
Automated detection and removal of flat
line segments and large amplitude
fluctuations in neonatal
electroencephalography
Gabriella Tamburro1,2, Katrien Jansen3, Katrien Lemmens3,
Anneleen Dereymaeker3, Gunnar Naulaers3, Maarten De Vos3,4 and
Silvia Comani1,2

1 Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of
Chieti-Pescara, Chieti, Italy

2BIND – Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti-
Pescara, Chieti, Italy

3 Department of Development and Regeneration, UZ Leuven, Leuven, Belgium
4Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal
Processing and Data Analytics, KU Leuven, Leuven, Belgium

ABSTRACT
Background: Artefact removal in neonatal electroencephalography (EEG) by visual
inspection generally depends on the expertise of the operator, is time consuming and
is not a consistent pre-processing step to the pipeline for the automated EEG analysis.
Therefore, there is the need for the automated detection and removal of artefacts in
neonatal EEG, especially of distinct and predominant artefacts such as flat line
segments (mainly caused by instrumental error where contact between electrodes
and head box is lost) and large amplitude fluctuations (related to neonatal
movements).
Method: A threshold-based algorithm for the automated detection and removal of
flat line segments and large amplitude fluctuations in neonatal EEG of infants at
term-equivalent age is developed. The algorithm applies thresholds to the absolute
second difference, absolute amplitude, absolute first difference and the ratio between
the frequency content above 50 Hz and the frequency content across all frequencies.
Results: The algorithm reaches a median accuracy of 0.91, a median hit rate of 0.91
and a median false discovery rate of 0.37. Also, a significant improvement (≈10%) in
the performance of a four-stage sleep classifier is observed after artefact removal with
the proposed algorithm as compared to before its application.
Significance: An automated artefact removal method contributes to the pipeline of
automated EEG analysis. The proposed algorithm has shown to have good
performance and to be effective in neonatal EEG applications.

Subjects Bioinformatics, Neuroscience, Neurology, Pediatrics, Radiology and Medical Imaging
Keywords Neonatal EEG, Automated artifact detection, Flat lines, Large amplitude fluctuations

INTRODUCTION
Electroencephalography (EEG) is a fundamental tool in the Neonatal Intensive Care Unit
(NICU) for the real-time monitoring of the cerebral function of preterm and sick term
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neonates. Automated analysis of neonatal EEG has proven its usefulness in applications
such as seizure detection (Abdelhameed & Bayoumi, 2019; Ansari et al., 2019; Becker et al.,
2021), sleep classification (Dereymaeker et al., 2017; Pillay et al., 2018; Ansari et al., 2020),
microstate analysis (Khazaei et al., 2021), stress quantification (Lavanga et al., 2020),
outcome prediction (Duffy & Als, 2012; Peters et al., 2013; Lavanga et al., 2021) and
functional brain age estimation (Lavanga et al., 2018; Pillay et al., 2020). Consequently,
these analyses aim to detect those neonates that are most vulnerable and to improve
clinical care in the NICU.

Unfortunately, EEG does not only include cerebral activity but also likely records several
artefacts which do not originate from the brain and can thus obstruct the correct
interpretation and further analysis of the EEG. Generally, artefacts are classified in two
groups: (1) physiological artefacts that originate from other organs of the human body, e.g.,
eye movements, eye blinks, cardiac interference and muscular artefacts, and (2)
non-physiological artefacts that originate from outside the human body, e.g., gross body
movements, faulty electrodes, power line interference and electrode impedance. Although
neonatal EEG recordings are generally quite long, artefactual segments are typically
removed after visual inspection by an expert before applying automated EEG analysis.
The effectiveness and reliability of this procedure depends on the expertise of the operator,
is in any case time consuming and generates a non-automated pre-processing step to the
pipeline for the automated EEG analysis. Therefore, it is recommended to detect and/or
remove artefacts from neonatal EEG recordings in an automated way.

Various algorithms for the automated detection and/or removal of neonatal EEG
artefacts have been introduced in the literature that differ in complexity, usefulness,
generalizability, and performance. In addition, some algorithms focus on one specific type
of artefact, whereas others aim to detect a broader range of artefacts. As such,
Bhattacharyya et al. (2019) detected only electrical cortical stimulation artefacts by using
spatial filtering in combination with tunable-Q wavelet transform, whereas Navarro et al.
(2015) used complete ensemble empirical mode decomposition followed by adaptive
filtering to detect only ECG artefacts. In contrast, several artefacts such as eye blinks,
movement artefacts, muscle noise, cardiac signals and power line interference are detected
with a finite impulse response filter by Abbasi et al. (2019). Another common approach to
detect a broad range of artefacts is to use several features in a classification or clustering
model. This has been done with support vector machines by Bhattacharyya et al. (2013)
reaching an accuracy of 75% and by Stevenson et al. (2014) reporting 100% and 89%
accuracy for respectively major and minor artefacts (distinction based on amplitude) and
with semi-supervised Gaussian mixture models by Kauppila, Vanhatalo & Stevenson
(2017) obtaining 95% accuracy. Neural networks have also been used for the detection of
artefacts in neonatal EEG. For instance, Schetinin & Schult (2004) used a multi-layer
polynomial neural network in combination with a decision tree reaching an accuracy of
73.5%, whereas Webb et al. (2021) used a residual deep neural network obtaining 87%
accuracy. These accuracies were calculated by using artefact annotations. However, the
performance of artefact detection methods can also be assessed by considering the change
in performance of an application that is employed once on the original neonatal EEG
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recordings and once after using an artefact detection method. For instance, De Vos et al.
(2011) verified that a seizure detector performed better after removal of ECG, pulsation
and respiration artefacts using Independent Component Analysis (ICA), reporting a
significant decrease in false positive seizure detections. Also, Khlif et al. (2010) described a
significant improvement in the performance of a seizure detector after removal of several
artefact types with frequency filtering and matching pursuit decomposition. Another
application is quiet sleep detection for which sensitivity, specificity, misclassification factor
and area under the curve were significantly improved when artefacts were removed with
the artefact subspace reconstruction method, as reported by Dereymaeker et al. (2017).

Although there are already many automated artefact detection methods available in the
literature, less attention was given specifically to flat line segments caused by an
instrumental error where contact between electrodes and head box is temporary lost
(Fig. 1A), and large amplitude fluctuations that are most often known as movement
artefacts (Fig. 1B). These are distinct and predominant artefacts commonly affecting
neonatal EEG recordings which must be removed before any algorithm for the analysis of
EEG recordings is applied. Zima et al. (2012) focused on the detection of short-duration
high-amplitude artefacts by using ICA and wavelet denoising. Other authors applied a
threshold to the EEG amplitudes, as done by Costa (2017), who used a threshold of 100 mV,
and by Sharif, Alsibai & Kushnerenko (2017), who applied a threshold of 200 mV.
Alternatively, other scientists applied a threshold to the mean EEG amplitudes in a given
epoch, as performed by Kauppila, Vanhatalo & Stevenson (2017) with a threshold of 200
mV and by Stevenson et al. (2012) with a threshold of 120 mV. Very recently, Kumaravel
et al. (2022) proposed an artefact removal pipeline for the denoising of infant and newborn
EEG recordings. Their method focused on the detection of channels with high-amplitude
artefacts, flat or weakly responsive channels and on bad EEG segments containing
amplitude jumps and paroxysmal artefacts. The method was tailored for high-density EEG
recordings (125 channels) and was validated by assessing the statistical significance of the
neural responses to a visual stimulus using the power spectral density and/or the event
related potentials calculated on the cleaned EEG data.

Most of these threshold-based methods did not focus on the detection of large
amplitude fluctuations and the algorithms developed for denoising the EEG signals were
generally considered as a pre-processing step for EEG analytical applications without
calculating the statistical performance of the artefact removal step. Therefore, there is a
need for a correctly validated algorithm for the automated detection and removal of flat
line segments and large amplitude fluctuations without imposing any limitation to the
duration of the artefactual segments.

The current study proposes a threshold-based algorithm for the automated detection
and removal of flat line segments and large amplitude fluctuations from neonatal EEG
recordings. Several novel aspects can be identified with respect to already available
methods: (1) the thresholds used for detecting flat lines and large amplitude fluctuations
were tailored to the term-equivalent age of the neonate because it has an influence on the
amplitude of the EEG signals; (2) the automated detection of flat line segments and large
amplitude fluctuations was performed using an easy approach that has a low
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computational load; (3) the proposed algorithm was not only validated by assessing the
changes of the performance of a neonatal EEG application after having applied our
algorithm–as most existing methods do–but it was also tested in terms of statistical
performance, differently from the majority of existing methods developed to pre-process
the neonatal EEG.

The structure of the remainder of the paper is as follows: The Materials & Methods
section describes the datasets used in the current study and explains the different steps of
the threshold-based algorithm to detect and remove flat line segments and large amplitude
fluctuations in an automated way. At the end of this section, the two validation approaches
are explained: (1) validation based on statistical performance measures including
parameter selection and (2) validation based on the change in performance of an EEG

Figure 1 Examples of flat line segment and large amplitude fluctuations in neonatal multichannel
EEG recordings. (A) Example of a flat line segment in patient 3 of Dataset 3. (B) Example of large
amplitude fluctuations in patient 4 of Dataset 3. Scale is 100 mV.

Full-size DOI: 10.7717/peerj.13734/fig-1
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application. Then, the results are presented, followed by the discussion of these results.
Finally, the paper will be concluded.

MATERIALS AND METHODS
Datasets
The multi-channel EEG recordings of infants at term-equivalent age used for the
present study were selected from three different datasets recorded at different sites.
The selected EEG recordings did not include any seizures or any other signs of pathological
conditions. The reason for using different datasets was to test the proposed algorithm on
EEG signals recorded with different EEG systems and with a different number of
electrodes. No EEG recording from these datasets originally included annotations for flat
lines and large amplitude fluctuations. The main information on the three datasets is
summarized in Table 1.

Dataset 1
This public dataset (freely available at online repository, Zenodo, https://zenodo.org/
record/2547147#.YsXck3bMJPZ) was recorded at the Helsinki University Hospital
(Finland) (Stevenson et al., 2019) and contains EEG recordings registered with a NicOne
EEG amplifier (Natus, San Carlos, CA, USA) and 19 channel EEG caps (sintered Ag/AgCl
electrodes; Waveguard, ANT Neuro, Freiburg, Germany, Cz as reference electrode)
following the international 10-20 system (Stevenson et al., 2019).

Dataset 2
This dataset originates from the Resilience Study performed at the NICU of the University
Hospitals Leuven (Belgium). The EEG data were recorded with the Brain RT EEG
recording system (OSG BVBA, Kontich, Belgium) using nine electrodes with Cz as
reference electrode, in accordance with the international 10-20 system.

Table 1 Summary of the relevant information on the three datasets. For each dataset, the table includes: the number of EEG recordings; the
number of EEG recordings selected for the present study; the number of EEG channels in the recordings; the sampling frequency of the EEG
recordings; the neonatal postmenstrual age (PMA) at the time of recording; the duration of the EEG recordings; the number of EEG recordings
contaminated by flat line segments; the number of EEG recordings contaminated by large amplitude fluctuations and availability of annotations for
flat line segments and large amplitude fluctuations. Data for PMA and recording duration are provided as median [interquartile range].

Dataset 1 Dataset 2 Dataset 3

Number of EEG recordings 79 136 16

Number of selected EEG recordings 22 9 16

Number of EEG channels 19 8 9

Sampling frequency (Hz) 256 250 250

PMA (weeks) 41.00 [39.50–42.50] 39.07 [37.00–40.71] 40.36 [39.93–41.50]

Duration of EEG recording (minutes) 74.92 [62.98–83.30] 300.00 [300.00–300.00] 1,004.59 [890.21–1050.71]

Number of EEG recordings contaminated by flat lines 20 0 5

Number of EEG recordings contaminated by large amplitude fluctuations 22 8 16

Annotations No No No
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Dataset 3
This dataset was also recorded at the NICU of the University Hospitals Leuven (Belgium)
with the same recording system and electrodes as Dataset 2. These EEG recordings had
been used to develop a four-stage sleep classifier and annotated to identify the four sleep
stages (Ansari et al., 2020).

Datasets 1 and 2 were used for training and testing the algorithm. The EEG
segments automatically detected as artefactual were checked by visual inspection by two
independent, non-clinical investigators (LS and GT). Dataset 3 was used to validate the
proposed algorithm by applying it before a four sleep stage classifier. To this end, for
each EEG recording a randomly selected 20-min segment was selected to represent the
entire recording and annotated by a clinician (KL) for large amplitude fluctuations.
On average, these annotated intervals corresponded to 20.43% of the duration of the
selected 20-min EEG segments. For all EEG recordings selected for this study, flat lines
were visually checked by two independent, non-clinical experts (LS and GT).

Algorithm
A complete overview of the algorithm is given in Fig. 2.

Pre-processing
All datasets used for this study included EEG recordings that did not show any bad
channels (i.e., channels being flat or showing large amplitude fluctuations during the entire
recording). When an EEG recording has bad channels, it would be necessary to remove
them and, eventually, replace them with EEG signals reconstructed by interpolating the
signals recorded by the neighboring channels.

Given that the EEG recordings of Dataset 1 were already preprocessed with a notch filter
at 50 Hz to remove power line interference, we applied a notch filter at 50 Hz also to
the EEG recordings of Datasets 2 and 3 to conform the preprocessing of all datasets.
The EEG recordings were then band-pass filtered between 0.5 and 40 Hz.

Flat line segments. To detect flat line segments, the second difference across the whole
EEG acquisition with N samples was computed for each channel, i.e.,

z nð Þ ¼ y nþ 1ð Þ � y nð Þwhere y nð Þ ¼ x nþ 1ð Þ � x nð Þ; (1)

where z is the second difference, y is the first difference, x is the EEG amplitude at a given
time instant n and n ¼ 1 . . . N � 2ð Þ. A threshold of 10�4 lV , selected to optimize the
performance of the algorithm, was then applied to the absolute value of the second
difference. Whenever multiple samples z nð Þ within one second (i.e., individual samples
which were not necessarily consecutive) were smaller than the threshold, these samples
z nð Þ were suspected to belong to a flat line segment and selected to be removed. Figure 3A
illustrates an example for one patient. To avoid missing samples that were slightly higher
than the threshold but part of the flat line segment, selected samples were combined into
one interval when they were within 2.5 s apart from each other. These intervals were
identified as flat line segments and removed only if they were selected in at least 14 out of
19 channels (Dataset 1) or in at least seven out of nine channels (Datasets 2 and 3), which
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corresponds to about the 75% of the channels affected by the flat line. To guarantee that the
whole segment showing flat line was removed, two additional segments of 1 or 3 s were
removed before and after the flat line interval, depending on whether it was shorter or
longer than 5 s. Adding 1 or 3 s to the flat line segment to be removed was possible because
neonatal EEG recordings are typically very long (lasting for tens of hours or more) and
adding few seconds to the segment identified as flat line would not compromise the
availability of sufficiently long clean EEG segments for further analysis. Furthermore, flat
lines are often preceded/followed by sharp deflections of the signal. Adding 1 to 3 s to the
detected flat line ensures that all the artefactual segment is removed.

Large amplitude fluctuations
For the detection of large amplitude fluctuations, the EEG acquisition is segmented in
non-overlapping windows for which different durations are tested (i.e., 1, 2, 3, 4, 5, 6 and
7 s). For each window and each channel, the maximal absolute first difference (MAFD), the

Figure 2 Flowchart of the algorithm for the automated detection of flat line segments and large
amplitude fluctuations in neonatal multichannel EEG recordings. In the figure, mad stands for
median absolute deviation. Full-size DOI: 10.7717/peerj.13734/fig-2
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maximal absolute amplitude (MAA) and the ratio between the frequency content above
50 Hz and the frequency content across all frequencies (RFC) are computed:

MAFD ¼ max x nþ 1ð Þ � x nð Þj jð Þ (2)

MAA ¼ max x Dtð Þj jð Þ (3)

RFC ¼ Pðf > 50 HzÞ
P fð Þ (4)

where x is the EEG signal, Dt is the window duration, n ¼ 1 . . . fsDt, fs is the sampling
frequency, P is the Welch’s power spectral density estimate with Hamming window with

50% overlap, and f is the frequency in the range 0; fs2

h i
(Mulkey et al., 2019; Vesoulis et al.,

2020; Rayson et al., 2022). The MAFD was calculated to detect segments that have an
abrupt change in amplitude, whereas the RFC was used to recognize muscular artefacts
(André et al., 2010) because they often occur together with movement artefacts.
Concerning the MAA, a physiological threshold of 100 mV (PT100) was applied above
which no cortical activity is seen in the EEG recordings of infants at term-equivalent age
(André et al., 2010). Nevertheless, a distinction was made between windows with MAA
higher than 150 mV (PT150), that are certainly not related to cortical activity and can
thus be removed, and the windows with MAA between PT100 and PT150 which are
treated as a doubtful case. The latter windows were removed only when their RFC was
above a given threshold indicating the presence of muscular artefacts or when the window
before and/or after was selected to be removed. Consequently, a window was removed if
and only if one of the following four criteria was met in at least one channel:

Figure 3 Examples of the thresholds used for the selection of the artefactual segments for one patient
and channel O2. (A) Absolute second difference (ASD) in 10−3 mV (random 50 s segment, zoomed-in).
(B) Maximal absolute first difference (MAFD) in mV for window length of 3 s. (C) Maximal absolute
amplitude (MAA) in mV for window length of 3 s. (D) Ratio of frequency content (RFC) in 10−4% for
window length of 3 s. The red horizontal lines represent the threshold levels.

Full-size DOI: 10.7717/peerj.13734/fig-3
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1. MAFD > 4:5 � median MAFDð Þ þmedian absolute deviation MAFDð Þ½ � (channel-
specific threshold);

2. MAA > PT150;

3. PT100 < MAA < PT150 AND RFC. 1:5 � median RFCð Þ þmedian absolute½
deviation RFCð Þ� (channel-specific threshold);

4. PT100 < MAA < PT150 AND the window before and/or after was already selected in
one of the previous criteria.

The channel-specific thresholds in the first and third criterion were chosen by trial and
error, i.e., by visually checking whether the selected segments in Datasets 1 and 2 were
selected correctly. The abovementioned measures and their thresholds are illustrated in
Figs. 3B–3D for one patient for channel O2 and a window of 3 s.

Consecutive windows selected to be removed were combined into one interval, and two
segments selected to be removed that were within 6 s from each other were also combined
into one interval to guarantee that all large amplitude fluctuations were removed.

Parameter selection and statistics-based validation
The large amplitude fluctuation annotations of Dataset 3 were used to assess the
performance of the algorithm by means of three statistical measures based on the
confusion matrix:

1. The accuracy, i.e., the percentage of the signal that was classified correctly:
TP þ TN

TP þ FP þ FN þ TN
;

2. The hit rate (HR), i.e., the proportion of the signal annotated as artefact that was

detected as artefact:
TP

TP þ FN
;

3. The false discovery rate (FDR), i.e., the proportion of the signal detected as artefact that

was annotated as non-artefact:
FP

TP þ FP
.

where: if both the algorithm and the expert detected a large amplitude fluctuation, the
outcome was designated as true positive (TP); if both the algorithm and the expert detected
no large amplitude fluctuation, the outcome was designated as true negative (TN); if the
algorithm detected a large amplitude fluctuation that was not labelled by the expert, the
outcome was designated as false positive (FP); if the algorithm did not detect a large
amplitude fluctuation that was labelled by the expert, the outcome was designated as false
negative (FN).

Differences in these performance metrics between the different window durations were
statistically tested with the nonparametric Kruskal-Wallis test followed by Bonferroni
correction for pairwise comparisons to select the window duration that yields the best
performance of the algorithm. Thereafter, the effect size was computed for each
performance metric with the use of epsilon squared (E2

R) for Kruskal-Wallis test (Tomczak
& Tomczak, 2014; Torres-Gordillo, Melero-Aguilar & García-Jiménez, 2020). Epsilon
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squared is a coefficient that describes the strength of the effect size and varies between 0
(negligible effect) and 1 (very strong effect) (Castillo et al., 2020). The abovementioned
performance metrics were applied only to Dataset 3 to assess the performance of the
algorithm in the detection of large amplitude fluctuations.

Application-based validation
As mentioned in Datasets section, Dataset 3 was used by Ansari et al. (2020) to develop a
convolutional neural network to perform 2-and 4-class sleep classification in neonates.
The network takes as input 30-s EEG segments and outputs a probability for each sleep
stage for each 30 s interval of the EEG recording. The sleep stage with the highest
probability will be considered as the actual sleep stage of the infant.

This EEG application was used to further validate the performance of the proposed
algorithm to detect and remove flat line segments and large amplitude fluctuations.
We used the window duration selected in the previous section as the one yielding the best
combination of values for accuracy, HR and FDR. More specifically, the performance of
the four-stage sleep classifier was assessed on the entire neonatal EEG recordings
before and after removing flat line segments and large amplitude fluctuations with our
algorithm. The purpose of this validation procedure is to demonstrate that the automated
detection and removal of flat line segments and large amplitude fluctuations improves the
performance of the sleep classifier.

Three statistical performance measures based on the extended confusion matrix in
Table 2 were calculated to compare the performance of the sleep classifier before and after
applying the proposed algorithm on the EEG recordings of Dataset 3:

1. The overall accuracy, i.e., the percentage of the signal correctly classified:
AAþ BBþ CC þ DD

all entries
;

Table 2 Extended confusion matrix. The extended confusion matrix is used to test the performance of
the four-stage sleep classifier before and after applying the proposed algorithm to remove flat line
segments and large amplitude fluctuations. A, B, C and D are used for illustrative purposes and corre-
spond to the four sleep stages.

Predicted sleep stage Sum Sensitivity (one vs. all)

LVI ASI HVS TA

True sleep stage LVI AA AB AC AD A � AA
A �

ASI BA BB BC BD B � BB
B �

HVS CA CB CC CD C � CC
C �

TA DA DB DC DD D � DD
D �

Sum � A � B � C � D Accuracy

Precision (one vs. all)
AA
� A

BB
� B

CC
� C

DD
� D

AAþ BBþ CC þ DD
all entries

Note:
LVI, Low Voltage Irregular; ASI, Active Sleep I; HSV, High Voltage Slow; TA, Tracé Alternant.
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2. The precision, calculated as one class vs. all classes, i.e., the proportion of the signal

predicted to be the considered class that was also annotated as that class: e.g.,
AA
� A

for the

predicted class LVI. The mean precision across all classes was then calculated as:
AA
� A

þ BB
� B

þ CC
� C

þ DD
� D

� �
=4;

3. The sensitivity, calculated as one class vs. all classes, i.e., the proportion of the signal

annotated as the considered class that was also predicted to be that class: e.g.,
AA
A � for the

true class LVI. The mean sensitivity across all classes was then calculated as:
AA
A �þ BB

B �þ CC
C �þ DD

D �
� �

=4.

In addition, the confidence of the sleep classifier was calculated before and after
applying the proposed algorithm as the difference between the probabilities of the
sleep stages with the two highest probabilities. This metric takes into account that the
second-highest probability could be only slightly lower than the probability of the winning
class such that there is low confidence that the winning class is the right class. The mean
confidence across all 30 s epochs was then considered.

Differences in the confidence of the classifier and the three statistical performance
metrics before and after removing flat line segments and large amplitude fluctuations were
statistically tested with the nonparametric Wilcoxon rank sum test. After that, the effect
size (g2) was calculated for the three performance metrics because the sample sizes were
relatively small. This effect size indicates the amount of the variance in the dependent
variable that is explained by the independent variable, and varies between 0 (negligible
effect) and 1 (very strong effect) (Tomczak & Tomczak, 2014). EEG processing and
statistical analysis was performed in MATLAB software (Version R2020a; MathWorks,
Natick, MA, USA).

RESULTS
Parameter selection and statistics-based validation
Flat line segments
The proposed algorithm removed on average 2.00% of the recordings of Dataset 1 as flat
line segments. The average removal percentage of Dataset 3 was 0.06%, whereas for
Dataset 2 it was 0% because no flat line segments were present.

Although no annotations for flat line segments were available for any dataset, it was
verified by visual inspection that all flat lines were detected by the algorithm for both
Dataset 1 and 3, hence reaching an accuracy of 100%.

Large amplitude fluctuations
An average of 41.12%, 23.89% and 47.02% of the recordings of Datasets 1, 2 and 3,
respectively, across all window durations, was removed as they were detected as affected by
large amplitude fluctuations. This outcome indicates a high prevalence of this type of
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artefact. The following results were obtained by using the 20-min annotated segments of
Dataset 3.

A significant strong difference (v2 ¼ 42:22, degrees of freedom = 111, p ¼ 1:66 � 10�7,
E2
R ¼ 0:38) in accuracy between the different window durations was observed (Castillo

et al., 2020). The results of the pairwise comparisons between the window durations can be
found in Table S1. Table 3 shows that the median accuracy decreased from 0.95 for the 1-s
window to 0.79 for the 7-s window, indicating that more segments were classified correctly
with a shorter window.

The effect size of HR (v2 ¼ 20:15, degrees of freedom = 111, p ¼ 0:0026, E2
R ¼ 0:18)

indicated a relatively strong difference in HR between the different window durations
(Castillo et al., 2020). The results of the pairwise comparisons between the window
durations can be found in Table S2. The median HR (Table 3) increased from 0.83 for the
1-s window to 0.98 for the 7-s window, but it reached a plateau from the 4-s window
onwards. The increase of the median HR from windows of 1 s to windows of 4 s suggests
that the algorithm detects more annotated artefacts (i.e., a larger number of true positives)
when longer windows are used.

Equivalent to HR, a relatively strong difference in FDR between the different window
durations was observed (v2 ¼ 19:64, degrees of freedom = 111, p ¼ 0:0032, E2

R ¼ 0:18)
(Castillo et al., 2020). The results of the pairwise comparisons between the window
durations can be found in Table S3. The median FDR (Table 3) showed the same trend as
the median HR, increasing from 0.18 to 0.60 with increasing window durations. However,
this measure should be as close to zero as possible. Hence, the use of larger windows would
lead to an increase of false positives.

To identify the best window for the automated algorithm, we considered that the
accuracy and HR should be as high as possible whereas the FDR should be as small as
possible. For each patient of Dataset 3 and each window duration, the product of
accuracy and HR was calculated to identify the window duration(s) with the best
combination of these metrics (Table 3). No significant differences between the different

Table 3 Summary of statistics-based validation results. The table includes: the window duration (in
seconds), the number of EEG recordings across which the median was calculated (N); the median
accuracy; the median hit rate (HR); the median false discovery rate (FDR); the median of the product
between accuracy and HR (Acc*HR). For each metric, the best median values are marked in bold and the
median values that are statistically different from the best value are marked with an asterisk (*).

Window duration (s) N Accuracy HR FDR Acc*HR

1 16 0.95 0.83* 0.18 0.76

2 16 0.93 0.88 0.30 0.79

3 16 0.91 0.91 0.37 0.81

4 16 0.86 0.95 0.49 0.80

5 16 0.83* 0.96 0.54 0.77

6 16 0.81* 0.95 0.55* 0.75

7 16 0.79* 0.98 0.60* 0.74
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window durations were observed after applying a Kruskal-Wallis test with Bonferroni
correction for pairwise comparisons. The results of the pairwise comparisons between the
window durations are given in Table S4.

Table 3 shows the median values of the statistical metrics for the different window
durations. The window of 3 s duration had the best combination of accuracy and HR
(Accuracy = 0.91; HR = 0.91), immediately followed by the windows of 2 and 4 s duration
(2-s window: Accuracy = 0.93; HR = 0.88; 4-s window: Accuracy = 0.86; HR = 0.95). If we
then look at the values of FDR, the window of 1 s duration had the best FDR and the best
accuracy (FDR = 0.18, Accuracy = 0.95), but the worst HR (HR = 0.83), which was
significantly lower than the highest HR, obtained for a window of 7 s. Also based on the
quite high value of FDR, we decided not to consider the 4-s window in the application-
based validation of our method. Consequently, we selected the windows with 2 and 3 s
duration for validating the algorithm with the four-stage sleep classifier.

An overview of the results obtained for the 20-min segments of the EEG recording of
the 16 infants of Dataset 3 when using a window duration of 2 and 3 s can be found in
Table S5. Generally, the percentage of the signal that was removed increased for longer
windows, but the removal percentage ranged from 4.58% to 49.25% for the 2-s window
and from 7.00% to 52.08% for the 3-s window across the sixteen EEG recordings and was
always below 40.00% except for two EEG recordings (i.e., infant 4 and 6).

Application-based validation
Table 4 shows the results for the Wilcoxon rank sum test comparing the accuracy, mean
precision, mean sensitivity and mean confidence of the four-stage sleep classifier before
and after applying the proposed algorithm using the 2- and 3-s windows. A relatively
strong difference in accuracy (2-s window: +10.63%, g2 ¼ 0:22; 3-s window: +11.17%,
g2 ¼ 0:25) and mean confidence (2-s window: +7.68%, g2 ¼ 0:28; 3-s window: +7.73%,
g2 ¼ 0:29), and a moderate difference in mean precision (2-s window: +9.38%, g2 ¼ 0:12;
3-s window: +9.83%, g2 ¼ 0:13) was observed for both the 2- and 3-s window, with
better values after removal of flat line segments and large amplitude fluctuations from the
EEG signals. On the other hand, no significant difference was observed for the mean
sensitivity after artefacts removal (2-s window: +0.83%, g2 ¼ 0:0009; 3-s window: +2.25%,
g2 ¼ 0:0059). When comparing the two window durations, it was seen that the accuracy,
mean precision and mean sensitivity were always slightly higher when a 3-s window was
used, whereas no clear differences in mean confidence could be observed.

DISCUSSION
An algorithm for the automated detection and removal of flat line segments and large
amplitude fluctuations from neonatal EEG signals of infants at term-equivalent age was
developed. The proposed algorithm was tested and validated on EEG data recorded
with different EEG systems and with caps mounting a different number of electrodes in
order to make the algorithm as general as possible. The first issue to solve was the
identification of the window duration that would lead to an optimal performance of
the algorithm. In that regard, the results for the different performance metrics were
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contradictory to each other, as the median accuracy and median FDR suggested that using
windows of 1 s duration would yield to the best algorithm performance, whereas the best
median HR was obtained for windows of 7 s duration. Consequently, there will always be a
trade-off between deleting enough artefactual segments but retaining a sufficient number
of non-artefactual EEG segments to preserve cortical information. Considering this trade-
off, it would be recommended to use a window duration of 2 or 3 s in the algorithm
because their products of the accuracy and HR were the highest compared to the products
of the other window durations. In addition, their accuracy, HR and FDR did not
significantly differ from those of the window durations with the highest value for each of
these performance metrics.

When windows of 2 or 3 s duration were used, the obtained FDRs indicated the
presence of a high number of false positives. Nevertheless, given the fact that the
percentages of removed EEG segments were almost always below 40% of the EEG
recording (see Table S5) and that the EEG recordings were often hours long, these high
FDRs are acceptable. This result might induce to think that correcting artefacts would be
better than removing them, but flat line segments cannot be corrected because no
cortical activity was recorded during those intervals. Large amplitude fluctuations are very
difficult to correct given the high variability of their waveform and peak-to-peak
amplitude. Moreover, not only one channel is generally affected by this artefact.
Corrections performed, e.g., by interpolation of the neighboring channels are at risk of

Table 4 Wilcoxon rank sum test results. The table compares the accuracy, mean precision, mean sensitivity and mean confidence of the four-stage
sleep classifier before and after removing, by applying our proposed algorithm, flat line segments (FL) and large amplitude fluctuations (LA) with
windows of 2 and 3 s duration. The table includes: the number of observations (i.e., the sixteen EEG recordings present in Dataset 3) (N); the median
of the considered statistical measure; the rank sum test statistic; the Z-statistic; the corresponding p-value and the effect size. The best median value
of each statistical measure and the significant differences (i.e., p-value ≤ 0.05) are marked in bold.

Statistical measure Window duration (s) Before/after FL & LA removal N Median Rank sum test statistic Z-statistic p-value g2

Accuracy 2 Before 16 39.05 335 2.66 0.0079 0.22

After 16 49.68

3 Before 16 39.05 340 2.85 0.0044 0.25

After 16 50.22

Mean precision 2 Before 16 44.45 317 1.98 0.05 0.12

After 16 53.83

3 Before 16 44.45 319 2.05 0.04 0.13

After 16 54.28

Mean sensitivity 2 Before 16 72.36 269 0.17 0.87 0.0009

After 16 73.19

3 Before 16 72.36 276 0.43 0.66 0.0059

After 16 74.61

Mean confidence 2 Before 16 35.13 344 3.00 0.0027 0.28

After 16 42.81

3 Before 16 35.13 345 3.03 0.0024 0.29

After 16 42.86
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considering as brain activity a reconstructed signal that is in fact strongly affected by an
artefact.

When comparing our results with those of previous studies which detected flat line
segments and large amplitude fluctuations within a wider range of artefacts, our proposed
algorithm performed equally well or even better. For instance, Costa (2017) reported a true
positive rate of 92.4% when detecting movement/electrode displacement artefacts and
Kauppila, Vanhatalo & Stevenson (2017) obtained a median accuracy of 85.7% and 97.7%
for movement and flat artefacts, respectively. Also,Webb et al. (2021) reported an accuracy
of 80.7% and 43.9% when detecting movement artefacts on the training and on the
validation data, respectively.

The proposed algorithm was further validated by comparing the performance of a
four-stage sleep classifier (Ansari et al., 2020) before and after applying the proposed
algorithm using the window durations that were identified as yielding the best algorithm
performance, i.e., those with 2 and 3 s duration. The confidence of the sleep classifier
resulted to be significantly higher when flat line segments and large amplitude fluctuations
were removed compared to when they were still present in the EEG signal. Likewise, the
accuracy and mean precision of the classifier were significantly higher after applying the
proposed artefact removal method. Conversely, no significant difference was observed in
the mean sensitivity of the classifier, which is in line with a similar study by Khlif et al.
(2010) who found an increase of only 0.1% in the sensitivity, but a 18.3% increase in the
accuracy of a seizure detector after artefact reduction. AlsoDe Vos et al. (2011) observed an
improvement in seizure detection after artefact removal, with a significant decrease in
median false alarms per hour from 0.38 to 0.00 and a non-significant increase in median
good detection rate from 87.1% to 100.0%. Similarly to our study, Dereymaeker et al.
(2017) investigated the improvement in performance of a sleep classifier and reached a
13% increase in the median accuracy which is comparable to the 10.63–11.17% increase
observed in our study. Differently from us, Dereymaeker et al. (2017) also reported an
increase of 16% in the median sensitivity.

Taking a closer look at the different performance measures of the four-stage sleep
classifier between the two window durations, a window of 3 s duration showed slightly
higher accuracy, mean precision, mean sensitivity and effect sizes than the 2-s window.
Therefore, a 3-s window would be recommended for this EEG application. In conclusion,
this validation demonstrated the effectiveness of the proposed automated artefact
detection and removal method in neonatal EEG application and confirmed the good
performance of the algorithm.

A few shortcomings should be addressed in future research. Firstly, the proposed
algorithm was tuned to be applied to EEG signals of infants at term-equivalent age.
Consequently, the algorithm and more specifically the physiological threshold will need
adjustment when applied to EEG signals of infants with a younger age (PMA < 36 weeks)
because physiological amplitudes increase with decreasing age (André et al., 2010).
Secondly, the proposed algorithm was tested only in healthy, non-pathological EEG
signals. Therefore, the current detection criteria might not hold when applied to EEG
signals where–for instance–seizures are present. For this reason, future studies should aim
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at testing the algorithm on pathological EEG signals and adjusting it accordingly. Also, it
should be noted that the proposed algorithm detects and removes only flat line segments
and large amplitude fluctuations. Additional artefacts affecting the neonatal EEG
recordings, such as muscular artefact, cardiac interference, and eye movements should
be detected and/or removed by means of other dedicated methods to be developed.
Finally, the ultimate choice between using a window of 2 or 3 s and the thresholds could
need to be adjusted to the specific features of the EEG recording to which the algorithm
should be applied, such as its sampling frequency and the recording length.

CONCLUSIONS
We described an algorithm for the automated detection and removal of flat line segments
and large amplitude fluctuations in neonatal EEG recordings. The algorithm achieved a
median accuracy and HR comparable to or higher than what achieved by other similar
methods. The quite high value of the median FDR obtained for windows equal or longer
than 3 s, should be considered in association with the very good values of accuracy and HR,
which were very high. Similarly to other authors, we also validated the effectiveness of the
algorithm by applying it to the neonatal EEG signals of Dataset 3 and assessing the
performance of a four-stage sleep classifier after having applied our algorithm. We could
verify that the performance of the classifier improved by about 10% in terms of accuracy,
mean confidence and mean precision with respect to its application without having priorly
applied our algorithm. This result shows that our algorithm has a good performance and
can be effective for neonatal EEG applications.

Our algorithm also shows some general advantages with respect to existing methods to
detect artefacts on the neonatal EEG: (1) the thresholds used for detecting flat lines and
large amplitude fluctuations were tailored to the term-equivalent age of the neonate
because it has an influence on the amplitude of the EEG signals; (2) the proposed algorithm
detects flat line segments and large amplitude fluctuations with an easy approach that has a
low computational load, hence prone to be easily used in the clinical practice; (3) the
performance of the algorithm was assessed by calculating statistical measures, and not only
by validating it in an analytical application (the sleep classifier) as most existing methods
do.
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