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Abstract

The common spatial pattern analysis (CSP), a frequently utilized feature extraction method in brain-computer-interface
applications, is believed to be time-invariant and sensitive to noises, mainly due to an inherent shortcoming of purely
relying on spatial filtering. Therefore, temporal/spectral filtering which can be very effective to counteract the unfavorable
influence of noises is usually used as a supplement. This work integrates the CSP spatial filters with complex channel-specific
finite impulse response (FIR) filters in a natural and intuitive manner. Each hybrid spatial-FIR filter is of high-order, data-
driven and is unique to its corresponding channel. They are derived by introducing multiple time delays and regularization
into conventional CSP. The general framework of the method follows that of CSP but performs better, as proven in single-
trial classification tasks like event-related potential detection and motor imagery.
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Introduction

The successfulness of common spatial pattern analysis (CSP) in

the brain-computer interface applications such as motor imagery

(MI) and event-related potential (ERP) detection has received

considerable attentions [1–5]. Being a supervised method, CSP

extracts a set of optimal spatial filters from labeled data, which

maximize the separability between two distinct mental conditions.

The filters obtained by CSP heavily rely on spatial projections.

Therefore, it technically underrates the temporal/spectral infor-

mation of electroencephalogram (EEG), which however plays an

important role in feature extraction. To address such a pitfall,

researchers have taken various steps to restructure CSP so that

temporal/spectral filters are also exploited [6–8].

A noticeable attempt is the introduction of common spatio-

spectral pattern (CSSP) [9], which constructs channel-specific

temporal filters by applying time delay embedding. Given that the

temporal filters of CSSP are rather basic, the common sparse

spectral spatial pattern (CSSSP) marches forward by iteratively

and simultaneously optimizing a complex temporal filter together

with CSP spatial filters, under a regularization scheme [10]. It is

noteworthy that in CSSSP, the obtained temporal filter will be

equally applied to individual EEG channels. Unlike CSSP and

CSSSP which are characterized by time delays, spectrally

weighted common spatial patterns (SPEC-CSP) [11] and iterative

spatio-spectral patterns learning (ISSPL) [12] introduce the linear

time-invariant temporal filter and circulant temporal filter matrix,

respectively. Both of them use Fourier transform so that the

optimization of temporal filters can be carried out in the spectral

domain. On the other hand, common spatio-temporal pattern

(CSTP) [6] and bilinear common spatial pattern (BCSP) [7] show

that temporal filters can be naturally obtained by modifying the

objective function of CSP. Another interesting variant of CSP,

namely analytic common spatial patterns (ACSP), implements

Hilbert transform into CSP to extract complex-valued filters which

already contain temporal information [13,14].

In this paper, a method namely common complex-spatio-

spectral pattern (CCSSP) is proposed to accommodate the benefits

of both spatial and temporal filtering. It acquires a number of

filters that are data-driven and tailored for each EEG channel.

These filters are the mathematical synergy of spatial filters and

high-order finite impulse response (FIR) filters, whose flexibility, if

being well regularized, enables a better dissociation between two

distinct mental conditions and consequently outstanding classifi-

cation performance.

The Proposed Method

2.1 FIR Filter
Suppose xi,j is the jth sample in the ith channel of multi-variant

EEG matrix X. If a FIR filter of (2k+1) order is applied, a sample

after being filtered will be

x
_

i,j~
Xk

t~{k

ai,txi,jzt ð1Þ

where ai,t are the FIR filter coefficients that are specific to the ith

channel and t[½{k,k�. (1) can be further rewritten in the matrix

format as follows:

X
_

~
Xk

t~{k

LtXt ð2Þ
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where Xt is the t time-point delayed version of X, and Lt is a

diagonal matrix with the ith diagonal element being ai,t.

2.2 Filtering
CSP aims to maximize the difference between signals of two

conditions after spatial filtering. Defining w as the desired spatial

filter, the objective function of CSP in this circumstance can be

stated as

fmax,mingw

w0X
_

1X
_

1

0
w

w0X
_

2X
_

2

0
w

ð3Þ

where :0 stands for the transpose operator and X
_

c is the EEG

matrix in condition c after FIR filtering. Here multiplying (2) by w0

will yield

w0X
_

~
Xk

t~{k

w0tXt ð4Þ

where wt~Ltw. (4) can be further reorganized as

w0X
_

~½w 0{k � � � w0k �

X{k

..

.

Xk

2
6664

3
7775

~~ww0 ~XX

ð5Þ

Inserting (5) into the objective function (3) gives

fmax,ming~ww

~ww0 ~XX1
~XX1
0
~ww

~ww0 ~XX2
~XX2
0
~ww

ð6Þ

2.3 Singular Problem
The optimization of ~ww in (6) is actually equivalent to solving a

generalized eigenvalue problem, just like conventional CSP [7,15]:

(~XX2
~XX2
0
)~ww~l(~XX1

~XX1
0
)~ww ð7Þ

However in (7), ~XX is a matrix generated by concatenating several

Xt. Thus it becomes practically possible that the number of

‘channels’ will overwhelm the number of samples in each channel.

Such an imbalance could cause ~XXc
~XXc
0

to be singular. The

singularity, especially in cases where training data are very limited,

can induce a biased outcome. Hence, in order to enforce a more

trustworthy result, (7) shall be regularized:

<2(~XX2
~XX2
0
)~ww~l<1(~XX1

~XX1
0
)~ww ð8Þ

where <1(:) and <2(:) are regularization terms.

2.4 Regularization
It is known that conventional CSP is sensitive to both noises and

overfitting [1,16]. These disadvantages can be addressed by

introducing regularization terms into CSP, which has been well

discussed in [17]. In this work, an efficient and effective strategy is

employed to realize regularization:

<1(~XX~XX0)~<2(~XX~XX0)~~XX~XX0zaI ð9Þ

where a is a relatively small scalar and I is an identity matrix. (9)

will assure the uniqueness of ~ww.

Experimental Setup
Two types of datasets were collected for the assessment of the

proposed method. One was acquired from publically available

BCI competitions datasets for motor imagery classification, and

the other was obtained from self-conducted ERP detection

experiments in the scenario of rapid serial visual presentation

(RSVP) [6,18,19].

3.1 MI Datasets
Three publically available datasets, i.e. data set IVa, data set

IIIa from BCI Competition III [20], and data set IIa from BCI

competition IV (http://bbci.de/competition/iv/), recorded sub-

jects’ EEG signals while imagining their limb movements. Each

dataset contained training sets and testing sets. A brief summary of

the experimental paradigms pertaining to this work was presented

in Table 1, whilst full details of these three datasets were available

in the literature [17,21–23].

3.2 RSVP Experiments
The experiments approved by the National University of

Singapore Institutional Review Board (NUS-IRB) consisted of

training sessions and testing sessions. In each session, a sequence of

small-sized images (4006400 pixels) was presented to the subject,

who was instructed to immediately press a button when images of

interest (targets) appeared. In this work, the targets were images

containing target objects and others were regarded as distractors.

There were 41 targets and around 4000 distractors in each session.

After providing their written consent forms which were approved

by NUS-IRB, 4 subjects participated into the experiments. Scalp

EEG signals were collected at 250 Hz, using a 62-channel ANT

amplifier (ANT B.B., Enschede, Netherlands), referenced to linked

ears and grounded to the forehead. Figure 1 demonstrates the

experimental paradigm.

3.3 Preprocessing
For all three MI datasets, the preprocessing procedure followed

the work in [17]. That is, each trial extracted from the time

segment located from 0.5 s to 2.5 s after the cue was bandpass

filtered in 8–30 Hz by a fifth-order Butterworth filter. In RSVP

experiments, without analog filter, the EEG signals were firstly

high-pass filtered twice and then low-pass filtered using the ‘eegfilt’

function from EEGLAB [24], with the cut-off frequencies being

1 Hz and 25 Hz, respectively. The filtered signals were segmented

into an event-locked window from the onset of each image to

500 ms after the onset.

Evaluation
Whether the proposed coupling of the high-order channel-

specific temporal filter with spatial filter could render better single-

trial classification capability than conventional CSP which relies

solely on spatial filter, can be verified based on the overall

performance on MI datasets and RSVP experiments. Additionally,

results of competing methods, i.e. CSSSP, BCSP, and ACSP, were

also reported for comparison.

Complex Channel-Specific FIR and Spatial Filters
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4.1 Feature Extraction
Like conventional CSP, the features extracted by each method

are the log-variances of the filtered signals. Only filters associated

with the largest or smallest eigenvalues are used for extracting

discriminative features. In the scenario of MI datasets, 3 pairs of

features corresponding to the most discriminative filters were used

[3,17]. For RSVP experiments, 2 pairs of features were extracted

[5,7].

4.2 Classifier
The classifier adopted was weighted support vector machine

(WSVM) based on LIBSVM [25] [26]. WSVM imposes higher

penalties on the misclassification of the minority class [27]. Hence

it is less vulnerable to the unbalanced classification problem, e.g.

the number of distractors overwhelmed that of targets in RSVP

experiments. For the similar reason, the balanced accuracy (BA)

was particularly chosen as the performance measure for RSVP

experiments in this work [6]. On the other hand, the performance

measure for MI datasets resembled the work in [17].

4.3 Parameter Selection
As indicated in Section II, two parameters are left undeter-

mined, i.e. order of the FIR filter 2kz1 and regularization scalar

a. In this work, their values were chosen in two ways: 1) k and a

were given (5 and 1025, respectively) and applied to all data sets; 2)

k and a were automatically selected among [0, 1, 3, 5] and [1024,

1025, 1026], respectively, using a 5-fold cross-validation proce-

dure.

Results

In Table 2, CCSSP with and without automatic parameter

selection were represented by Pcv and Pfix, respectively. It can be

seen that both Pcv and Pfix outperformed the conventional CSP.

In specific, Pcv and Pfix achieved 2.7% and 3.7% higher average

accuracy, respectively. Their performances were more superior in

RSVP experiments, where the achieved accuracies were 7.9% and

8.1% higher than CSP, respectively. Among 21 subjects, Pcv and

Pfix had better performance than CSP in 15 subjects. Moreover,

the paired t-test showed that the better performance of Pcv over

CSP seemed to be marginally significant (p-value = 0.06), and the

improvement offered by Pfix was shown to be statistically

significant, as p-value is less than 0.001. Additionally, the proposed

method surpassed other methods, i.e. CSSSP, BCSP, and ACSP,

according to Table 2, which was also statistically significant, with

p-value,0.001. Moreover, the general performances of CSSSP,

BCSP, and ACSP were worse than that of CSP. However, this

phenomenon was absent in the scenario of RSVP experiments,

where BCSP obtained 5.8% higher average accuracy in compar-

Table 1. Brief summary of MI datasets.

Dataset Channels MI Subjects Training trials Testing trials

IVa 118 right hand versus right foot aa 168 112

al 224 56

av 84 196

aw 56 224

ay 28 252

IIIa 60 left hand versus right hand k3b 45 45

k6b 30 30

l1b 30 30

IIa 22 left hand versus right hand A01–A09 72 72

doi:10.1371/journal.pone.0076923.t001

Figure 1. RSVP paradigm. One burst consisted of 50 images, each of which was presented for 100 ms. There was a maximal 10-sec resting period
between consecutive bursts. The target image was highlighted here.
doi:10.1371/journal.pone.0076923.g001
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ison to CSP, and ACSP and CSSSP had slightly better

performance than CSP.

Discussion

Intuitively, the difference between CSP and the proposed

method lies on the types of filters that are extracted. CSP filters are

purely spatial filters, whilst the proposed CCSSP exploits the more

complicated, spatial-FIR filters. It is worth noting that spatial-FIR

filter is essentially a combination of several spatial filters, each of

which takes effect on its corresponding time-delayed EEG data.

Therefore, a spatial-FIR filter can be split up into a set of spatial

filters. For instance, given k~5 in this work, 11 spatial filters could

be derived, which were partly shown in Figure 2.

For Subject aa in Figure 2, the filters at the first row, regardless

of CSP or CCSSP, all imposed heavy weights on the left

somatosensory area, which is in accordance to the fact that the

characteristic EEG signals are controlateral to the imagined hand

movement [28]. On the other hand, in the scenario of imagined

right foot movement, the characteristic area localizing on the

central region between left and right hemispheres [28], seemed to

be overlooked by CSP filter, which however was observable in

filters at t~{5,{3,1,5. This indicates that CCSSP could

uncover distinctive spatial distributions which might have been

obscured by CSP. It is accomplished by exploring the temporal

information of individual channel in addition to the overall spatial

projection. Furthermore, Subject R3 visually presented a much

prominent contrast between CSP filters and the spatial-FIR filters

in Figure 2. Typically in a RSVP experiment, the main

component of ERP elicited by a target, is P300, which emerges

and propagates across the scalp from frontal to parietal, and has

strong correlation in neighboring regions [5,29]. Hence, it is

interesting to see that the CCSSP filters contained large patches of

heavy weights in parietal area as well as other regions, while the

CSP filters appeared more moderate, absent from showing

discriminative regions.

Besides being perceived as a mixture of spatial filters, a spatial-

FIR filter can be interpreted as a pool of channel-specific FIR

filters. The fact that these FIR filters are channel-specific can be

seen in Figure 2, where the changes of spatial weighting over

different time delay t at different channels are different. It is

explainable as the FIR filter coefficients defined in (1) are not

uniformly, but specifically assigned to each channel. In the view of

the mathematics, the selection of a channel-specific FIR filter is

Table 2. Classification accuracies in % (standard deviation).

IVa IIIa IIa RSVP

aa al av aw ay k3b k6b l1b A01 A02 A03 A04 A05 A06 A07 A08 A09 R1 R2 R3 R4 Average

CSP 69.6 98.2 67.3 84.8 83.7 100 67.2 98.3 81.9 58.3 95.8 72.9 60.4 68.7 79.1 95.1 93.7 79.1 87.4 77.9 83.1 81.1(12.8)

CSSSP 66.9 98.2 62.2 77.2 68.6 95.5 55.1 95.0 86.1 52.0 86.1 65.9 68.0 66.6 75.0 95.1 93.0 80.8 85.4 81.3 81.3 77.9(13.7)

BCSP 51.8 78.5 58.6 66.8 70.7 78.8 63.7 76.6 70.8 50.0 61.8 55.5 49.3 56.2 57.6 63.1 76.3 82.2 95.6 83.8 89.2 68.4(13.3)

ACSP 65.1 96.4 65.3 79.9 76.1 76.6 56.8 51.6 90.2 52.0 95.1 69.4 56.9 70.1 78.4 97.2 91.6 81.4 84.6 80.2 86.1 76.3(14.3)

Pcv 73.2 100 64.7 85.7 82.9 100 68.9 96.6 96.5 49.3 97.2 68.0 77.0 71.5 80.5 95.8 92.3 84.4 91.0 91.6 91.8 83.8(13.7)

Pfix 76.7 100 65.3 91.0 85.7 100 67.2 98.3 93.0 56.9 99.3 67.3 76.3 70.1 85.4 95.8 92.3 83.5 91.3 92.8 92.1 84.8(13.0)

doi:10.1371/journal.pone.0076923.t002

Figure 2. CSP filters and CCSSP spatial-FIR filters for Subject aa and R3. Spatial-FIR filters can be separated into a number of spatial filters,
each of which corresponds to a t time-point delayed EEG data. The colourbar ranges from 20.5 to 0.5.
doi:10.1371/journal.pone.0076923.g002
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determined by whether this particular FIR filter can help

extremize the objective function (6). Its corresponding physical

meaning in this study is that, such a particular FIR filter is a filter

which makes the characteristic frequency band of that channel

more prominent as compared to other bands. Figure 3 shows the

frequency responses of FIR filters in Channel CP3 for Subject aa

and Channel CP1 for Subject R3. Specifically, the frequency

response in Channel CP3 (see Figure 3A) indicated the brain

oscillations at m rhythm (8–12 Hz), which corresponds to the

imagined movements, resides within the pass-band of FIR filter 1.

Unlike FIR filter 1, FIR filter 2 relatively suppressed m rhythm in

CP3. This difference is understandable as the FIR filters were

synthesized for the purpose of further differentiating two

conditions, e.g. right hand v.s. right foot, where the characteristic

areas are distinct from each other. It is worth noting that slow ERP

of low frequency such as P300 are the signature in RSVP

experiments. Although the magnitude appeared small in Figure 3B,

FIR filter 1 functioned like a low-pass filter in the window of 0 Hz

to 20 Hz. On the other hand, FIR filter 2 relatively suppressed

low-frequency signals and emphasized more in a higher frequency

band (from 10 Hz to 20 Hz).

The effect of FIR filters in Figure 3B becomes more

straightforward in Figure 4, where the relative signal powers

before and after filtering in CP1 are presented. As demonstrated in

Figure 4, the low-frequency components both target ERP and

distractor ERP were strengthened after FIR filter 1 in Figure 3B

was applied, meanwhile the signal powers approximately above

5 Hz were significantly attenuated. This phenomenon also echoes

that FIR filter 1 in Figure 3B served as a low-pass filter.

Furthermore, the waveform of filtered signals could shed some

light on the impact of filters on the discrimination between targets

and distractors. Figure 5A and Figure 5B depict the EEG signals

after being filtered by the CSP filter and the proposed spatial-FIR

filter, respectively. The general waveforms in both cases were

similar. That is, target ERP diverged from distractor ERP in the

sense of signal power. It is noteworthy however, that the target

ERP in Figure 5B had sharper and higher peak, compared to

Figure 5A. In addition, the recurring ripples of distractor ERP in

Figure 5A were cleaned up in Figure 5B, meanwhile the target

ERP in Figure 5B suffered less up-and-downs as compared to its

counterparty in Figure 5A. Such improved smoothness shall be

attributed to filters like FIR filter 1 in Figure 3B which narrowed

down the frequency band. Mathematically, the sharpened peak

and the attenuated distractor ERP in Figure 5B indicated larger

difference in variances, and consequently a better separation

between two conditions.

Provided these observations and the classification performance,

it could be stated that unlike CSP which tries to find stationary

Figure 3. The frequency responses of FIR filters in Subject aa’s CP3 and Subject R3’s CP1. FIR filter 1 and FIR filter 2 correspond to the
highest and the lowest eigenvalues, respectively.
doi:10.1371/journal.pone.0076923.g003

Figure 4. The relative power of ERP signals before and after being filtered by FIR filter 1 in Figure 3B. (A) shows the result of target ERP;
(B) shows the result of distractor ERP.
doi:10.1371/journal.pone.0076923.g004
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filters, CCSSP searches for a set of filters originated from different

time delays with different weighting. This voting process could

grant CCSSP the desirable flexibility and dynamics, which in

return rendered better performance, in comparison to conven-

tional CSP.

It is necessary to point out that Pcv underperformed Pfix in

Table 2 in general. To a great extent, it was due to that there were

insufficient training samples with regard to the number of channels

of ~XX in (5). If high-density electrodes were adopted and/or

accompanied by a high order of the FIR filter used, sizable

training samples were required in model selection or parameter

tuning. This is a noticeable drawback of the proposed method. In

RSVP experiments, since there were much more training data, the

selection of reliable parameters was ensured. Thus, it could be

found that the performance of Pcv was comparable to that of Pfix.

Another drawback of Pcv is associated with the computational

burden. The matrix size of ~XX is proportional to the time delay k. It

would take remarkable time to identify the suitable regularization

parameter and k.

Among other competitive methods listed in Table 2, CSSSP is

the one which also makes use of the FIR filter to explore the

temporal information. It optimized a single FIR filter and the

single filter was applied to the entire multi-variant EEG signals,

without much difference from the filters in the ordinary

preprocessing step. Hence, CSSSP might improve the perfor-

mance (e.g. in RSVP experiments), but the improvement could be

constrained and counteracted by the necessity of careful regular-

ization, if there was a lack of training samples (e.g. IVa, IIIa and

IIa). Compared to CSSSP, BCSP performed much better in

RSVP experiments, which was very close to CCSSP. However,

BCSP did not perform well on MI datasets. The reason might be

that, BCSP is suitable for ERP detection since ERP’s time course is

well defined and can be modeled in the common temporal

patterns of BCSP. However, the characteristic signals of MI

datasets are oscillatory rhythms, and FIR filters appeared to be

more preferred. Similarly, ACSP which has evident strength in

applications where phase relationships of data are critical was

found not very effective on MI datasets. However, its average

accuracy in RSVP experiments was slightly better than CSP. It

might be partially contributed by the stronger phase relationship

of ERP in comparison with that of oscillatory rhythms.

Conclusion

In this study, CCSSP has been introduced to the CSP family. It

naturally integrates and optimizes complex, specially tailored FIR

filters together with spatial filters for desirable separation of two

distinct conditions. The merits of such a data-driven pass-band

selection for individual channels in supplemental to the broad-

band CSP filtering have been attentively validated on datasets of

different characteristic EEG signals. The quantitative and

qualitative comparisons suggest superior discriminating capability

of the proposed method over conventional CSP, e.g. 8.1% higher

average accuracy in RSVP experiments.
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