic, and reversibly transform into one or several 
drug-tolerant cell identities [13, 14]. Interestingly, the 
emergence of slow-cycling tumors cells is primarily con-
sidered as the first state before histological transformation 
and further reprogramming into a drug-resistant state [15, 
16]. Adenocarcinomas with concomitant inactivation of RB1 
and TP53 are more likely to transdifferentiate into neuroen-
docrine tumors in NSCLC [17–20]. Furthermore, loss of 
lung lineage-specifying transcription factor gene Nkx2-1, 
overexpression of lineage-specific transcription factors such 
as SOX genes, and dysregulation of epigenetic regulators 
such as histone methyltransferase, changes of key signaling 
pathways (IL-6-STAT3 or RXR, etc.), as well as interactions 
with tumor microenvironment (TME) have been associated 

with intratumoural heterogeneity and lineage plasticity-
mediated drug resistance [7, 14] (Fig. 1).

Histological transformation

Histological transformation also referred to as transdif-
ferentiation, which presents the process that cells convert 
from one lineage to another [21]. Targeted therapy-induced 
neuroendocrine transdifferentiation has been particularly 
described in NSCLC and prostate cancer [12, 22]. The 
transformation of EGFR-mutant adenocarcinoma to a SCLC 
histology was first reported in a 45-year-old woman with 
EGFR-mutant adenocarcinoma who underwent erlotinib 
treatment for 18 months before relapse with the features of 
SCLC, and positive immunostaining of neural cell adhesion 
molecule 1 (NCAM1), chromogranin A and synaptophysin 
[23]. In rare cases, NSCLC could adopt to other neuroen-
docrine histology, for instance, large cell neuroendocrine 
carcinoma and small and large cell carcinoma [19]. Trans-
formation to sarcomatoid carcinoma has also been observed 
in ALK-rearranged NSCLC in resistant to crizotinib. Impor-
tantly, the transformed SCLC tumor samples maintained 
their original mutation [23], which indicates these tumors 
were emerging from the original adenocarcinoma, rather 
than de novo cancers. Genetically, NSCLC cells with RB1 
and TP53 loss are more likely to transdifferentiate towards a 
neuroendocrine identity upon TKI treatment [17, 18]. Simi-
lar observations were made in castration-resistant prostate 
cancer (CRPC), with approximately one-quarter of CRPC 
acquire androgen receptor (AR) independent resistant 
through phenotypic switching [22]. These AR-independent 

Fig. 1   Lineage plasticity lead to TKI resistance in NSCLC. Upon tar-
geted therapies, various molecular events can promote lineage plas-
ticity, thereby driving intratumoural heterogeneity and drug resist-
ance. RB1 and TP53 mutation or loss NSCLC cells are more likely 
to transdifferentiate into small cell tumors. Increased histone-modi-
fying enzymes, such as enhancer of zeste homologue 2 (EZH2) and 
lineage-associated transcription factors, such as SOX family genes 
mediates the reprogramming of NSCLC into slow-cycling, drug-
tolerant cell states. These slow-cycling, drug-tolerant cells generally 

present neuroendocrine differentiation and epithelial-to-mesenchymal 
transition (EMT). Alterations of key signaling pathways and cross-
talk with the tumor microenvironment also control lineage plasticity. 
Collectively, the plasticity-permissive molecular environment under 
the pressure of targeted therapies trigger the intratumoural clones 
presenting an alternative histology to that initially diagnosed, which 
might become the predominant cell type and exhibit drug resistance. 
Blue font: lncRNA-mediated molecular events that promote lineage 
plasticity
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CRPC tumors are referred to as neuroendocrine prostate 
cancer (NEPC) [22].

Epithelial–mesenchymal transition

Epithelial–mesenchymal transition (EMT) is another type of 
tumor cell plasticity related to TKI resistance [12, 24], which 
tumor cells lose their epithelial features and acquire cellular 
alterations favoring more invasive, mesenchymal proper-
ties. Mesenchymal characteristics were observed in vitro 
and in vivo EGFR-mutant lung cancer models that acquired 
resistance to first-generation EGFR-TKI with no genetic 
alterations [25, 26]. Moreover, tumor biopsy samples from 
EGFR-TKI resistance patients presented increased vimen-
tin expression and downregulated E-cadherin expression 
compared with tumor tissues taken before TKI treatment. 
Importantly, tumor cells undergo epithelial–mesenchymal 
plasticity retain their original mutation spectrum, indicating 
EMT as a mechanism of TKI resistance [12, 27]. The precise 
mechanism of epithelial–mesenchymal plasticity remains to 
be elucidated. Increased levels of pleiotropic signaling fac-
tors, such as transforming growth factor-β (TGF-β), epider-
mal growth factor (EGF), hepatocyte growth factor (HGF), 
NOTCH, fibroblast growth factor (FGF) and WNT ligands 
can initiate a signaling cascade resulting the expression 
of EMT transcription factors [13]. Furthermore, reduced 
expression of proapoptotic proteins such as PUMA [28] and 
increased drug efflux [29] have also been reported to associ-
ate with EMT process upon TKI treatment.

Deregulated lncRNAs involved in lineage 
plasticity upon targeted therapies

Neuroendocrine transdifferentiation‑associated 
lncRNAs

Clonal analysis showed that complete loss of both RB1 
and TP53 may predict neuroendocrine transdifferentiation 
in NSCLC upon EGFR-TKI treatment [18]. However, cell 
lines and mouse model studies of lung and prostate cancer 
suggested that inactivation of RB1 or TP53 alone is not suf-
ficient for their histological transformation or effect their 
sensitivity to EGFR-TKI [30–32]. Additionally, epigenetic 
states, specially, lncRNAs are involved in cell-fate determi-
nation [33]. Crea et al. identified the first NEPC-associated 
lncRNA-MIAT, which contributed to the neuroendocrine 
transdifferentiation of CRPC [34]. Moreover, Ramnarine 
et  al. identified lncRNAs FENDRR, H19, LINC00514, 
LINC00617, and SSTR5-AS1 to be implicated in the 
development of NEPC [35]. Altogether, these data sug-
gest lncRNAs can be strong candidate for clinical biomark-
ers and therapeutic targets in preventing neuroendocrine 

transdifferentiation in CRPC. Nevertheless, lncRNAs asso-
ciated with neuroendocrine transformation in NSCLC in 
response to TKI treatment warrant further investigation. 
(Table 1).

EMT‑associated lncRNAs

EMT is a dynamic process which tumor cells obtain pheno-
typic changes through epigenetic modifications [36]. Emerg-
ing evidence highlights the involvement of lncRNAs in EMT 
process in NSCLC [37].

Recently, a group of lncRNAs have been shown to 
promote drug resistance by acting as molecular decoys 
to sequester miRNAs associated with EMT. For exam-
ple, LINC00673, CAR10, XIST, LINC81507, TTN-AS1, 
LINC00858, H19, SOX20T, LINC00483, PRNCR1, 
SNHG6, ATB and alternative splicing-generated lncRNA-
PNUTS [38] are shown to sequester miRNAs from binding 
EMT associated genes, such as zinc finger E-box binding 
homeobox 1 and 2 (ZEB1 and ZEB2), thereby initiate EMT 
in NSCLC [39–46]. Increased levels of transforming growth 
factor-β (TGFβ) are reported to facilitate EMT via inter-
leukin-6 (IL-6) in EGFR TKI-resistant NSCLC cells [47]. 
Several profiling studies have identified the roles of TGFβ-
regulated lncRNAs such as ELIT-1, TBILA, LINP and 
HOTAIR in promoting EMT in NSCLC cell lines [48–51]. 
Mechanistically, TGFβ-activated lncRNA ELIT-1 can bound 
to Smad3 and improved Smad-responsive promoter activi-
ties by recruiting Smad3 to the promoters of its target genes, 
which include Snail, and ELIT itself. Thus, ELIT-1 forms 
a positive feedback loop to promote TGFβ/Smad3 signal-
ing pathway and, therefore, promote EMT progression 
[48]. NORAD, a cytoplasmic long non-coding RNA is also 
reported to promote TGFβ-induced EMT in NSCLC cell 
lines [52]. It is shown to enhance the physical interaction 
of importin β1 with Smads, thereby promoting the nuclear 
accumulation of Smad complexes induced by TGFβ. Fur-
thermore, many lncRNAs associate with epigenetic regu-
lators to regulate EMT. For instance, lncRNA MEG3 is 
able to recruit EZH2 and epigenetically silencing CDH1 
and miR-200 family in NSCLC cell lines [53]. Similarly, 
MALAT1 can also recruit EZH2 to silence E-cadherin and, 
therefore, induce EMT in NSCLC [54]. LncRNA-FEZF1-
AS1 was shown to epigenetically repress E-cadherin by 
binding with lysine-specific histone demethylase 1 (LSD1) 
and EZH2 in NSCLC cells [55]. HOXA11-AS1 was reported 
to recruit EZH2 and DNA methyltransferase 1 (DNMT1) to 
the promoter of miR200b and inactivate miR200b, thereby 
promoting EMT in NSCLC [56]. In contrast, a number of 
epigenetic upregulated lncRNAs can inhibit EMT through 
histone modification in NSCLC [57, 58]. For example, 
lncRNA-BANCR inhibits EMT through histone acetyla-
tion [58]. Most TGFβ-regulated lncRNA were reported to 
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promote EMT, however, TGFβ-regulated lnRNAs NKILA 
and LINC001186 are reported to inhibit EMT by suppress-
ing the expression of Snail [59, 60]. Targeting EMT-asso-
ciated lncRNAs may restore the sensitivity to TKI, further 
studies are needed. (Table 1).

Mechanisms of lncRNA‑mediated lineage 
plasticity

The molecular mechanisms underlying lineage plasticity-
mediated TKI resistance remain to be fully established. 
However, tumor cells go through a slow-cycling drug-toler-
ant state is generally considered as the first step for lineage 
plasticity-mediated resistance. Moreover, epigenetic and 
transcription factor changes and alterations of key signaling 
pathways, as well as crosstalk with tumor microenvironment 
(TME) can favor the development of phenotypic switching 
and TKI resistance (Fig. 2).

Emergence of slow‑cycling cells

A drug-tolerant, slow-cycling state was first identified in 
bacteria [61]. In that scenario, a group of drug-tolerant slow-
cycling bacteria survive in response to antibiotic treatment, 
and can further convert to a proliferative state and re-estab-
lished drug sensitive phenotype upon drug withdrawal [61]. 
Similarly, reversible drug-tolerant slow-cycling persisters 
were reported in NSCLC. Notably, a stepwise transition 
may occur in NSCLC upon TKI treatment, tumor cells first 
reversibly enter a slow-cycling state, then regain prolifera-
tion and ultimately become drug-resistant through further 
epigenetic changes or via genetic modifications (such as 
EGFR-T790M) [6, 15]. More recently, Sanchez-Danes et al. 
also discovered that in basal cell carcinoma, drug-tolerant 
slow-cycling residuals cells can lead to relapse upon drug 
withdrawal [62]. Forcing these slow-cycling cells to pro-
liferate enhanced their sensitivity to vismodegib treatment, 
which leaded to their elimination [62].

LncRNAs involved in regulating cell-cycling conditions 
in cancer are primarily defined as p53-related lncRNAs 
[63]. Genome-wide profiling of p53-regulated enhancer 
RNAs identified p53-induced lincRNA-p21, LINC-PINT, 
TUG1, PR-lncRNA-1, PR-lncRNA-10 and LED to sup-
port cell-cycle arrest [63]. Mechanistically, lincRNA-
p21 bound to heterogeneous nuclear ribonucleoprotein 
K (hnRNPK) to regulate cyclin-dependent kinase inhibi-
tor 1A (CDKN1A) is cis and arrest the cell cycle [64]. 
Another p53-induced lncRNA DINO was shown to interact 
with p53 protein and enhanced its stabilization, creating 
a p53 auto-amplification loop, thereby promoting dam-
age signaling pathway and cell cycle arrest in the absence 
of DNA damage [65]. Moreover, alterations in cell cycle N
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proteins, including the silencing of cyclin dependent 
kinase (CDK) inhibitor p16 and p15 are associated with 
resistance to EGFR TKI in NSCLC patients [66]. Sev-
eral lncRNAs such as p15-AS-1 and MIR31HG can sup-
press p15 or p16 through heterochromatin formation [67, 
68]. Moreover, MIR100HG encoded lncRNA interacts 
with HuR/ELAVL1 as well as several HuR-target genes 
(oncogenes) to suppress cell proliferation [69]. In addi-
tion, lncRNA TINCR, CASC2, MALAT1 were involved 
in FBXW7-mediated cell cycle arrest in various cancers 
[70]. Nevertheless, it remains to be elucidated whether 
these cell cycle-associated lncRNAs are implicated in the 
drug-tolerant refractory cells under the pressure of TKI. 

It is important to note that most of these studies are con-
ducted in vitro, and should, in the future, be further vali-
dated in vivo. 

Epigenetic modification

The histone methyltransferase EZH2, which is the cata-
lytic subunit of Polycomb repressive complex 2 (PRC2), 
is reported to promote neuroendocrine transdifferentiation 
in a mouse model of lung cancer [71]. Similarly, EZH2 is 
also a well-established feature of NEPC [31, 72]. Pharma-
cological or genetic inhibition of EZH2 activity in NEPC 
cell lines can reverse its lineage conversion and regain drug 

Fig. 2   Mechanisms of lncRNA-mediated lineage transition. Tran-
scription factors (such as SOX family), histone-modifying enzymes 
(such as enhancer of zeste homologue 2 (EZH2) and RE1-slienicng 
transcription factor (REST)) regulate the reprogramming tumor cells 
into slow-cycling, drug-tolerant states. LncRNAs such as lincRNA-
p21, TUG1, linc-PINT, HOXA11-AS, SOX2-OT, FBXL19-AS1, 
LINC00514, FENDRR are implicated in the reprogramming process. 
Alterations in several key signaling pathways such as WNT-β-catenin 
pathway, IL-6/STAT3 pathway, NF-κB pathway and YAP path-
way promote phenotypic switching upon TKI treatment. lncRNAs 
such as MALAT1, GHET1, SNHG1, NEAT1, H19 TNK2-AS1 are 
involved in these key signaling pathways. Crosstalk with the tumor 
microenvironment, through secretion of various cytokines from can-
cer-associated fibroblasts such as hepatocyte growth factor(HGF), 
growth arrest-specific protein 6 (GAS6), CXC-chemokine ligand 
12 (CXCL12), interleukin-6 (IL-6) and transforming growth 

factorβ (TGFβ); cytokines from endothelial cells such as epidermal 
growth factor (EGF), transforming growth factor-α (TGFα), vas-
cular endothelial growth factor (VEGF) and heparin-binding EGF-
like growth factor (HB-EGF); Interluekin-6 (IL-6), VEGF from 
tumor-associated macrophage (TAM) controls tumor plasticity. The 
enhanced cell–cell adhesion via increased expression of integrin β1 
and N-cadherin in tumor cells and increased extracellular matrix 
(ECM) stiffness via Serpin B2 can also promote tyrosine kinase 
inhibitors (TKI) resistance. LncRNAs involved in the M2 polariza-
tion of macrophage such as XIST and GNAS-AS1 played a part in 
TKI resistance. Lastly, low level of oxygen can active hypoxia-induc-
ible factor 1α (HIF1α) in tumor cells, causing autocrine signaling by 
secretion of TGFα, VEGF and insulin-like growth factor (IGF-1), 
which promotes resistance to TKI therapy. TFs transcription factors, 
CAF cancer-associated fibroblasts
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sensitivity [30, 31, 73] RE1-slienicng transcription factor 
(REST), another epigenetic regulator, is found in lung and 
prostate cancer during neuroendocrine conversion [74, 75]. 
REST suppresses gene expression generally through recruit-
ing the co-repressors such as EZH2 [75]. Elevated levels of 
REST are reported to promote neuroendocrine differentia-
tion in EGFR TKI resistance NSCLC cell lines via Notch 
signaling pathway [76].

Many lncRNAs have been shown to scaffold and recruit 
epigenetic regulator to specific genome loci. For exam-
ple, lncRNAs HOXA11-AS can recruit PRC2 complex to 
silence miR200b [56]. On the other hand, a few lncRNAs 
are regulated by E2F transcription factor 1 (E2F1), which 
is a transcription factor that induce EZH2 expression [77]. 
Transcription factor-binding site (TFBS) analysis identi-
fied lncRNAs FENDRR, H19, LINC00514, LINC00617 
and SSTR5-AS1 include TFBS motifs for REST and E2F, 
and the expression of these lncRNAs were implicated in the 
development of NEPC [35]. Furthermore, FBXL19-AS1/
miR-203a-3p axis was found to enhance E2F1 and ZEB1 in 
lung adenocarcinomas (LUAD) cells [78]. Therefore, lncR-
NAs are important players in scaffolding EZH2-dependent 
gene silencing and subsequent regulate EZH2-mediated phe-
notypic switching.

SOX family members

Several lineage-specific transcription factors are involved in 
lineage plasticity and drug escape both in NSCLC and pros-
tate cancer. The SOX family is important in regulating cell 
fate decisions and is implicated in phenotypic conversion in 
various cancer models [79]. For instance, the expression of 
SOX2 was increased in TP53 and RB1-deficient GEMMs 
and xenograft models of LUAD and prostate cancers [30, 
31]. Moreover, the neural lineage-specific factor BRN2, 
which is specifically expressed in SCLC and NEPC tumors, 
mediates SOX2 expression and is key for neuroendocrine 
transformation [80, 81]. Furthermore, insulinoma-associ-
ated-1 (INSM1), which encodes a zinc-finger transcription 
factor, has recently emerged as a specific neuroendocrine 
transcription factor and a sensitive biomarker for neuroen-
docrine tumors [82].

LncRNA SOX2 overlapping transcript (SOX2-OT) are 
functionally assumed to be associated with neuronal like 
differentiation and carcinogenesis [83, 84]. Concordant 
expression of SOX2 and SOX2-OT is found in lung and 
breast cancer [83]. Notably, SOX2-OT can generate six tran-
script variants in different cancer models [85, 86], and have 
been proposed to play a role in regulating the expression of 
SOX2 [84, 85]. Collectively, SOX reprogramming factors, 
together with other lineage-associated transcription factors, 
are key for cellular plasticity in TKI resistant NSCLC cells. 
LncRNA-SOX2-OT, as SOX2 overlapping transcript also 

makes contribution for promoting the transition toward neu-
ral crest state in NSCLC. 

Key signaling pathways

Several signaling pathways play a part in phenotypic switch-
ing upon TKI treatment. The activation of WNT-β-catenin 
pathway is reported to promote neuroendocrine differentia-
tion in various cancer models [87]. Meder et al. discovered 
NOTCH-Achaete-scure complex homolog 1(ASCL)-WNT 
signaling pathway could inactivate RB by phosphoryla-
tion and, therefore, promote neuroendocrine differentiation 
in NSCLC [88, 89]. Moreover, achaete-scute homolog 1 
(ASH1) also acts as a positive regulator of WNT/β-catenin 
pathway, transforming NSCLC into a SCLC phenotype 
with neuroendocrine features both in vitro and in vivo mod-
els [90]. A number of lncRNAs have been found to active 
WNT/β-catenin to induce EMT and therapy resistance in 
NSCLC [91–93]. For instance, lncRNA-SNHG1 can seques-
ter miR140-5p from binding WNT to active WNT/β-catenin 
signaling in NSCLC [92]. LINC00673 functions as a mod-
ular scaffold to strengthen the interaction between DDX3 
and CK1ε, induces phosphorylation of Dvl and, therefore, 
promote the nuclear accumulation of β-catenin and the acti-
vation of WNT/β-catenin signaling pathway in LUAD [93]. 
Furthermore, the expressions of lncRNA-NEAT1, FOXO2-
AS1 were positively associated with WNT/β-catenin signal-
ing in NSCLC tissues. Knockdown of NEAT1 or FOXO2-
AS1 inhibited WNT/β-catenin signaling pathway activity 
[91, 94, 95].

IL-6-STAT3 axis is also activated upon EGFR TKI 
treatment and can promote neuroendocrine differentiation 
in NSCLC [96]. LncRNAs such as MALAT1 and H19 are 
reported to, respectively, sponge miR-124, miR-17 and miR-
29b-3p, subsequently activated STAT3 and promote therapy 
resistance [97–99]. In addition, Wang et al. showed lncRNA 
TNK2-AS1 was significantly upregulated in NSCLC and 
associated with poor survival. Mechanistically, TNK2-AS1 
could interact with STAT3 to enhance its protein stability, 
on the other hand, STAT3 also triggers the transcription 
of TNK2-AS1. Thus, the positive feedback loop between 
TNK2-AS1 and STAT3 augmented STAT3 signaling path-
way in NSCLC [100].

The tumor microenvironment

The tumor microenvironment (TME) is a multicellular sys-
tem with dynamic tumor-stromal component interactions 
[101, 102]. Altogether, the various stromal components such 
as fibroblasts, endothelial cells and infiltrating immune cells 
influence the response to TKI therapy.

It is well established that cancer-associated fibroblasts 
(CAFs) can induce EMT and TKI resistance in NSCLC 
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cells in vitro [103, 104]. The secretion of soluble factors 
such as hepatocyte growth factor (HGF) promoted MET or 
ERK activation and subsequent EGFR TKI resistance in 
NSCLC cells [105, 106]. CAFs can also derive the AXL 
ligand growth arrest-specific protein 6 (GAS6) and enhance 
the expression of anti-apoptotic gene BCL2, leading to TKI 
resistance [26, 107].

The extracellular matrix (ECM) also interacts with 
NSCLC cells to promote drug tolerance. A study in 3D lung 
cancer cell models revealed that ECM-induced ERK and 
PI3K/AKT signaling lead to an EGFR TKI tolerant dormant 
state [108]. Low levels of SerpinB2 (a serine protease inhib-
itor that increase ECM stiffness), is negatively associated 
with gefitinib resistance in vitro. And treatment with a Ser-
pinB2-inducing agent reversed the drug-tolerant state [108]. 
Moreover, Elevated levels of N-cadherin and integrinβ could 
promote tumor cells adhesion to ECM, thereby, promoting 
EGFR TKI resistance [109].

Tumor-associated macrophages (TAMs) are important 
infiltrating immune cells with crucial role in the develop-
ment of TKI resistance [110]. Patients with increased TAM 
infiltration within the TME had poor outcomes [111]. Com-
putational modelling of RNA expression in a mouse model 
of NSCLC revealed TAMs-secreted factors can activate 
various signaling pathways related to EGFR TKI resistance, 
including the MAPK, YAP, NF-κB, PI3K, WNT and RAS 
pathways [112]. Furthermore, macrophage could promote 
EMT through the IL-6-mediated COX2/PGE2/β-catenin 
signaling pathway [113]. Notably, a few lncRNAs such as 
GNAS-AS1 and XIST are reported to promote macrophage 
M2 polarization in NSCLC and, therefore, play a part in 
TAM-induced drug tolerant [114, 115].

Finally, hypoxia and the density and distribution of 
vasculature are closely associated with EGFR TKI resist-
ance. Hypoxia-inducible factor 1α (HIF1α) promotes TKI 
resistance in a TGFα-dependent manner and increases can-
cer stem phenotype via IGF1R activation [116, 117]. In 
addition, the secretion of vascular endothelial growth fac-
tor (VEGF) by endothelial cells under hypoxia promotes 
angiogenesis and drug resistance [118]. Additionally, the 
expression of immune checkpoint programmed cell death 
1 ligand 1 (PDL1) are upregulated in some EGFR-mutated 
or ALK-rearranged NSCLC patients. A preliminary study 
has found the combination of PDL1 nanobody and gefitinib 
displayed effectiveness of reversing the gefitinib resistance 
in NSCLC [119]. However, the extent of TME contributes 
to TKI resistance and the involvement of lncRNAs in TME-
mediated resistance warrants further investigation, particu-
larly as novel therapies that target immune and stromal cells 
continue to emerge. The emerging challenge is to clarify 
whether there is potential for therapeutic synergy between 
immunotherapy and targeted therapy in preventing lineage 
plasticity and TKI resistance.

Targeting strategies for lineage plasticity

Targeting epigenetic regulators

Since certain epigenetic alterations are correlated with 
slow-cycling drug-tolerant cells, targeting the potential 
epigenetic regulators serves as an important way to ame-
liorate lineage plasticity. Notably, preventing phenotypic 
switching by targeting HDAC or histone demethylases 
KDM5A/B and KDM6A/B have promising results in early-
phase studies [120]. In NSCLC, trimethylation of lysine 9 
on histone (H3K9me3) represses long-interspersed repeat 
elements 1 (LINE-1), thus inhibiting the expression of 
interferon and antiviral-activated genes to promote EGFR 
TKI-tolerant cell survival [121, 122]. HDAC inhibitor tri-
chostatin A or entinostat counterbalanced the drug-tolerant 
cells via suppressing LINE [121]. Early-phase studies of 
detecting HDAC inhibitors in combination with EGFR 
TKI are ongoing. Inhibiting demethylases KDM6 with 
GSK-J4 suppressed residual persister cells in glioblastoma 
[123, 124]. (Table 2).

EZH2 is another druggable epigenetic regulator as 
mentioned previously [72]. Several phase I and phase II 
clinical trials are ongoing to inhibit EZH2 in lymphomas 
and multiple solid tumors [125, 126]. In a mouse model 
of human LUAD, using an open-source EZH2 inhibitor 
JQEZ5, Zhang et al. have established efficient antitumor 
effects [127, 128]. Another study has found that EZH2 
inhibitor GSK343 synergy with gefitinib in NSCLC cells 
[129]. However, EZH2 inhibitor GSK2816126 failed in 
another early phase II trial in patients with similar indica-
tions [14]. Assessment of other epigenetic regulators, such 
as REST, are also ongoing. In addition, the dual HDAC 
and 3-hydroxy-3-methylgutaryl coenzyme A reductase 
inhibitor, JMF3086, which regulate the post-translational 
regulation of E-cadherin, can restore the sensitivity to first 
and third-generation EGFR-TKI in NSCLC [130]. (Fig. 3).

Numerous mechanistic studies support the hypothesis 
that targeting epigenetic regulators can synergize with TKI 
agents and reverse lineage plasticity in preclinical models. 
Nevertheless, the efficacy of epi-drugs tested in clinical 
trials to date has been disappointing. Overall, the epige-
netic modulators exert broadening effects on cell biology 
and systemic physiology. Inhibitors targeting epigenetic 
regulators might lead to the dysregulation of cell biology 
[131, 132]. Therefore, novel agents are needed to target 
lineage plasticity more specifically. LncRNAs are excel-
lent candidates in this respect. Several features of lncR-
NAs render their potential therapeutic targets in lineage 
plasticity-mediated TKI resistance. First, the expression 
of lncRNAs show strong conservation of tissue specific-
ity [133]. Interestingly, many lncRNAs are patient and 
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tumor specific [134]. The exclusive expression pattern of 
lncRNAs in specific types of tissues or cells provides an 
opportunity for specific regulation by lncRNA-targeting 
therapeutics [133, 135]. Second, chromatin modification 
represents an important mechanism for lncRNA, thus tar-
geting the interaction of lncRNAs with epigenetic factors 
such as EZH2 can be envisioned. Third, many nuclear 
lncRNAs regulate neighboring gene expression in cis, 
thus locus-specific regulation can be achieved through 
lncRNA manipulation. However, the development of 
lncRNA therapeutics is the still in its infancy. Traditional 
RNAi has proven generally ineffective for lncRNA, due to 
their unique localization and expression [136]. Currently, 
antisense oligonucleotides (ASOs) and CRISPR-Cas9 
are considered as promising approaches to target lncR-
NAs [137, 138]. Furthermore, we anticipate that future 
pooled CRISPR screening will be implemented to identify 
lineage plasticity-related lncRNAs. Nevertheless, we are 
beginning to understand the roles of lncRNAs in lineage 

plasticity. Targeting lineage plasticity associated lncRNAs 
in combination with TKI treatment has not been reported 
yet. Further translation research and clinical trials are 
needed.

New cell fate management

In addition to targeting epigenetic regulators involving in 
lineage plasticity, it is also appealing to target the emerg-
ing drug-tolerant cell identity. There are ongoing efforts 
to evaluate whether NSCLC that have undergone neuroen-
docrine differentiation share similar treatment schedules 
with de novo SCLC. Notably, transformed SCLC pre-
sented sensitivity to palatium-etoposide, which makes 
them more similar to de novo SCLC [139]. However, it 
is important to note that a contrasting result came from 
another retrospective study, in which transformed SCLC 
patients still displayed higher responsive to taxanes than 
de novo SCLC but failed response to checkpoint inhibitor 

Table 2   Selected clinical NSCLC trials of targets and compound targeting lineage plasticity

NSCLC non-small-cell lung cancer, EGFR epidermal growth factor receptor, HDAC histone deacetylase, PFS progression-free survival, KDM 
histone demethylase, RXR retinoid X receptor, EZH2 zeste homologue 2, IL-6 interleukin-6, AXL receptor tyrosine kinase, TKI tyrosine kinase 
inhibitors

Drug regimen Phase Identification Results Chilicaltrials.gov identifier Refs

HDAC inhibitor
 Vorinostat + gefitinib I/II Relapsed/refractory 

advanced NSCLC
No improvement in PFS NCT01027676 [120]

 Vorinostat + erlotinib I/II Relapsed EGFR-mutant 
NSCLC

No improvement in erlo-
tinib-resistant population

NCT00503971 [120]

 Belinostat + Erlotinib I Molecularly unselected Results pending NCT01027676 [120]
 SNDX-275 + Erlotinib II Progression on erlotinib Results pending NCT00750698 [120]

KDM5 and KDM6
 YUKA1, CPI-455 

(KDM5A specific), 
KDOAM-25 (KDM5A-D 
specific) + gefitinib

Preclinical EGFR-mutant NSCLC YUKA1 in combination with 
gefitinib prevents drug 
tolerance in EFGR-mutant 
NSCLC

[123, 124]

 CDK7/12
 SY-1365 I Advanced solid tumors Ongoing NCT03134638

AXL inhibitor
 BGB324 + erlotinib II Molecularly unselected 

NSCLC
First efficacy end point met NCT02424617 [141]

 SGI-7079 + erlotinib Preclinical Molecularly unselected 
NSCLC

Enhanced sensitivity of 
mesenchymal-like NSCLC 
cells to erlotinib

[25]

 TP-0903 Ia/Ib Advanced solid tumors Ongoing NCT02729298
E-cadherin
 JMF3086 Preclinical Molecularly unselected 

NSCLC
Restore sensitivity to EGFR-

TKI
[130]

EZH2 inhibitor
 JQEZ5 Preclinical EGFR or BRG1-mutant 

NSCLC
Decreased tumor burden 

in GEMM and human 
NSCLC models

[127, 128]

 GSK343 + gefitinib Preclinical NSCLC Inhibited cell viability [129]
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therapy [19]. Therefore, treatment regimens on trans-
formed SCLC need to be cautiously evaluated and await 
further functional investigation. Interestingly, our previ-
ous study demonstrated certain non-coding RNA could 
facilitate the therapeutic effects of EGFR-TKI in NSCLC 
[140]. Our unpublished data also showed that a few lncR-
NAs are crucial for the transformation from NSCLC to 
SCLC in response to TKI treatment and could be targeted 
to prevent lineage plasticity. Therefore, lncRNAs involving 
in the histological transformation will be worthwhile areas 
for further investigation.

EMT represents an important process determining new 
cell fate of cancer. The correlation between the expression of 
EMT signature and receptor tyrosine kinase AXL in NSCLC 
indicates that AXL may represent a novel target [25]. Nota-
bly, combination of AXL inhibitor SGI-7079 with EGFR 
TKI erlotinib increased the sensitivity of mesenchymal-like 
tumor cells to erlotinib in a mouse xenograft NSCLC model 
[25]. Preliminary findings also suggest that BGB324, the 
first AXL-specific-molecule inhibitor approved for clinic, 

can be safely administered, resulting in disease stabilization 
in a group of NSCLC patients [141].

Conclusion

Along with genetic alterations, lineage plasticity has recently 
considered to play a key part in the development of TKI 
resistance in NSCLC. Despite the functions of lncRNAs in 
cancer have been extensively studied in the past few years, 
we are beginning to understand the implications of lncRNA 
in TKI resistance in NSCLC, particularly in regulating line-
age plasticity-mediated drug escape. A better understand-
ing of the deregulated lncRNA involved in lineage plasticity 
will shed light on the complexity of the molecular altera-
tions underlying TKI resistance. Recently, CRISPR-based 
screening has successfully identified many cancer-promoting 
lncRNAs. The simplicity, low cost and flexibility of pooled 
CRISPR screening brings transcriptome-wide screens 
within reach of the average molecular oncology laboratory. 

Fig. 3   Principal strategies to target lineage plasticity in NSCLC. 
Three general approaches that target lineage plasticity are listed here: 
preventing lineage plasticity, targeting the emerging new cell iden-
tity and reversing the lineage plasticity. a Preventing lineage plastic-
ity may prolong the clinical response to TKI treatment. Crucial sig-
nals and molecules that regulate the survival of slow-cycling cell, for 
instance, chromatin landscape remodeling modulators and cell cycle-
related lncRNAs can be targeted to block tumor cellular plasticity. b 
The emerging drug-tolerant cell identity such as SCLC and epithe-

lial–mesenchymal transition (EMT) feature can be eliminated through 
targeting neuroendocrine-related lncRNAs, AXL, TGFβ and E-cad-
herin. c Lineage plasticity can be reverted to resensitize NSCLC to 
TKI. Epigenetic regulators, such as enhancer of zeste homologue 2 
(EZH2) and RE1-silencing transcription factors (REST), can be tar-
geted for reversing lineage plasticity. NSCLC non-small-cell lung can-
cer, SCLC small-cell lung cancer, TKI tyrosine kinase inhibitor, KDM 
histone demethylase, HDAC histone deacetylase, TGFβ transforming 
growth factor-β
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We anticipate that future pooled CRISPR screening will be 
implemented to identify lineage plasticity-related lncRNAs. 
The current strategies to target lineage plasticity mainly 
include targeting the epigenetic and transcriptional altera-
tions. However, there remains many challenges ahead to 
better understand the process. First, the molecular deter-
minants and biomarker for tumor cell phenotypic plasticity 
upon TKI treatment needs to be better understood. Second, 
the heterogeneity should be taken into account when target-
ing the residual tumor cells. Finally, further investigations 
such as CRISPR screening are required to discover lineage 
plasticity-related lncRNAs, and use lncRNAs as novel diag-
nosis and treatment modalities. Overcoming the obstacles 
will enable us to implement personalized medicine in the 
treatment of TKI resistance in NSCLC patients.
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