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Neural stem cells in the mammalian adult brain continuously produce new neurons
throughout life. Accumulating evidence in rodents suggests that various aspects of
adult neurogenesis, including the genesis, migration, and maturation of new neurons,
are regulated by factors derived from blood vessels and their microenvironment.
Brain injury enhances both neurogenesis and angiogenesis, thereby promoting the
cooperative regeneration of neurons and blood vessels. In this paper, we briefly
review the mechanisms for the vascular regulation of adult neurogenesis in the
ventricular-subventricular zone under physiological and pathological conditions, and
discuss their clinical potential for brain regeneration strategies.
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INTRODUCTION
Embryonic development of the nervous and vascular systems in
mammals proceeds in a coordinated manner, in which neuro-
genesis and angiogenesis are regulated by common instructive
cues and tightly dependent on each other, leading to the for-
mation of parallel networks (Segura et al., 2009; James and
Mukouyama, 2011). In adults, while the vascular network is
completely developed, neurogenesis still occurs in two restricted
brain regions: the ventricular-subventricular zone (V-SVZ) in
the lateral wall of the lateral ventricles and the subgranular
zone of the dentate gyrus in the hippocampus; at these sites,
neural stem cells continuously generate new functional neurons
(Lledo et al., 2006; Zhao et al., 2008; Ihrie and Alvarez-Buylla,
2011; Fuentealba et al., 2012). Palmer et al. (2000) reported
that neural stem cells and their progenies are closely associated
with blood vessels, raising the possibility that adult neuroge-
nesis is controlled by factors derived from blood vessels and
their microenvironment (Goldberg and Hirschi, 2009; Goldman
and Chen, 2011). Following brain tissue injury, both neuro-
genesis and angiogenesis are upregulated, and these processes
are tightly coupled in the endogenous mechanism for brain
regeneration (Greenberg and Jin, 2005; Kaneko and Sawamoto,
2009; Massouh and Saghatelyan, 2010). The coordinated neu-
rogenesis and angiogenesis processes observed following brain
injury appear to recapitulate the events occurring in the embry-
onic and early postnatal stage. Thus, blood vessels are likely
to be important in brain regeneration as they are in its devel-
opment. In this paper, we briefly review the latest findings on
the mechanisms of vascular regulation of adult neurogenesis
in the V-SVZ under physiological and pathological conditions
(Figure 1), and discuss their clinical potential for brain regenera-
tion strategies.

RELATIONSHIP BETWEEN NEUROGENESIS IN THE V-SVZ
AND BLOOD VESSELS UNDER PHYSIOLOGICAL CONDITIONS
In the V-SVZ, neural stem cells and transit-amplifying cells,
which arise from the stem cells and eventually differentiate into
neural cells, interact with blood vessels differently (Mirzadeh
et al., 2008; Shen et al., 2008; Tavazoie et al., 2008). In contrast
to most blood vessels in the brain, capillaries in the V-SVZ are
not completely enwrapped by pericytes and astrocytic endfeet,
and thus form a unique, incomplete blood-brain barrier (BBB),
which is permeable to blood-derived small molecules (Tavazoie
et al., 2008; Lacar et al., 2012b). Neural stem cells extend a long
basal process that makes contact with these capillaries (Mirzadeh
et al., 2008; Lacar et al., 2011), while the transit-amplifying cells
contact vascular endothelial cells directly with their cell body at
the incomplete BBB (Tavazoie et al., 2008). Several studies have
suggested that vascular cells including pericytes have the poten-
tial to generate neural cells (Palmer et al., 2000; Yamashima et al.,
2004; Yokoo et al., 2005; Dore-Duffy et al., 2006; Paul et al.,
2012), and evidence suggests that the branch points of blood ves-
sels might provide a preferential environment for neurogenesis
in the V-SVZ (Shen et al., 2008). Thus, the vascular microenvi-
ronment in the V-SVZ might promote the ability of neural stem
cells and transit-amplifying cells to proliferate and generate new
neurons.

In olfaction, new neurons generated in the V-SVZ destined for
the olfactory bulb (OB) also associate with blood vessels in the
rostral migratory stream (RMS). At the neonatal stage, new neu-
rons migrate along blood vessels not only to the OB (Bozoyan
et al., 2012) but also to the cerebral cortex (Inta et al., 2008; Le
Magueresse et al., 2012). Although blood vessel-guided neuronal
migration toward the cerebral cortex gradually decreases during
postnatal development, probably due to the decrease in blood
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FIGURE 1 | Vascular regulation of adult neurogenesis in the V-SVZ

under physiological and pathological conditions. Neural stem cells
(blue) and transit-amplifying cells (green) contact blood vessels (pink) in
different manners and generate new neurons (red). Blood vessel-derived
factors regulate the maintenance and proliferation of neural stem cells and
transit-amplifying cells within the V-SVZ. The generated new neurons form
chains and migrate along blood vessels toward the OB. Ependymal cells
lining the wall of the lateral ventricle are shown in light purple. In the

injured brain, neurogenesis and angiogenesis are dynamically upregulated.
The injury results in increased levels of growth and trophic factors, which
control both angiogenesis and various aspects of neurogenesis (the
genesis, migration, or maturation of new neurons). Some new neurons
generated in the V-SVZ migrate in chains along blood vessels toward the
injured regions. New neurons migrating toward injured regions are
attracted by various chemokines secreted from reactive astrocytes (dark
blue) and microglia (dark purple).

vessel density in the corpus callosum (Le Magueresse et al., 2012),
new neurons continue to migrate along blood vessels in the RMS
and OB even in adulthood (Bovetti et al., 2007; Snapyan et al.,
2009; Whitman et al., 2009). During blood vessel-guided migra-
tion, the new neurons directly contact astrocytic processes and
vascular endothelial cells (Bovetti et al., 2007; Whitman et al.,
2009; Le Magueresse et al., 2012). These studies suggest that
new neurons generated in the V-SVZ utilize blood vessels as a
migratory scaffold in the adult brain.

RELATIONSHIP BETWEEN NEUROGENESIS IN THE V-SVZ
AND BLOOD VESSELS UNDER PATHOLOGICAL CONDITIONS
Brain injuries such as ischemic stroke and traumatic injury cause
cell death, disruption of blood vessels, and inflammation, lead-
ing to functionally irreversible damage. Recent studies in rodents
show that after brain injury, new neurons generated in the V-
SVZ migrate toward the injured region and differentiate into
mature neurons, suggesting that the endogenous neural stem cells

in the adult V-SVZ have clinical potential for brain regeneration
(Arvidsson et al., 2002; Parent et al., 2002; Yamashita et al., 2006).

The first responses after brain injury include increased angio-
genesis around the injured region and neural progenitor cell
proliferation in the V-SVZ. In an ischemic stroke model such as
middle cerebral artery occlusion (MCAO), responsive angiogen-
esis remodels the disrupted blood vessel network in the injured
striatum, several days to two weeks after the injury (Thored et al.,
2007). In addition, increased proliferation of the neural stem cells
and transit-amplifying cells in the V-SVZ occurs. Unlike the case
under physiological conditions, the proliferation of these cells
contributes not only to neurogenesis and oligodendrogenesis, but
also to reactive astrogliosis (Li et al., 2010; Zhang et al., 2011;
Benner et al., 2013).

The second response after injury is the appearance of new neu-
rons at the injured region (Arvidsson et al., 2002; Parent et al.,
2002). These new neurons are generated from neural stem cells
in the V-SVZ and migrate toward the ischemic striatum after
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MCAO (Yamashita et al., 2006). The neuronal migration toward
the injured region shares two important features with that in
the RMS: first, the migrating new neurons form chain-like cell
aggregates (Arvidsson et al., 2002; Parent et al., 2002; Yamashita
et al., 2006) and second, they migrate along blood vessels (Zhang
et al., 2009; Kojima et al., 2010; Saha et al., 2013). During the
blood vessel-guided migration, new neurons are observed to
be frequently associated with thin astrocytic processes aligned
close to the blood vessels (Yamashita et al., 2006). Inhibiting
angiogenesis decreases the number of new neurons in injured
regions (Taguchi et al., 2004; Ohab et al., 2006; Cayre et al.,
2013), suggesting that newly generated blood vessels play a role
in neuronal regeneration. However, since new neurons migrate
along both pre-existing and newly generated blood vessels after
MCAO (Kojima et al., 2010), both old and new blood vessels
appear to act as the migratory scaffold for new neurons mov-
ing toward injured regions. Notably, in the ischemic striatum,
the new neurons migrating along blood vessels frequently make
a “U-turn” when they reach the branch point of a blood vessel
and go back toward the V-SVZ, and jump from one blood vessel
to another; such turns are not observed for the new neurons in
the RMS (Kojima et al., 2010; Grade et al., 2013). Thus, remod-
eling the blood vessel network in injured regions and regulating
the direction of new neuron migration could improve the effi-
ciency of blood vessel-guided neuronal migration and neuronal
regeneration.

MECHANISMS FOR VASCULAR REGULATION OF ADULT
NEUROGENESIS UNDER PHYSIOLOGICAL AND
PATHOLOGICAL CONDITIONS
BLOOD FLOW AND CEREBROSPINAL FLUID FLOW
Local changes in blood flow in the V-SVZ, in which neural
stem cells and transit-amplifying cells are involved (Lacar et al.,
2012a,b), alter the levels of metabolic and gas molecules around
the blood vessels, thereby affecting neurogenesis in the V-SVZ.
For example, ATP regulates the proliferation of neural stem cells
and transit-amplifying cells (Lin et al., 2007; Suyama et al.,
2012). Nitric oxide (NO) and oxygen (O2) are also thought to
affect the proliferation of neural stem cells (Matarredona et al.,
2005; Panchision, 2009). In addition to these small molecules,
fluid dynamics could also regulate the active transport of blood-
derived factors such as insulin-like growth factor-1 (IGF-1)
(Nishijima et al., 2010), to control neurogenesis in the V-SVZ.
These studies collectively suggest that cell proliferation in the
V-SVZ is modulated by changes in blood flow.

Interestingly, a recent study showed that subarachnoid cere-
brospinal fluid (CSF) enters the brain parenchyma along the
spaces surrounding arteries and is excreted along the spaces sur-
rounding veins (Iliff et al., 2012). Ventricular CSF contains several
morphogens and growth factors that are known to control neu-
ronal migration, such as Slit (Sawamoto et al., 2006) and Sonic
hedgehog (Shh) (Angot et al., 2008). In addition, Shh is increased
in the CSF after injury and plays a role in neural regeneration
(Sirko et al., 2013). If the blood vessels and their surrounding
spaces provide not only a scaffold but also CSF-derived guidance
cues, they might promote the efficient migration of new neurons
in the adult brain.

These studies indicate that the fluid dynamics of blood and
CSF might be related to neurogenesis in the V-SVZ under physio-
logical conditions. In addition, blood flow-mediated mechanical
forces might affect the state of neural stem cells and their pro-
genies, as reported in the hematopoietic system (Adamo et al.,
2009). Although these flows are likely to be disrupted by var-
ious brain injuries, their effects on neurogenesis in the V-SVZ
of the injured brain have not been elucidated. It is tempting to
speculate that the fluid dynamics of blood and CSF help control
neurogenesis in response to changes in body circulation and brain
activity.

GROWTH/TROPHIC FACTORS
The maintenance and proliferation of neural stem cells and their
progenies are controlled by soluble factors released from blood
vessels (Louissaint et al., 2002; Shen et al., 2004). For exam-
ple, pigment epithelium-derived factor (PEDF), which is secreted
from ependymal cells and vascular endothelial cells in the V-
SVZ, promotes the self-renewing cell division and multipotency
maintenance of neural stem cells by enhancing Notch-dependent
transcription (Ramirez-Castillejo et al., 2006; Andreu-Agullo
et al., 2009). Vascular endothelial cell-derived betacellulin, which
belongs to the epidermal growth factor (EGF) family, regulates
the proliferation of both EGFR-expressing neural stem/transit-
amplifying cells and ErbB4-expressing new neurons (Gomez-
Gaviro et al., 2012). Vascular endothelial growth factor (VEGF)
and angiopoietin-1 (Ang-1), which are potent angiogenic growth
factors, can also stimulate cell proliferation in the V-SVZ (Jin
et al., 2002; Sun et al., 2006; Rosa et al., 2010). On the other
hand, in older adult to aged mice, transforming growth factor-β
(TGF-β) increases in vascular endothelial cells, and mediates
the apoptosis of neural stem cells in the aged V-SVZ (Pineda
et al., 2013). Taken together, these studies indicate that under
physiological conditions, blood vessel-derived growth factors and
angiogenic factors control the maintenance and proliferation of
neural stem/progenitor cells in the V-SVZ.

Evidence suggests that brain-derived neurotrophic factor
(BDNF) derived from vascular endothelial cells promotes blood
vessel-guided neuronal migration in both the RMS and the
ischemic striatum. In the RMS, astrocytes play an important
modulatory role in the blood vessel-guided neuronal migration
by controlling the BDNF level (Snapyan et al., 2009). Similarly,
in the ischemic striatum, endothelial-derived BDNF is captured
by reactive astrocytes (Grade et al., 2013). Thus, the endothelial
BDNF-astrocyte-neuron interaction may be a common mech-
anism for blood vessel-guided neuronal migration in the adult
brain under physiological and pathological conditions.

Ischemic stroke results in the increased expression of sev-
eral factors, including VEGF, Ang-1, and Netrin-1, that exert
both neurogenic and angiogenic activities (Hayashi et al., 2003;
Sun et al., 2003; Ohab et al., 2006; Liu et al., 2007a; Thau-
Zuchman et al., 2010; Cayre et al., 2013). Inhibiting VEGF
signaling by a VEGFR-2 inhibitor or an anti-VEGF blocking
antibody reduces the injury-induced angiogenesis in a rodent
model of stroke (Shimotake et al., 2010). On the other hand,
exogenous VEGF injection or VEGF overexpression promotes
injury-induced angiogenesis, neural progenitor proliferation in
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the V-SVZ, and new neuron migration to and survival at the
injured regions, which contribute to functional recovery (Sun
et al., 2003; Wang et al., 2007; Thau-Zuchman et al., 2010). Since
VEGF can promote the proliferation, migration, and differenti-
ation of V-SVZ cells in vitro (Zhang et al., 2003; Barkho et al.,
2008), it is possible that VEGF directly influences each of these
processes following injury. On the other hand, it is also possi-
ble that VEGF-induced angiogenesis results in increased levels
of blood vessel-derived factors that promote neurogenesis, as
it is observed in the adult songbird brain, where testosterone-
mediated increase in VEGF levels induces the expression of
BDNF by endothelial cells that in turns promotes neurogenesis
(Louissaint et al., 2002).

Collectively, these studies show that blood vessel-derived fac-
tors control various aspects of neurogenesis in the V-SVZ under
physiological and pathological conditions. It is possible that some
of these factors affect both neurogenesis and angiogenesis directly
or indirectly. An increased understanding of the mechanisms
by which angiogenesis and neurogenesis are regulated by these
factors may lead to new strategies for brain regeneration.

CHEMOKINES
Stromal cell-derived factor-1 (SDF-1) has different roles in neu-
rogenesis under physiological vs. pathological conditions. Under
physiological conditions, a high level of SDF-1 derived from
ependymal cells maintains neural stem cell quiescence, whereas
SDF-1 from vascular endothelial cells enhances the activated state
of both activated neural stem cells and transit-amplifying cells,
thereby generating quiescent and activated niches for neural stem
cells in the V-SVZ (Kokovay et al., 2010). On the other hand, after
ischemic stroke, SDF-1 is secreted from vascular endothelial cells
and reactive astrocytes in the injured regions (Ohab et al., 2006;
Thored et al., 2006). Blocking C-X-C motif receptor-4 (CXCR-4),
which is a receptor for SDF-1, suppresses the migration of new
neurons in vitro and in vivo, suggesting that SDF-1/CXCR-4 sig-
naling promotes neuronal migration in the injured brain (Robin
et al., 2006; Thored et al., 2006; Kojima et al., 2010).

Other chemokines, including C-C motif ligand-2 (CCL2),
monocyte chemoattractant protein-1 (MCP-1), macrophage
inflammatory protein-α (MIP-α), and C-X-C motif ligand-1
(CXCL-1), also increase after injury (Liu et al., 2007b; Yan et al.,
2007; Gordon et al., 2009). CCL2 increases in the V-SVZ after
MCAO and induces neural progenitor cell differentiation into the
neuronal lineage and new neuron migration in vitro (Liu et al.,
2007b). MCP-1 is secreted from reactive astrocytes and microglia
after MCAO, while its receptor C-C motif receptor-2 (CCR-2)
is expressed by migrating new neurons in the ischemic striatum
(Yan et al., 2007). MCP-1 has attractant activity for migrating new
neurons, and the injury-induced migration of new neurons in the
ischemic striatum is not observed in MCP-1 or CCR-2 knockout
mice (Yan et al., 2007), suggesting that MCP-1/CCR-2 signaling is
required for new neuron migration in the injured brain.

Despite their attraction by chemokines, new neurons in the
injured brain do not migrate for long distances from the V-SVZ,
possibly due to insufficient and irregular chemokine gradients in
the injured regions. Thus, supplying strong concentration gradi-
ents of chemokines in injured brain regions might attract new

neurons, promoting their migration to the injured regions along
blood vessels without making U-turns.

EXTRACELLULAR MATRIX
The extracellular matrix (ECM) surrounding blood vessels in
the V-SVZ is thought to be produced by vascular endothelial
cells, blood vessel-ensheathing pericytes and astrocytes, and neu-
ral stem cells and their progenies. Under physiological conditions,
an ECM-enriched microenvironment might provide the proper
neurogenic milieu for neural stem cells and their progenies in
the V-SVZ (Kazanis et al., 2010). A fiber-like basal lamina called
fractone is observed in the V-SVZ (Mercier et al., 2002). Heparan
sulfate proteoglycan (HSPG), a component of the vascular basal
membrane, can anchor bone morphogenetic protein-7 (BMP-7)
and promote its inhibitory activity on cell proliferation in the V-
SVZ (Lim et al., 2000; Douet et al., 2012). HSPG can also interact
with other BMPs, Shh, Wnts, Slits, and several growth factors, and
modulate their bioactivities, which regulate neurogenesis in the
V-SVZ (Sawada and Sawamoto, 2013). Laminin, another vascular
basal membrane component, modulates the interaction between
blood vessels and transit-amplifying cells, which express α6β1
integrin (Shen et al., 2008). SDF-1 enhances the laminin bind-
ing of activated neural stem cells and transit-amplifying cells, to
maintain the association between these cells and blood vessels
(Kokovay et al., 2010).

Although several ECM proteins and their receptors, includ-
ing tenascin C, αV integrin, and β3 integrin, increase in the
V-SVZ after ischemic stroke (Liu et al., 2007a), their roles in
neurogenesis are unclear. Because there are many kinds of ECM
components around blood vessels, it is necessary to integrally
classify their expression levels and bioactivities under physiologi-
cal and pathological conditions. It is also important to determine
what receptors for ECM components are expressed on neural cells
to elucidate the ECM’s roles in the relationship between neural
stem or progenitor cells and blood vessels.

PERSPECTIVE
Adult neurogenesis consists of multiple stages including the
genesis, migration, and maturation of new neurons. Recent
studies in rodents have demonstrated that blood vessels reg-
ulate various aspects of neurogenesis in the V-SVZ under
physiological conditions. Although brain injury dramatically
changes the environment surrounding the V-SVZ, physiologi-
cal and regenerative neurogenesis mechanisms depend on com-
mon vascular regulations, suggesting that blood vessels have
fundamental roles in adult neurogenesis. One limitation of the
endogenous neuronal regeneration is the insufficient supply
of new neurons migrating into injured regions. Thus, reorga-
nization of the migration scaffold by promoting angiogenesis
or transplanting artificial blood vessel-like fibers could be a
promising strategy for improving the supply of new neurons
to injured regions. Moreover, since the blood flow dynam-
ics in the brain can change, blood vessels may be involved
in modifying adult neurogenesis according to the body circu-
lation and brain activity states. Further understanding of the
vascular regulations of adult neurogenesis should contribute
to the development of new clinical strategies for neuronal
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regeneration using endogenous neural stem cells in the adult
brain.
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