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Is there a serial bottleneck in visual object recognition?
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Divided attention has little effect for simple tasks, such
as luminance detection, but it has large effects for
complex tasks, such as semantic categorization of
masked words. Here, we asked whether the semantic
categorization of visual objects shows divided attention
effects as large as those observed for words, or as small
as those observed for simple feature judgments. Using a
dual-task paradigm with nameable object stimuli,
performance was compared with the predictions of
serial and parallel models. At the extreme, parallel
processes with unlimited capacity predict no effect of
divided attention; alternatively, an all-or-none serial
process makes two predictions: a large divided attention
effect (lower accuracy for dual-task trials, compared to
single-task trials) and a negative response correlation in
dual-task trials (a given response is more likely to be
incorrect when the response about the other stimulus is
correct). These predictions were tested in two
experiments examining object judgments. In both
experiments, there was a large divided attention effect
and a small negative correlation in responses. The
magnitude of these effects was larger than for simple
features, but smaller than for words. These effects were
consistent with serial models, and rule out some but not
all parallel models. More broadly, the results help
establish one of the first examples of likely serial
processing in perception.

Introduction

Visual tasks can produce a variety of divided
attention effects for making multiple judgments,
ranging from little or no effect, to large effects. One way
to measure divided attention effects is to use dual tasks,

in which participants perform the same task in two
locations. Some simple judgments, such as detecting
luminance increments, can be performed in two
locations as well as in one, as if there are independent
parallel processes for each location (Bonnel, Stein, &
Bertucci, 1992). Additional evidence of independent
parallel processing is found in experiments on summary
statistics (Attarha, Moore, & Vecera, 2014; Sun, Chubb,
Wright, & Sperling, 2016). Other judgments, such as
semantic categorization of masked words, have large
divided attention effects, as if they can be carried
out in only one location at a time (White, Palmer, &
Boynton, 2018). Our question is whether processing
of multiple visual objects is subject to large divided
attention effects, like words, or little or no divided
attention effects, like simple features. Specifically, we
consider semantic categorization of nameable visual
objects.

The anatomic organization of the early stages of
the visual system is capable of parallel processing.
For example, early cortical areas have retinotopic
organization, and stimuli presented in the left and
right visual hemifields are processed by primary visual
cortices in opposite hemispheres. This separation can
support parallel processing of visual input. Indeed,
there is behavioral and physiological evidence consistent
with parallel processing of multiple stimuli for simple
judgments, such as contrast detection (Scharff, Palmer,
& Moore, 2011; Chen & Seidemann, 2012; White,
Runeson, Palmer, Ernst, & Boynton, 2017). For
judgments of simple features, there may be little or no
effect of divided attention if the information about
each stimulus can be represented by a distinct neuronal
subpopulation in early retinotopic areas.

In contrast, semantic categorization of simulta-
neously presented masked words results in a severe
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processing limit, as if participants can recognize only
one word at a time (White, Palmer, & Boynton, 2018;
White, Palmer, & Boynton, 2020). This large effect of
divided attention is consistent with a serial processing
bottleneck. Indeed, processing of words appears to
be mediated by the visual word form area, which is
less retinotopically organized (Rauscheker, Bowen,
Parvizi, & Wandell, 2012; Le, Witthoft, Ben-Shachar,
& Wandell, 2017). Because this higher-level visual
area might be unable to represent two words at once,
this could explain the serial processing for reading
words (White, Palmer, Boynton, & Yeatman, 2019).
Might judgments of multiple visual objects be similarly
constrained?

Previous studies of object perception

In an early study, Biederman and colleagues
(Biederman, Blickle, Teitelbaum, & Klatsky, 1988)
examined whether object perception is limited by
divided attention. The stimuli were line drawings of
objects associated with basic-level category names
(e.g. “traffic light” or “file cabinet”). The task was
to search for a specific object among a display of
one to six objects. Response time to find the target
increased with the addition of more distractor
objects to the display, suggesting that perceptual
processing of objects is limited in some way. However,
such response time set-size effects do not clearly
distinguish serial and parallel processing, because for
this measurement parallel processes can mimic serial
processing (Townsend, 1971; Townsend, 1990; Palmer,
Verghese, & Pavel, 2000).

Potter and Fox (2009) used the simultaneous-
sequential paradigm (Shiffrin & Gardner, 1972) to
measure how object categorization is limited by divided
attention. Stimuli were pictures of objects in scenes
with associated verbal descriptions, presented as
rapid serial visual presentation (RSVP) sequences of
eight displays with one to four stimuli simultaneously
displayed. The task was to search for the presence of
a picture matching a target verbal description (e.g.
“balloons” or “cut up fruit”). The target picture could
either appear together with one or more distractors
in the same presentation interval (simultaneous),
or in the other presentation interval (sequential).
The key comparison was between simultaneous and
sequential presentations. Performance was worse for
targets presented simultaneously with one or more
distractors, compared with performance for targets
and distractors presented sequentially. This sequential
advantage is consistent with limited-capacity processing
in perception. Although Potter and Fox showed that
object processing is limited in capacity, they did not
distinguish whether it was serial or parallel, because

both serial and limited-capacity parallel processes
produce similar results in these experiments.

Scharff and colleagues (Scharff, Palmer, & Moore,
2011) also examined whether object processing has
limited capacity using the simultaneous-sequential
paradigm. The stimuli were pictures of animals that
were members of categories (e.g. fox or deer). The
task was to determine which of two categories of
animal was present in a multi-object display. For
example, the target might be a fox or a deer presented
among distractors that were a squirrel and a moose.
Scharff and colleagues used simpler displays than the
relatively long RSVP sequences used by Potter and Fox
(2009). The simultaneous condition presented four
objects on the display at a time, whereas the sequential
condition presented two objects on the display at a
time over two intervals. The results showed a sequential
advantage in this task, consistent with limited-capacity
perceptual processing. However, this study was also
unable to distinguish between a serial process and a
limited-capacity parallel process, because both could
account for the sequential advantage.

Alternative hypotheses

Our focus is the hypothesis that the perceptual
processing of objects, like words, is severely limited
under divided attention. For example, if there are large
divided attention effects for the semantic categorization
of nameable objects that are similar to those observed
for words, there might be a serial bottleneck in object
processing. In that case, one possibility is that words
and objects share serial processes beyond retinotopic
cortex. Such a bottleneck might restrict the extraction
of the meaning of the word or object (Broadbent,
1958). Another possibility is that a serial bottleneck
might constrain a certain type of higher-level process
that is similar for objects and words, but need not be
the same. For example, the bottleneck may constrain
the formation of an object representation (Kahneman,
Treisman, & Gibbs, 1992).

An alternative possibility is the hypothesis that object
judgments depend on only parallel processes, either
similar to simple feature judgments or intermediate
between results for features and words. This predicts
that object judgments are not subject to large divided
attention effects. This idea is consistent with the
argument that some visual processing, such as the
discounting of distractors, can occur in parallel for
multiple stimuli, and limitations in processing constrain
only judgments of multiple simultaneous targets
(Duncan, 1980). According to this hypothesis, the
decreased performance during divided attention tasks
is due to limitations beyond perception, such as in
sensorimotor processes, which link percepts to actions
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(Allport, 1987). This view stands in contrast to a serial
bottleneck in object perception.

As described above, although there is consistent
evidence that object tasks do show effects of divided
attention, unlike some simple feature tasks that show
no such effects, this evidence is ambiguous with respect
to whether object tasks show divided attention effects as
large as those caused by a serial bottleneck. Specifically,
the studies above present evidence only for limited
capacity, which is consistent with either serial or parallel
processes. Our experimental approach follows the
studies by White and colleagues that have uncovered
evidence for a serial bottleneck for word categorization.
These studies take advantage of a dual-task paradigm
that can distinguish between specific serial and parallel
models.

Benchmark models of perceptual dual tasks

Here, we consider three models of serial and parallel
processes as benchmarks for judging experimental
evidence in favor of or against the existence of a serial
processing bottleneck. These models were implemented
as in White et al. (2020).

The independent parallel model allows for two
stimuli to be processed independently (with unlimited
capacity). Because processing is not affected by
the number of objects to be processed, this model
predicts no divided attention effect - judging two
stimuli will be as accurate as judging one. This
prediction has been satisfied for detecting simple
features such as luminance increments (Graham,
Kramer, & Haber, 1985; Bonnel, Stein, & Bertucci,
1992).

The fixed-capacity parallel model is a special case
of a limited-capacity parallel model. It assumes
that parallel processing is limited such that the total
amount of information obtained from a display is
constant (Taylor, Lindsay, & Forbes, 1967). Hence
the name: “fixed capacity.” One way to implement
such a constraint is to use the metaphor of statistical
sampling as done in Shaw’s (1980) sample size model.
This theory starts with a signal detection theory
framework in which the quality of a percept, and
therefore the probability of its detection, is a function
of a single random variable. In particular, the quality of
a percept is assumed to correspond to the variability of
estimates based upon a set of samples of the underlying
random variable. When one object is relevant, all
of the available samples can be directed to this one
object. When there are two objects, the samples must
be shared among the objects. Consequently, each object
is sampled less often, and the quality of the percept
per object is lower. For the case of equally sampling
two objects instead of one object, the standard
deviation of the mean of the samples increases by

the square root of two (in d’ units). This prediction
has been satisfied for discriminating some simple
features (Miller & Bonnel, 1994) and for some simple
visual memory tasks (Smith, Lilburn, Corbett, Sewell,
& Kyllingsbaek, 2016).

The all-or-none serial model represents a processing
bottleneck, which allows for only one stimulus to be
processed at a time. For this “all-or-none” model, we
also assume that there is no time to process a second
stimulus: no switching of a single serial process between
two stimuli. The model thus predicts the largest effect
of divided attention. In addition, because only one
stimulus out of two is processed, there is a negative
correlation in the accuracy of the two responses: correct
responses for one stimulus co-occur with incorrect
(or chance) responses for the other. These predictions
have been satisfied for letter-digit tasks with conflicting
S-R mapping (Sperling & Melchner, 1978), for certain
multiple object dual tasks (Bonnel & Prinzmetal, 1998),
and for masked words (White et al., 2018; White et
al., 2020). In summary, the all-or-none serial model
predicts both a large magnitude effect of divided
attention and a negative correlation between dual-task
responses.

Effects of intermediate magnitudes can be predicted
with generalizations of each model. For example, a
fixed-capacity parallel process can predict a larger
dual-task deficit when target detection uses discretized
states than when target detection uses continuous
information (Swagman, Province, & Rouder, 2015; and
see Appendix). Similarly, a serial process can produce a
smaller dual-task deficit if there is enough time within
one trial to complete processing one stimulus and switch
to processing a second stimulus (White et al., 2020). To
interpret our findings, we consider these generalized
versions of these models alongside the three benchmark
models.

Overview of experiments

In this article, we ask whether semantic categorization
of visual objects shows large divided attention effects,
consistent with that predicted by a serial bottleneck.
The observed accuracy was compared with predictions
of the three benchmark models to interpret the effects
of divided attention. Critically, we use brief stimulus
presentations and masking to minimize the opportunity
for the switching of any serial processes. Without time
constraints, a serial process could completely process a
stimulus in one location, and start processing a stimulus
in another location, reducing the observed effect of
divided attention. This brief timing is implemented in
two ways: in Experiment 1, multiple stimuli were shown
using RSVP; in Experiment 2, single stimuli were shown
with pre- and post-masks.
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Experiment 1: RSVP

In the first experiment, stimuli were presented using
brief durations and RSVP to limit the time available
to process stimuli, and thus help distinguish serial and
parallel processing predictions (Forster, 1970; Potter &
Hagmann, 2015; Robinson, Grootswagers, & Carlson,
2019). The task was semantic object categorization,
similar to the task used with words by White and
colleagues (White et al., 2018).

Methods

Participants
For Experiment 1, 12 paid participants (6 men

and 6 women) were recruited from the University of
Washington and greater Seattle community; author
D.V.P. was one of the participants for Experiment 1.
Participants had normal or corrected-to-normal visual
acuity. All participants gave written and informed
consent in accordance with the Declaration of Helsinki
and the human subjects Institutional Review Board at
the University of Washington.

Apparatus and eyetracking
Stimuli were presented on a linearized CRT monitor

(Sony GDM-FW900) with a resolution of 1024 × 640
pixels and a 120 Hz refresh rate. The monitor was
viewed from a 60 cm distance and had a peak luminance
of 90 cd/m2. Presentation of stimuli was controlled
using MATLAB (MathWorks, Natick, MA) and the
Psychophysics Toolbox (Brainard, 1997). An Eyelink
1000 (SR Research, Ontario, Canada) and the Eyelink
Toolbox (Cornelissen, Peters, & Palmer, 2002) were used
to monitor and enforce fixation during the experiment.
A trial was terminated if the participant blinked or
moved their eyes outside of a 2 degree window while
stimuli were present on the screen. On average over all
experiments, 0.7% ± 0.1% of trials were terminated due
to blinks or apparent eye movements.

Stimuli
The stimuli were photographs of nameable objects

removed from the background context. Stimuli were
hand-selected from an internet image search and from
the Massive Memory Object Categories image set
(Konkle, Brady, Alvarez, & Oliva, 2010). Each image
was adjusted to maximize contrast and remove color,
and was resized to a 100 pixel × 100 pixel square (4.2
degrees × 4.2 degrees).

Stimuli were from eight categories: plants, food,
clothing, animals, furniture, household devices,

Figure 1. Example stimuli used in both experiments. All images
from the category “animals” are shown.

transport, and musical instruments. Two judges
confirmed that all examples were easy to identify and
clearly belonged to the assigned category, and not
the other categories. Each category had 50 exemplar
objects; Figure 1 shows the 50 objects in the category
“animals.”With eight categories, the stimulus set had a
total of 400 objects.

Procedure
Figure 2 shows a schematic of the RSVP task, which

was similar to Experiment 1 in White et al. (2018).
On each trial, the participants saw a category word,
followed by briefly presented visual objects, and a
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Figure 2. Rapid serial visual presentation (RSVP) procedure in Experiment 1. Trial sequences for the single task (A, top location cued)
and dual task (B, both locations cued) are shown. Ellipses indicate more intervals of the same duration, for a total of seven intervals
containing objects and six intervening blank intervals. In this example, the observer cue color is red. Mean stimulus and blank ISI
durations shown; these were adjusted separately for each observer to produce approximately 80% accuracy in the single task.

response prompt. Participants reported with a button
press whether an object from the target category had
appeared in the cued location. For example, for the trial
in Figure 2, participants were looking for food objects
and a target object (bread) was presented in the top
location. The relevant location(s) were cued both before
presentation and during the response prompt. Red and
blue colored lines were used as cues, with one color
assigned as a relevant cue for each participant and the
other color serving as the irrelevant cue. The assignment
was balanced such that for half of the participants, the
relevant cue was red, and for the other half, the relevant
cue was blue (in Figure 2, the relevant cue is red).

Stimuli were presented above and below a 0.5 degree
fixation cross (top-side and bottom-side, respectively)
and were centered at 4 degrees away from fixation.
In Experiment 1, stimuli were presented as a RSVP
sequence. Figure 2 shows a schematic of an example
trial sequence, with each box representing a time
interval. The RSVP sequence contained seven object
presentations separated by equal duration intervals with
a blank screen (only 3 object presentations are shown in
the figure). The first and last object presentations never
contained an object from the target category (serving as
pre- and post-masks). In the second to sixth intervals,
one object from the target category could appear amid
a stream of objects from other categories. Over the
course of the entire sequence, there was a 50% chance

of a target object appearing within the stream at a given
stimulus location. This probability was independent for
the two locations: that is, the presence of a target object
in one location gives no information about the presence
of a target object in the other location. The only
dependency between locations was that in trials with a
target present in both locations, the targets appeared
in the same interval to make switching ineffective. All
other stimuli, including masks, were randomly chosen
from nontarget categories. The post-mask stayed
on the screen for 700 ms, at which time a brief tone
accompanied the response prompt. The post-mask was
replaced by a blank as soon as there was a response.

Conditions
Stimuli were presented in three different conditions,

which were blocked:
In the single-task condition, there was a single task

to perform on each trial. Objects were presented in two
locations, but only one location was relevant. A label at
the beginning of a block indicated whether the relevant
location was on the top or bottom side of the display;
the relevant location stayed the same for the duration
of the block. Participants judged the object in the cued
location only.

In the dual-task condition, there were two tasks to
perform on each trial. Again, objects were presented
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in two locations, but both locations were relevant and
participants judged the objects separately for each
location. If a target object was present in both locations,
the target objects were shown at the same time in the
sequence to make switching strategies ineffective. The
order of testing the two locations was randomized.

In the control single-stimulus condition, there was a
single task to perform on each trial. Participants saw
an object in only one location and judged the object in
that location. The relevant location stayed the same for
the duration of the block. The only difference from the
single-task condition was the absence of the irrelevant
stimulus. This condition was included to check for
crowding and similar interference effects.

Timing
Before the main experiment, the RSVP timing was

adjusted for each participant to achieve approximately
80% accuracy in the single-task condition by
manipulating the duration of the stimulus and blank
intervals. The stimulus and interval durations were
always identical and adjusted together. The mean
stimulus and interval duration across 12 participants
was 42 ms (individual timings ranged from 33 ms to
58 ms), and the resulting mean accuracy was 82% ± 1%
in the single-task condition. For the main experiment,
the same customized timing was used in all conditions.

It is possible for factors other than timing to affect
accuracy: for example, stimuli could be inherently
difficult to discriminate, or the RSVP paradigm could
be limited by a memory requirement. In a control
experiment, we verified that timing was a primary factor
limiting accuracy by increasing all interval durations
to 150 ms (for 2 early participants, the duration was
100 ms and 125 ms, respectively). Over 128 trials in
the single-task condition, average accuracy was 93.8%
± 1.4% (n = 12), only about 6% below perfect. Thus,
other phenomena, such as discrimination difficulty and
memory processes, limited accuracy only slightly.

Responses
Participants made unspeeded responses using one of

four buttons. They reported “yes” / “no” answers to the
core question: “on the prompted side, did any object
belong to the target category?” Participants also gave a
confidence rating (“likely” or “guess”) associated with
their report. Specifically, the four buttons represented
the following responses: “likely no,” “guess no,” “guess
yes,” and “likely yes.” Button layout was horizontal,
orthogonal to the vertical stimulus layout. Responses
about the top location were arranged along the top row
of a keypad; responses about the bottom location were
arranged along the bottom row of a second keypad.
After the response, feedback was given in the form of
a high- or low-frequency tone for correct and incorrect

responses, respectively. Feedback for the responses in
the dual-task condition was provided only after both
responses were given.

Design
The experiment was carried out in sessions of six

blocks of 16 trials: two blocks of dual task; two block
of single task, one cued to the top location and one
cued to the bottom location; two blocks of single
stimulus, one cued to the top location and one cued
to the bottom location. Trials within each block had
the same target category and the order of blocks
was randomized for each session. Each session took
about 15 minutes to complete. A complete experiment
included at least 38 sessions for a total of at least 1188
trials per task condition.

Analysis
Accuracy was measured as the percentage of area

under the receiver operating characteristic (ROC). This
metric has properties similar to two traditional accuracy
measures: like percent correct, it is bounded by 50%
(chance accuracy) and 100% (perfect accuracy); and
like d’, it is an unbiased measure of accuracy. The ROC
curves were constructed using the confidence ratings
reported by the participants. All accuracy results are
reported as mean ± standard error of the mean. For
significance testing, all alpha levels were set to 0.05 and
all t-tests were two-tailed.

Number of participants
To determine the appropriate sample size (number

of participants), we examined data from four previous
dual-task experiments using RSVP and masked word
stimuli (White et al., 2018; White et al., 2020). In
each, participants (n = 10) performed judgments of
words with similar methods as the current study.
A power analysis was conducted to determine the
sample size needed to distinguish the predictions of the
fixed-capacity, parallel model and the all-or-none serial
model. This was done for the dual-task deficit and a
conditional accuracy measure of response correlation.
Our calculations assumed alpha and beta errors of
0.05 (power of 95%). The estimated minimum sample
size was five for the dual-task deficit and eight for the
conditional accuracy measure. To be conservative,
we used a minimum sample size of 10. In practice,
we collected data from a few additional participants,
for a total of 12 participants in Experiment 1 and
11 participants in Experiment 2.
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Figure 3. Attention operating characteristic for Experiment 1.
Observed behavioral accuracy, measured as percent area under
the ROC curve, in single (blue) and dual (red) tasks. Error bars:
standard error of the mean. Solid line: prediction of the
independent parallel model. Dashed line: prediction of the
all-or-none serial model. Dotted curve: prediction of the
fixed-capacity parallel model.

Main results

Dual-task deficit
Accuracy in the semantic categorization task was

worse for categorizing two objects (dual-task accuracy:
70.0% ± 0.8%) compared with categorizing one object
(single-task accuracy: 82.1% ± 1.1%). The difference
is the dual-task deficit: 12.1% ± 1.0% (significantly
different from zero, t(11) = 12.3, p << 0.001).

Figure 3 shows average accuracy in the form of
an attention operating characteristic (Sperling &
Melchner, 1978). Accuracy (measured as area under
ROC, see Methods section) for the task in the top
location (y-axis) is plotted against accuracy for the
task in the bottom location (x-axis). The blue circles
on the axes indicate the single-task accuracy for the
respective locations; the red square indicates accuracy
for each of the locations in the dual-task condition. The
overlaid lines correspond to the predictions of the three
benchmark models: the independent parallel model
(solid line); the all-or-none serial model (dashed line);
and the fixed-capacity parallel model (dotted line). The
observed results are inconsistent with the independent
parallel model and the fixed-capacity model because the
dual-task deficit is larger than the deficit predicted by
either of these models. The results are also inconsistent
with an all-or-none serial model because the dual-task
deficit is smaller than the deficit it predicts. In summary,

there was a large dual-task deficit in the semantic
categorization task; but the magnitude of the observed
deficit was smaller than predicted by an all-or-none
serial model.

Response correlation
In the presence of a serial bottleneck, the observer in

a dual-task trial can perform the task for the stimulus
in one location, and not in the other. To extract this
hallmark of a bottleneck, we use a trial-by-trial analysis
of response correlation. Specifically, an all-or-none
serial process predicts a negative correlation between
the accuracy of responses. Accuracy should be higher
for a response in one location if the response in the
other location was wrong, rather than correct. One
way to quantify such a response correlation is to
use a conditional accuracy measure (see White et
al., 2018; White et al., 2020). Conditional accuracy
can be calculated only on dual-task trials. Responses
are separated into two sets of trials: one set where
the response about the other stimulus in the same
trial was correct, and another set where the response
about the other stimulus in the same trial was
wrong. Then, accuracy is calculated separately for
each set.

Figure 4 shows accuracy conditioned on whether
the response about the stimulus in the other location
was correct (ordinate) or wrong (abscissa). The dashed
line shows the conditional accuracy predicted by the
all-or-none serial model: higher accuracy when the
response about the other stimulus was wrong than when
the response about other stimulus was correct (this
prediction was generated using simulated dual-task
trials from an all-or-none serial model; for details;
see White et al., 2018). Neither of the parallel models
predicts any difference in conditional accuracy (solid
line). In dual-task trials, the observed conditional
accuracy was higher when the response on the other
side was wrong (70.7%) than when the response on
the other side was correct (68.1%), a difference of
−2.5% ± 1.1% (significantly different from zero, t(11)
= −2.24, p = 0.046). This negative correlation had a
smaller magnitude than predicted by the all-or-none
serial model, but it was reliably different from zero, the
prediction of the parallel models. In summary, there
was a negative conditional accuracy difference that is
often considered to be a signature of serial processing.

Secondary results

Effect of crowding from the second stimulus
In the single-stimulus condition, participants

performed the single task with stimuli presented only in
the relevant location. Accuracy in the single-stimulus
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Figure 4. Conditional accuracy in Experiment 1. Observed
behavioral accuracy, measured as percent area under the ROC
curve, in dual-task trials conditioned on whether the response
about the other side was wrong (abscissa) or correct (ordinate).
Error bars: standard error of the mean. Solid line: prediction of
both parallel models. Dashed line: prediction of the all-or-none
serial model.

condition (83.0%± 0.9%) was slightly better, but similar
to accuracy in the single-task condition (82.1% ± 1.1%).
The difference was 0.9% ± 0.5% (not significantly
different from zero, t(11) = 1.98, p = 0.073). Thus, there
was no evidence of crowding in this experiment.

Effect of response order in the dual task
In the dual task, one of the two locations was

randomly chosen as the first response, and the other
as the second response. Accuracy for the first response
(70.0% ± 0.8%) was similar to accuracy for the second
response (70.0% ± 1.0%). The difference was 0.04%
± 0.8% (not significantly different from zero, t(11) =
0.049, p = 0.96). Thus, neither memory nor response
interference appeared to differentially affect the second
response.

Effect of stimulus order in the RSVP sequence
Across all trials and participants, the accuracy in each

interval that could contain a target was: 73.3%, 74.2%,
73.4%, 70.2%, and 70.9% (listed in chronological order).
There was a small advantage for detecting a target
object in the first possible stimulus interval (73.3% ±
1.0%) compared with the last possible stimulus interval
(70.9% ± 1.4%). This difference was small (2.4% ±

1.3%) and not significant (t(11) = 1.83, p = 0.094). Such
small “primacy” effects are often reported for RSVP
procedures (Coltheart, 1999).

Two-target effects
In some cases, target detection can be affected by

the presence of another target in the display (Duncan,
1980). The difference between trials where the other
stimulus was a distractor and trials where the other stim-
ulus was a target was 3.4%± 1.7% in the single-task con-
dition (significantly different from zero, t(11)= 1.95, p=
0.08), and 3.8% ± 0.8% in the dual-task condition (sig-
nificantly different from zero, t(11) = 4.64, p < 0.001).
These differences are consistent with a performance
deficit in the presence of another target in the display.
However, both serial and parallel models can give rise
to such effects; see Appendix and General Discussion.

Discussion

In summary, in the first experiment, participants
cannot categorize two objects as well as they can
categorize one. The large dual-task deficit and the
negative correlation between responses were generally
consistent with, but smaller than, the predictions of an
all-or-none serial model. Our findings also reject the
fixed-capacity parallel model. There was a two-target
effect, but the results were not mediated by other
stimulus- and task-related factors, such as crowding
or response order effects (see Appendix for similar
analyses of response bias and stimulus location). Before
considering the implications of these results more
deeply, we present a second version of the experiment
to test the generality and reliability of these results.

Experiment 2: Masking

In the first experiment, we used brief stimulus
durations and RSVP to differentiate predictions
of serial and parallel models in a semantic object
categorization task. In this second experiment, we
asked whether removing the RSVP component of the
task can produce the same results. Specifically, brief
masked presentation of a single object was used, similar
to Experiment 2 of White et al. (2018) with words.
This change helps address potential confounds arising
from the temporal uncertainty of target appearance
in the RSVP stream, or some effect of interference or
overload in short-term memory (Akyurek & Hommel,
2005), whereas the remaining masks continue to make
the task challenging.
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Figure 5. Masking procedure in Experiment 2. Trial sequences for the single task (A, top location cued) and dual task (B, both locations
cued) are shown. Unlike in Experiment 1, the target can occur in only one time interval. In this example, the observer cue color is red.
Mean ISI durations shown; these were adjusted separately for each observer to produce approximately 80% accuracy in the single
task.

Methods

The methods were the same as in Experiment 1, with
the exception of differences described below.

Participants
For Experiment 2, 11 paid participants (5 men

and 6 women) were recruited from the University of
Washington and greater Seattle community. Seven of
these participants also completed Experiment 1. In
Experiment 2, the participants completed a minimum
of 1129 trials per condition.

Procedure
In Experiment 2, a single stimulus display was

presented with pre- and post-masks, rather than an
RSVP sequence. Figure 5 shows a schematic of an
example trial sequence, with each box representing a
time interval. In this experiment, the display sequence
contained three object presentation intervals separated
by intervals with a blank screen. The first and last object
presentation intervals never contained an object from
the target category (serving as pre- and post-masks). In
the second interval, one object from the target category
could appear. There was a 50% chance of a target object
appearing, independently at each stimulus location:
that is, the presence a target object in one location gives
no information about the presence of a target object in

the other location. The stimuli shown in mask intervals
were randomly chosen from nontarget categories.

Timing
The object presentations were fixed in duration:

pre-mask = 66 ms, stimulus interval = 33 ms, and
post-mask = 66 ms. Timing of both intervening
blank intervals was adjusted for each participant to
achieve approximately 80% accuracy in the single-task
condition. The mean interval duration across 11
participants was 48 ms (range: 25 ms – 91 ms), and
the resulting mean accuracy was 80% ± 1% in the
single-task condition. In a control experiment, we
verified that timing was a primary factor limiting
accuracy by setting the blank interval duration to 400
ms in a short session of 128 trials. With this longer
blank interval duration, average accuracy in the single
task was 95.2% ± 1.3% (n = 8 participants). Thus,
like in Experiment 1, other phenomena, such as
discrimination difficulty, did not limit accuracy with
longer intervals.

Main results

Dual-task deficit
Accuracy in the semantic categorization task was

worse for categorizing two objects (dual-task accuracy:
68.2% ± 1.1%) compared with categorizing one
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Figure 6. Attention operating characteristic for Experiment 2.
Observed behavioral accuracy, measured as percent area under
the ROC curve, in single (blue) and dual (red) tasks. Error bars:
standard error of the mean. Solid line: prediction of the
independent parallel model. Dashed line: prediction of the
all-or-none serial model. Dotted curve: prediction of the
fixed-capacity parallel model.

object (single-task accuracy: 80.2% ± 1.3%). The
dual-task deficit was 11.9% ± 1.2% (t(10) = 9.85,
p << 0.001). Figure 6 shows average accuracy in
Experiment 2 in the form of an attention operating
characteristic. As in Figure 3, accuracy for the task
in the top location is plotted against accuracy for the
task in the bottom location. The blue circles on the
axes indicate the single-task accuracy for the respective
locations; the red square indicates accuracy for each of
the locations in the dual-task condition. The overlaid
lines correspond to predictions of three theoretical
models: the independent parallel model (solid line);
the all-or-none serial model (dashed line); and the
fixed-capacity parallel model (dotted line). The results
are inconsistent with the independent parallel model
and the fixed-capacity parallel model because the
dual-task deficit is larger than the deficit predicted by
either of these models. The results are also inconsistent
with an all-or-none serial model because the dual-task
deficit is smaller than the deficit it predicts. In summary,
there was a large dual-task deficit, but it was smaller
than that predicted by the all-or-none serial model.

Response correlation
Figure 7 shows accuracy conditioned on whether the

response about the stimulus in the other location was
correct (ordinate) or wrong (abscissa). The dashed line

Figure 7. Conditional accuracy in Experiment 2. Observed
behavioral accuracy, measured as percent area under the ROC
curve, in dual-task trials conditioned on whether the response
about the other side was wrong (abscissa) or correct (ordinate).
Error bars: standard error of the mean. Solid line: prediction of
both parallel models. Dashed line: prediction of the all-or-none
serial model.

shows the prediction of the all-or-none serial model:
higher accuracy when the response about the stimulus
was wrong (dashed line). Neither of the parallel models
predicts any difference in conditional accuracy (solid
line). Accuracy in the dual-task condition was higher
when the response on the other side was wrong (68.1%)
than when the response on the other side was correct
(66.4%). This difference of −1.6% ± 1.3% was not
reliable (t(10) = −1.26, p = 0.25). In summary, the
difference in conditional accuracy was consistent in sign
with the prediction of the all-or-none serial model, but
not reliably different than zero.

Secondary results

Effect of crowding from the second stimulus
Accuracy in the single-stimulus condition (83.0%

± 1.4%) was similar to accuracy in the single-task
condition (80.2% ± 1.3%). The difference was 2.8% ±
0.6% (significantly different from zero, t(10) = 4.47, p =
0.0012). Thus, displaying two stimuli had a small effect
in this experiment.

Effect of response order in the dual task
In the dual task, accuracy for the first response

(68.9% ± 1.2%) was the similar to accuracy for the
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second response (67.7% ± 1.1%). The difference was
1.3% ± 0.5% (significantly different from zero, t(10) =
2.58, p = 0.027). Thus, memory or interference had a
small effect on the second response; however, it was
much smaller than the dual-task deficit.

Two-target effects
The difference between trials where the other stimulus

was a distractor and trials where the other stimulus was
a target was 3.4% ± 2.3% in the single-task condition
(not significantly different from zero, t(10) = 1.46, p
= 0.17) and 3.6% ± 1.3% in the dual-task condition
(significantly different from zero, t(10) = 2.67, p = 0.02).
These differences are consistent with a performance
deficit in the presence of another target in the display.
However, both serial and parallel models can give rise
to such effects; see Appendix and General Discussion.

Discussion

In Experiment 2, we found that participants
categorized two visual objects worse than they
categorized one. The large dual-task deficit was
consistent with, but less than predicted by, an
all-or-none serial model. Although the response
correlation was negative (as predicted by serial models)
it was not significantly different from the parallel
processing prediction of zero correlation. There was a
two-target effect, but the divided attention effects were
not mediated by any other stimulus- and task-related
factors observed in this study, such as crowding or
response order (see Appendix for similar analyses of
response bias and stimulus location).

The magnitude of the dual-task deficit was similar
in Experiments 1 and 2: both were larger than the
fixed-capacity parallel model prediction, and smaller
than predicted by an all-or-none serial model. This
result is distinct from the observations for both simple
feature judgments and word judgments (see Summary
of Results below). The sign of the response correlation
was the same in Experiments 1, and 2, consistent with
a serial bottleneck; but for Experiment 2, it was not
statistically different from the prediction of parallel
models. In sum, three of four lines of evidence reject
the fixed-capacity parallel model for visual object
processing.

General discussion

Summary of results

In this study, we asked whether the semantic
categorization of nameable objects shows large

effects of divided attention, like those observed for
categorization of words. We performed the experiment
using two presentation paradigms, RSVP and masking,
and found similar divided attention effects in both.
Specifically, there was a large dual-task deficit, and a
negative correlation in responses. Both findings reject
the fixed-capacity parallel model, and are smaller
than the prediction of an all-or-none serial model.
Figure 8 summarizes these two metrics for seven
studies of objects, words, and simple features (White
et al., 2018; White et al., 2020; all studies used the
same metrics). In Figure 8A, the x- and y-axes show
single- and dual-task accuracy, respectively. The crossed
squares represent results from experiments involving
judgments of a simple feature (color); the open
diamonds represent results from experiments involving
semantic categorization of words; the closed circles
represent results from the experiments in the current
study; and the lines represent the predictions of the
benchmark models. Results from our Experiments 1
and 2 fall nearest the results from word judgments,
indicating that words and objects show a similar large
dual-task deficit under divided attention. In Figure 8B,
the x-axis shows the magnitude of the dual-task deficit
and the y-axis shows the response correlation for the
same studies. Results from our Experiments 1 and 2 fall
in between the results from simple feature judgments
and the results from word judgments. Thus, while object
judgments show a large dual-task deficit, overall, the
divided attention effects are smaller than found with
words.

Working hypothesis

Our working hypothesis is that semantic
categorization of nameable objects is constrained by a
serial bottleneck in perceptual processing. Because the
results fell short of the benchmark all-or-none serial
model prediction, we considered a more general model
that can predict any magnitude of dual-task deficit
or negative correlation. The serial model with partial
switching represents a bottleneck where processing
can occur for only one stimulus at a time. Moreover,
on some proportion of trials there is enough time to
switch to processing a second stimulus. For example, if
100% of trials allow processing of the second stimulus,
the prediction becomes identical to the independent
parallel model (no dual-task deficit). Conversely, if
0% of trials allow processing of the second stimulus,
the prediction becomes identical to the all-or-none
model with no switching (a large dual-task deficit).
Intermediate proportions of trials with processing of
the second stimulus produce intermediate dual-task
deficits. Changing the specific proportion of trials in
which only one stimulus is processed allows the model
to predict any magnitude of the dual-task deficit; and
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Figure 8. Summary of divided attention effects in object,
feature, and word judgments. (A) Relationship between single-
and dual-task performance. (B) Relationship between dual-task
deficit and conditional accuracy. Solid circles: object judgments
(present study). Crossed squares: color judgments (White et al.,
2018; White et al., 2020). Open diamonds: word judgments
(White et al., 2018; White et al., 2020). Dotted line: no
difference in conditional accuracy predicted by parallel models.
Error bars: standard error of the mean.

we can interpret our results in this context by estimating
this proportion from the model using the observed
performance. The dual-task deficit magnitude in both
experiments can be described by switching on about
20% of trials, and processing of only one stimulus on

the remaining 80% of trials. The observed negative
correlation was consistent with the predictions of a
partial switching model where only one stimulus was
processed on about 60% of trials ( Experiment 1) or
50% of trials (Experiment 2). More generally, the results
are consistent with a model where in at least half of
the trials only one stimulus can be processed. By this
interpretation, object processing does not rely on only
parallel processes, like simple features, and instead is
constrained by a serial bottleneck. Objects differ from
words in that more than one object can be processed on
some trials despite the brief masked displays.

This working hypothesis can be further extended to
account for the observed two-target effect. Sometimes
this effect is taken as a sign of parallel processing
and “late selection” (Duncan, 1980). In fact, a small
modification of the partial switching model can account
for the two-target effect: a reduction in the proportion
of trials in which the second stimulus is processed
after a target has been processed, compared with after
a distractor. In the extreme, a second stimulus might
be processed only on trials in which a distractor is
processed first. An alternative account is to adapt
the two-stage models proposed by Duncan (1980) or
Corbett and Smith (2017) by appending them to a first
stage consisting of the partial switching model. When
the first stage processes two targets, information about
the targets is subject to target-specific interference
at the second stage (e.g. limited memory encoding),
producing the two-target effect. Without two targets,
there would be no effect of the second stage. Either
of these accounts can yield the modest 3% two-target
effects found in the current experiments.

An alternative hypothesis

An alternative to our working hypothesis is that
semantic categorization of objects is mediated by some
kind of limited-capacity parallel process. While the
divided attention effects for objects are larger than
the predictions of the two parallel models we used as
benchmarks, a discrete fixed-capacity parallel model
can capture the magnitude of the dual-task deficit. This
model is similar to the fixed-capacity parallel model,
but information from the stimulus informs two discrete
states: “detect target” or “detect no target” (Luce, 1963;
Swagman et al., 2015; see Appendix for details). The
discrete model predicts a dual-task deficit magnitude
similar to what we observed in this study. However, like
other parallel models, the discrete model predicts no
response correlation. To predict a negative correlation
between the two responses, one can add parameter
variability to the attention parameter that assigns the
relative number of samples to one task or the other
task (see the section at the end of the Appendix on
response correlation). If this parameter varies from trial
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Figure 9. Summary of the relevant models. Arrows lead from
more general to more specific models.

to trial, then some trials have higher performance for
one response and other trials have higher performance
for the other response. This modification can predict
the observed small negative correlation between the two
responses. But unlike the other changes to the model,
this change is ad hoc.

This alternative hypothesis can also be extended
to account for the two-target effect. One can adapt
the two-stage models proposed by Duncan (1980)
or Corbett and Smith (2017). These models add a
second stage (e.g. limited memory encoding) to the
simple parallel perception models described here. For
example, after a target is processed, there is a memory
encoding process that delays processing of additional
targets, but not distractors. Alternatively, the two-target
effect can be accounted for by attenuating the gain of
a stimulus in a target context, relative to a distractor
context (analogous to crosstalk, but opposite in sign).
In summary, there are many ways to modify a parallel
model to yield the two-target effects found in the
current studies. Our larger point is that by themselves,
two-target effects are not diagnostic for distinguishing
between parallel and serial models.

Figure 9 summarizes the specific models considered
and tested here in the context of other general models
of processing. In the present study, we provide evidence
rejecting all of the common specific models suggested
for object processing: the independent parallel model,
the fixed-capacity parallel model, and the all-or-none
serial model. Our working hypothesis consists of a
serial model with partial switching. This model allows
switching on some proportion of trials. It provides the
most parsimonious explanation of the results. However,
we cannot yet rule out an alternative: a discrete
fixed-capacity parallel model, with an ad hoc addition
such that on some trials attention is allocated unequally
between the two stimulus locations. Although the

current data cannot be used to definitively distinguish
these possibilities, future studies could be targeted
to accomplish this: for example, a redundant-target
experiment could provide further evidence for or
against serial processing (Mullin, Egeth, & Mordkoff,
1988; Mullin & Egeth, 1989; Shepherdson & Miller,
2014).

Stepping back from the details of the models,
this study informs a larger set of questions about
perception within a single fixation (or single brief
display). Although there are many examples of likely
parallel processing (e.g. contrast detection; Bonnel et
al., 1992; Scharff et al., 2011), there are few examples
of likely serial processing. Early work suggesting
serial processing in visual search has been rejected
both because of mimicry between serial and parallel
processes (e.g. Townsend, 1990; Palmer et al., 2000)
and because the detailed predictions of serial models
have not been satisfied (e.g. Ward & McClelland,
1989). In contrast, White et al. (2018) proposed that
the perception of words is a good example of serial
processing. Evidence from dual-task paradigms in that
study builds on the important existing evidence from
the redundant target experiments of Mullin and Egeth
(1989). The research in this article extends this example
to nameable objects. We intend future studies to further
evaluate the case of words and objects as an example of
perception limited by a serial process.

Relationship to other behavioral studies

The results of our study are compatible with previous
literature suggesting that processes governing object
perception have limited capacity (Potter & Fox, 2009;
Scharff et al., 2011). Our results are similar to but
smaller than the effects of divided attention reported
for the semantic categorization of words. White et al.
(2018 and 2020) found a large dual-task deficit and a
negative correlation consistent with the prediction of
the all-or-none serial model. The methods used in the
present study are especially compatible to allow a direct
comparisons of effect magnitudes to those found by
White and colleagues, as summarized in Figure 8.

We see our results as broadly compatible with the
literature on the automaticity of perceptual processes
(Shiffrin & Schneider, 1977). Our experiments use
familiar objects, but the specific images are not
particularly familiar. While one might find parallel
processing of a particular familiar feature, it is less
likely that there would be parallel processing of the
diverse images of a familiar object. Therefore, we see no
conflict between finding evidence of serial processing
for recognition of familiar objects and theories of
automaticity.

A different point of contact to this literature is
Cousineau and Shiffrin (2004). In this study, the authors
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created a task with difficult discriminations involving
the relative position of multiple features (4 spokes
around a central circle). Their goal was to find a task
that required serial processing in visual search. Using a
response time paradigm, the results are among the most
convincing for serial processing in visual search. Thus,
that paper is one of the closest response time analogues
to the current study.

In contrast to these studies, recent work with natural
scene stimuli has proposed that processing in complex
visual recognition tasks might be parallel. For example,
Thorpe and colleagues (Thorpe, Fize, & Marlot, 1996)
investigated the speed of visual recognition using
objects in natural scenes. A natural scene stimulus
was presented briefly for 20 ms; and the task was to
report the presence of an animal in that scene by
releasing a button. Participants were very accurate
while maintaining fast reaction times, which the authors
suggest reveals an underlying rapid and efficient process
for recognition of objects in complex scenes. We point
out that although objects might be highly discriminable,
this observation does not necessarily imply a reduced
effect of divided attention.

Relevant to divided attention, Rousselet and
colleagues used the same task to ask whether this
processing occurs in parallel when two or four scenes
are presented simultaneously (Rousselet, Thorpe, &
Fabre-Thorpe, 2004). The authors observed set-size
effects in accuracy and response time when multiple
scenes were presented simultaneously. They argued
that these divided attention effects were consistent
with an unlimited-capacity parallel model with late
selection, but the authors did not consider, nor rule
out, alternative serial models. In summary, Rousselet
and colleagues make the case that parallel processes
can plausibly underlie object recognition in their
experiment, but do not distinguish parallel and serial
model predictions for their task. Indeed, that remains
a largely unsolved problem for such visual search tasks
that use response time.

The neural basis of divided attention effects

Visual word form area (VWFA) has been proposed
as the locus of the serial bottleneck for words (White et
al., 2019). Although simple features can be processed
using information in earlier visual cortex (from V1
to V4), word processing depends on VWFA. White
and colleagues present evidence that signals in the
anterior part of VWFA can represent only one word at
a time. This is a candidate neural correlate of a serial
bottleneck, but does not rule out additional bottlenecks
elsewhere in processing, for example, in semantic
processing within the language areas.

Analogous to the VWFA, the candidate locus for a
serial bottleneck for objects is likely to be in the ventral

pathway beyond retinotopic cortex. One candidate is
lateral occipital complex (LOC). In this area, signals
represent complex object characteristics such as
category, and thus underlie more complex judgments
than simple features (Kourtzi & Kanwisher, 2000; Eger,
Ashburner, Haynes, Dolan, & Rees, 2008). Retinotopy
is weaker and receptive field sizes are larger in this area
than in early visual cortex, opening up the possibility
that two objects cannot be represented at the same time;
that is, neural responses carry information about only
one of the two objects (Larsson & Heeger, 2006; Cichy,
Chen, & Haynes, 2011). Another candidate is anterior
or anteromedial temporal cortex. These regions are
downstream of LOC, and are known to be involved in
object-based and semantic processing (Moss, Rodd,
Stamatakis, Bright, & Tyler, 2005; Patterson, Nestor, &
Rogers, 2007).

Comparison of processing for words and objects

Is processing different for words and objects? Several
aspects of word processing may be unique; for example,
word judgments require lexical access, whereas many
object judgments do not (although there may be some
overlap for object naming tasks; Biggs & Marmurek,
1990). Word processing also appears to have a visual
hemifield effect: English words shown in the right
hemifield are recognized more effectively than in the left
(Chiarello, 1988; Bub & Lewine, 1988; Brysbaert, Vitu,
& Schroyens, 1996; Simola, Holmqvist, & Lindgren,
2009). Nameable objects generally do not show such
asymmetry (Biederman & Cooper, 1991; but see
McAuliffe & Knowlton, 2001).

Word and object recognition processes also appear
to be nonoverlapping at the conceptual processing
level. For example, Endress and Potter (2012)
asked participants to recognize a scene or its verbal
description while performing a simultaneous secondary
task: scenes were presented together with words, or
non-word stimuli. Scene understanding was impaired
only when the secondary task involved non-word
stimuli, suggesting that the processing of words is
distinct from the processing of scenes.

Conclusion

In this study, we examined whether object perception
showed large divided attention effects like those found
for words, or little or no divided attention effects like
those found for simple features. We used a semantic
categorization task with nameable object stimuli and
two presentation paradigms: RSVP and brief masking.
There was a large divided attention effect and a negative
correlation in responses for the semantic categorization
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of two nameable objects. These results are consistent
with a serial model in which only one stimulus is
processed on most, but not all trials. The results are also
consistent with an alternative discrete fixed-capacity
parallel process with differential allocation of attention.
In conclusion, the effects of divided attention for
objects are smaller than observed for words, but might
still reflect a serial bottleneck in object processing.

Keywords: divided attention, serial processing, object
perception
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Appendix

Performance metrics

Performance was calculated as percent area under
the Receiver Operating Characteristic (ROC) curves.
Like percent correct, this metric ranges from 50%
(chance) to 100% (perfect); and like d’, it is an unbiased
estimate of performance. These curves were constructed
by plotting proportion of hits against the proportion
of false alarms. The aggregate ROC curves for each
experiment are shown in Figure A1.The x-axis shows
the false alarm rate, and the y-axis shows the hit rate.
The filled blue circles represent single-task data and the
open red squares represent dual-task data. The positive
diagonal represents chance performance (50% of the
area lies under this diagonal).

As usual for rating data, the points defining each
curve are derived from differentially grouping the
participant responses (“likely yes”, “guess yes”, “guess
no”, and “likely no”) to produce different criterion
levels for treating a response as a “yes”. For example,
treating the first three responses as a “yes” produces the
point towards the top of the plot; treating the first two
responses as a “yes” produces the middle point; and
treating only the first response as a “yes” produces the
point toward the left of the plot. Lines are connected
from the origin (0,0) through the three points and then
to (1,1). The percent area under these connected lines
defines our measure of accuracy. The effect of divided
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Figure A1. Average ROC curves for Experiments 1 and 2 (A and
B, respectively). Single (blue) and dual (red) tasks are shown.
Error bars: standard error of the mean. AUC: Area under the
curve.

attention is a shift of the entire ROC curve in the dual
task, relative to the single task; and the area under
the dual-task curve is smaller than the area under the
single-task curve.

These aggregate curves are representative of
individual data: participants were largely consistent
in their confidence ratings, as suggested by the small
error bars. Most of the difference between individual

participants was in their use of the more extreme
rating “likely no”. Across participants, there was also
a consistent bias towards responding “no” more often
than “yes” (unbiased performance produces points
along the negative diagonal; see below for a detailed
analysis of response bias in each experiment).

Additional secondary results for Experiment 1

Effect of response bias. The percent of “yes”
responses was similar in the single- and dual-task
conditions (42.8% ± 1.4% and 42.9% ± 1.5%,
respectively). The difference was 0.1% ± 1.5% (not
significantly different from zero, t(11) = 0.07, p = 0.94).
Thus, dividing attention did not affect response bias.

Effect of stimulus location. Accuracy was similar for
both locations, both in the single-task condition (top
location: 81.6% ± 1.3% vs bottom location: 82.6% ±
1.1%) and in the dual-task condition (top location:
70.1% ± 1.0% vs. bottom location: 69.9% ± 1.3%). The
aggregate difference was 0.4% ± 1.2% (not significantly
different from zero, t(11) = −0.29, p = 0.78).

Additional secondary results for Experiment 2

Effect of response bias. The percent of “yes”
responses was similar in the single- and dual-task
conditions (39.3% ± 1.4% and 42.4% ± 2.1%,
respectively). The difference was 3.1% ± 1.8% (not
significantly different from zero, t(10) = 1.74, p = 0.11).
Thus, the task conditions had little or no effect on
response bias.

Effect of stimulus location. Accuracy was similar for
both locations, both in the single-task condition (top
location: 79.6% ± 1.4% vs bottom location: 80.7% ±
1.2%) and in the dual-task condition (top location:
69.2% ± 1.6% vs. bottom location: 67.2% ± 1.5%). The
aggregate difference was 0.4% ± 1.2% (not significantly
different from zero, t(10) = 0.32, p = 0.76).

Two-target effect or a congruency effect?

Among the results described for each experiment
was an analysis of possible two-target effects, which
compared accuracy in one location when there was
a target present in the other location, to accuracy
when there was no target present in the other location.
For both experiments and for both single and dual
tasks, this comparison yielded between 3 and 4%
worse performance in the context of a target. Such a
comparison is a common way to measure two-target
effects (e.g. Duncan, 1980). However, this analysis
does not clearly distinguish between two-target effects
(Duncan, 1980) and congruency effects (Navon &
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Irrelevant target context (T) Irrelevant distractor context (D) T-D

Relevant target (hits) 57.0 ± 1.3% 62.8 ± 1.6% −5.8 ± 1.3%
Relevant distractor (correct rejections) 72.5 ± 1.8% 75.7 ± 2.4% −3.1 ± 1.7%

Table 1. Experiment 1: Percent Hit and Correct Rejection by Target or Distractor Context

Irrelevant target context (T) Irrelevant distractor context (D) T–D

Relevant target (hits) 57.6 ± 2.2% 59.5 ± 2.5% −2.0 ± 1.8%
Relevant distractor (correct rejections) 68.7 ± 2.8% 78.7 ± 2.9% −10.1 ± 3.0%

Table 2. Experiment 2: Percent hit and correct rejection by target or distractor context.

Miller, 1987). Moreover, it does not show that the
effect is specific to there being two targets, rather than
a general interference effect of a target on any other
stimulus.

Both the two-target effect and the congruency effect
are context effects of one location on the other. They
differ in whether two targets hurt performance or
improve performance. To distinguish these possibilities,
one must break down the results by both the different
contexts and by the relevant stimulus. Because targets
and distractors must be considered separately, we must
distinguish hits and correct rejections rather than use a
measure that combines them, such as the area under the
ROC. The results of such an analysis for Experiment
1 are presented in Table 1. For simplicity, we consider
in this analysis only dual-task trials. The rows specify
the relevant stimulus: target or distractor. The columns
specify the irrelevant stimulus context present on the
other side of the display for the other task: target (T)
or distractor (D). The final column is the difference in
performance for a stimulus with a target context minus
performance for a stimulus with a distractor context
(T-D).

For Experiment 1, the comparison of different
contexts shows a deficit for the target context compared
to the distractor context. To distinguish whether this
context effect is due to a two-target effect or to a
congruency effect, one must examine the upper right
cell: T-D for a relevant target. For a two-target effect,
the irrelevant target context reduces performance and
this cell should be negative. For a congruency effect, the
irrelevant target context matches the relevant stimulus
to improve performance and this cell should be positive.
The observed difference is a negative value of about 6%.
Furthermore, this difference is reliable (t(11) = −4.51,
p < 0.001). This is consistent with a two-target effect
rather than a congruency effect.

The difference in the lower right cell is harder to
interpret. A two-target effect that is specific to targets
predicts no difference, but a more general target

interference effect that also affects distractors predicts
a negative value. A congruency effect also predicts a
negative value in the lower right cell. Consequently,
based on this cell one cannot distinguish a congruency
effect from a more general target interference effect.
For this experiment, the result for this cell was
modestly negative, which does not distinguish the
possibilities.

For Experiment 2, the comparison of the different
contexts is shown in Table 2. As before, it shows a
deficit for the target context compared to the distractor
context. For the critical upper right cell, there is a
negative value of 2%. Thus, this experiment is also
consistent with a two-target effect rather than a
congruency effect. But in this case, the effect is not
reliable (t(10) = −1.11, p = 0.29). This experiment also
shows a relatively large difference in the lower right cell,
which is not consistent with the strict version of the
two-target effect which predicts zero for this cell. Thus,
the data suggest that a “pure” two-target effect cannot
account for the observed effects. The possibilities that
can account for the effects include a more general
target interference effect, or the combination of
a two-target effect and a congruency effect. More
extensive experiments are needed to sort out these
possibilities.

Serial model with partial switching

This is a generalized version of the all-or-none serial
model. It allows a mixture of trials where only one
stimulus is processed (all-or-none trials) and other trials
where both stimuli are processed (switching trials). This
model was implemented as described in White et al.
(2020).

When all trials are those in which only one stimulus
is processed, this model predicts the same magnitude of
dual-task deficit and difference in conditional accuracy
as the all-or-none serial model. When all trials are those
in which both stimuli are processed, this model predicts
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the same magnitude of effects as the independent
parallel model. For intermediate proportions of trials
in which only one stimulus is processed, this model
predicts intermediate effect magnitudes.

Discrete fixed-capacity parallel model

Models with discrete rather than continuous
representations have a long history. Early work is
reviewed in Green and Swets (1966) and a more recent
discussion is in Kellen, Erdfelder, Malmberg, Dube, and
Criss (2016). Our interest was sparked by Swagman et
al. (2015) that make the case for discrete states in word
identification. Perhaps object identification is similar.
Our extension of the discrete models combines ideas
from Luce’s (1963) two-state low-threshold model, and
Shaw’s (1980) sample size model.

The two-state, low-threshold model. To begin,
consider the idea of discrete states. Instead of
representing the relevant stimulus information by a
single continuous value as in signal detection theory,
the relevant information is represented by two discrete
states. For this model, the presence or absence of
the relevant stimulus (a target) is represented by a
corresponding detect state D or a no-detect state not-D.
The special feature of Luce’s (1963) model, relative to
the well-known high-threshold model, is that errors can
occur when in either of the states. Given a target, the
probability of being in state D is qt and the probability
of being in state not-D is 1-qt. Given a distractor, the
probability of being in state D is qd and the probability
of being in state not-D is 1-qd. This model results in
an ROC with a single point at the location defined by
the probability of hit qt and the probability of a false
alarm qd. If qd = 0, then this model simplifies to the
high-threshold model.

To allow for response bias, one needs to add a
guessing mechanism. A guessing parameter serves
the same function as the criterion parameter in signal
detection models. Because of the two states in this
discrete model, there are two kinds of guesses. If in
the detect state, one might guess “no” and if in the
not-detect state one might guess “yes”. Thus, one
can adjust response bias by modifying the responses
when in the detect state or by modifying the responses
when in the no-detect state. We assume an optimal
guessing strategy. The strategy can be understood by
starting with the extreme case in which one always
responds “no” regardless of the state. What kind of
guess should one make given this start point to optimize
performance? As long as performance is above chance,
the better strategy is to add “yes” responses when in the
detect state. Once one is always responding “yes” when
in the detect state and always responding “no” when
in the no-detect state, one has reached the point on
the ROC defined by (qd, qt). To further increase “yes”

responses, the only choice is to guess “yes” when in
the not-detect state. In summary, the optimal guessing
strategy is to guess “no” from the detect state when
being conservative about responding “yes”, and to
guess “yes” from the no-detect state when being liberal.
This guessing strategy can be implemented with a
guessing parameter g that goes from 0 to 1 and switches
from conservative to liberal guessing at the value g = .5.
Similar to Kellen et al. (2016), the predicted hits and
false alarms are:

phit = qt + qt (2g− 1), if g < 0.5,
= qt + (1 − qt ) (2g− 1), if g >= 0.5, and

pFA = qd + qd (2g− 1), if g < 0.5,
= qd + (1 − qd ) (2g− 1), if g >= 0.5.

(1)

A special case with a single sensitivity parameter.
Our next step is to identify the sensitivity parameter
of the model that varies with the stimulus. Luce
(1963) intentionally did not specify the role of his two
parameters to keep the model general. But for our
purpose, we want a simple model in which there is one
parameter that describes sensitivity as a function of
the stimulus and then compare it to signal detection
theory with its single sensitivity parameter (d’). One
possibility is to let qt vary with the stimulus and fix
qd. But as discussed by Krantz (1969) that is too
restrictive and prevents one from describing a full range
of performance by varying qt with the stimulus and
keeping a fixed qd. Instead, we restrict the model to
be symmetric such that qd = 1 − qt. This restriction
is intended to be analogous to signal detection
theory when simplified by assuming equal-variance
distributions.

The next step is to add further assumptions about
how the model depends on the stimulus. For the
high-threshold model, the initial state without the
target is always the not-detect state. As a function of
the stimulus, there is some probability of entering the
detect state. For our symmetrical case, we assume the
probability of the initial states is equal. The probability
of entering the detect state is denoted by the sensitivity
parameter d which can vary from 0 to 1. Specifically,
given a target, d is the probability of entering the
detect state D. Otherwise one remains in an initial state.
Similarly, given a distractor, d is the probability of
entering the no-detect state and otherwise one remains
in an initial state. The probability d is assumed to be
independent of the initial state, so using the definition
of independent joint probabilities:

p (D|target) = 0.5 + d − (0.5 d )
= 0.5 + 0.5 d .

(2)

These values can be converted into the parameters
used by Luce of qt and qd (hit and false alarm
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probabilities):

qt = p (D|target) = 0.5 + 0.5 d, and
qd = 1 − qt.

(3)

To summarize, we pursue the special case of a
symmetric, low-threshold model with a single sensitivity
parameter that gives the probability of the stimulus
moving one into the appropriate state for that stimulus.

Adding the effects of attention. The next step is
to modify the sample size model (Shaw, 1980) to
these discrete representations. Recall that the sample
size model has some number samples, m, that are
distributed over the relevant stimuli to represent the
effect of attention. Each sample is assumed to provide
independent information about the stimulus. In the
continuous case, the mean of multiple samples improves
the estimate of the stimulus value. For the discrete case,
we assume that each sample provides an independent
chance of entering the detect state given a target. This
is similar to the idea of probability summation (e.g.
Graham, Robson, & Nachmias, 1978). Let d1sample be
the probability of entering the detect state given a target
and with only one sample. Then for r independent
samples the probability of entering the detect state
given the target becomes 1 − [1 − d1sample]r. In words,
this is one minus the joint probability of not detecting
from r samples. From this equation, one can describe
how the fraction of samples affects the probability of
entering the detect state given the target. Let a be the
fraction of samples allocated to Stimulus 1. Then d(a)
is given by

d (a) = 1 − [
1 − d1sample

]am
. (4)

The next step is to derive how d1sample is related to the
sensitivity parameter d defined in the previous section.
The d parameter is the sensitivity for a single task in
which all of the samples are devoted to a single stimulus
(a=1). Assuming a=1 and substituting d for d(a)
turns Equation 4 into d = 1 − [1 − d1sample]m. Solving
for d1sample yields:

d1sample = 1 − (1 − d )(1/m)
. (5)

These equations can be combined to solve for d(a) as
a function of d and a. Equation 5 can be written as [1 −
d1sample]m = (1 − d). Next, Equation 4 can be rewritten
using the power law of exponents as d(a) = 1 − {[1 −
d1sample]m}a. Now substitute the rewritten Equation 5

into Equation 4 to obtain the result:

d (a) = 1 − [1 − d ]a. (6)

This result does not depend on the total number of
samples m. It can be substituted into Equation 3 to
obtain:

qt = 0.5 + 0.5[1 − (1 − d )]a, and
qd = 1 − qt.

(7)

In summary, the new model is described
by Equation 1 from low-threshold theory
and Equation 7 which specifies the effects of
sensitivity and attention. The model has three
parameters that are similar to parameters used in signal
detection models:

a. a sensitivity parameter, d,
b. a guessing parameter, g, and
c. an attentional parameter a.

To give a numerical example of the predictions of
this model, assume d = 0.6 and g = 0.5. A value of a
= 1 (single-task condition), yields 80% correct and a
= 0.5 (dual-task condition), yields 68.4% correct. This
is a dual-task deficit of 11.6%. For the corresponding
conditions, the dual-task deficit of the continuous
fixed-capacity parallel model is 7.6%, and the dual-task
deficit of the all-or-none serial model is 15%. Thus, for
this performance level, the prediction of the discrete
model is about halfway between these two benchmark
models.

Response correlations. Like other parallel models,
this discrete fixed-capacity parallel model predicts no
correlation between responses. But, such a correlation
can be generated from the model with the following
addition. The parameter a describes how attention
(samples) is allocated to the two stimuli. Specifically,
the proportion of samples allocated to the first stimulus
is a, and the proportion of samples allocated to the
second stimulus is 1-a. Because of this dependence,
adding parameter variability to the attention parameter
introduces a small negative correlation between
responses. When the number of samples increases
for one stimulus, it must decrease for the other. Such
parameter variability can account for the small negative
correlations found here for objects. But it cannot
account for the larger negative correlations found for
words by White et al. (2018, 2020).


