
Vol.:(0123456789)1 3

International Journal of Colorectal Disease (2022) 37:1621–1634 
https://doi.org/10.1007/s00384-022-04157-z

ORIGINAL ARTICLE

Predicting pathologic complete response in locally advanced rectal 
cancer patients after neoadjuvant therapy: a machine learning model 
using XGBoost

Xijie Chen1,2 · Wenhui Wang7 · Junguo Chen1,3 · Liang Xu1,4 · Xiaosheng He1,3 · Ping Lan1,3 · Jiancong Hu1,5,6  · 
Lei Lian1,2

Accepted: 17 April 2022 / Published online: 15 June 2022 
© The Author(s) 2022, corrected publication 2022

Abstract
Purpose Watch and wait strategy is a safe and effective alternative to surgery in patients with locally advanced rectal cancer 
(LARC) who have achieved pathological complete response (pCR) after neoadjuvant therapy (NAT); present restaging meth-
ods do not meet clinical needs. This study aimed to construct a machine learning (ML) model to predict pCR preoperatively.
Methods LARC patients who received NAT were included to generate an extreme gradient boosting-based ML model to 
predict pCR. The group was divided into a training set and a tuning set at a 7:3 ratio. The SHapley Additive exPlanations 
value was used to quantify feature importance. The ML model was compared with a nomogram model developed using 
independent risk factors identified by conventional multivariate logistic regression analysis.
Results Compared with the nomogram model, our ML model improved the area under the receiver operating characteristics 
from 0.72 to 0.95, sensitivity from 43 to 82.2%, and specificity from 87.1 to 91.6% in the training set, the same trend applied 
to the tuning set. Neoadjuvant radiotherapy, preoperative carbohydrate antigen 125 (CA125), CA199, carcinoembryonic 
antigen level, and depth of tumor invasion were significant in predicting pCR in both models.
Conclusion Our ML model is a potential alternative to the existing assessment tools to conduct triage treatment for patients 
and provides reference for clinicians in tailoring individual treatment: the watch and wait strategy is used to avoid surgical 
trauma in pCR patients, and non-pCR patients receive surgical treatment to avoid missing the optimal operation time window.
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Introduction

Neoadjuvant therapy (NAT) followed by total mesorectal 
excision (TME) is the standard of care for locally advanced 
rectal cancer (LARC) with curative intent. NAT was shown 
to downsize and downstage cancer, increase the R0 resec-
tion rate, and thus improve oncological outcomes [1, 2]. 
Treatment response to NAT varies between individuals, 
from insensitive to pathologic complete response (pCR), 
with no visible cancer cells in the pathologic specimens, 
accounting for 20% of the population [3]. The prognosis 
of pCR patients is better than that of non-pCR patients. 
Nowadays, preoperative tumor restaging after NAT is gen-
erally studied by digital rectal examination, endoscopic 
ultrasonography, magnetic resonance imaging (MRI), and 
endoscopy in clinical practice. For those who attain clini-
cal complete response (cCR, predict as pCR preoperative), 
an organ-sparing protocol called watch and wait (W&W) 
strategy has received considerable attention in recent years. 
This strategy refers to the option to exempt patients from 
major surgery and implement intensive surveillance in the 
first 3 years after NAT [4]. Previous studies have dem-
onstrated the safety and effectiveness of W&W in cCR 
patients, yielding little oncologic risk other than the risk 
of surgery [4–11]. However, the gold standard of tumor 
response is only available in surgical specimens. Definition 
of cCR lacks uniform criteria because human assessment 
introduce subjectivity; as a result, the reported cCR rates 
range from 10 to 78%, followed by tumor regrowth rates 
ranging from 7 to 33% [9, 12–14]. For some examples,  a 
prospective cohort study comprising 385 LARC patients 
with cCR revealed that 87 patients developed local recur-
rence during the near 3-year follow-up period, of whom 
97% could receive curative resection, and uncontrolled 
pelvic disease was 1.6% [15]. Data from the International 
Watch & Wait Database, which has 47 participating institu-
tions from 15 countries in Europe, revealed a 2-year accu-
mulated local regrowth rate of 25% in cCR patients, and 
97% of them were located in the bowel wall, which requires 
salvage surgery [9].

With the improvement of survival outcome, patients pay 
more attention to pursue a higher quality of life (QOL). 
Nonoperative management in a highly selected population 
was proven to be feasible as it spares permanent colostomy, 
sphincterotomy, bladder, and sexual dysfunction, and avoids 
1–5% surgical mortality and 34–39% morbidity, thus ensur-
ing good QOL [16–19]. Therefore, for restaging unmet clini-
cal needs, a more precise and easy-to-use tool with high 
performance on pCR prediction is imperative.

Machine learning (ML), a branch of artificial intelli-
gence and computer science, focusing on simulating the 
way the human brain learns using statistics and algorithms 

to improve accuracy, has had an outstanding performance 
in disease diagnosis, prognosis prediction, antitumor drug 
response, and treatment response assessment [20–25]. How-
ever, studies evaluating tumor response in LARC after NAT 
using ML algorithms are limited. In this study, we aimed to 
integrate some commonly used preoperative clinicopatho-
logical parameters to develop an ML classifier to predict 
tumor response of LARC after NAT, and compare its per-
formance with nomogram constructed by the conventional 
logistic regression method, with the aim to provide reference 
for individualized treatment.

Methods

Ethical statement

This study was approved by the Institutional Review Board 
of the Sixth Affiliated Hospital, Sun Yat-sen University 
(No. 2021ZSLYEC-063), and complied with the Declara-
tion of Helsinki (World Medical Association Declaration of 
Helsinki 2013). All the patients gave informed consent to 
allow their electronic medical records to be used for cancer 
research voluntarily during their first visit to the hospital, 
and data were desensitized at the beginning of statistical 
analyses to protect patients’ privacy.

Study population

We included patients diagnosed with rectal cancer from 
2010 to 2020 at the Sixth Affiliated Hospital, Sun Yat-sen 
University. Patient lists were extracted from pathology report 
records, and only those who received NAT were selected. 
Neoadjuvant chemotherapy was based on oral/intravenous 
5-fluorouracil or combined with oxaliplatin/irinotecan. The 
neoadjuvant radiotherapy regimen was a long-term radio-
therapy of 50 Gy in 25 fractions, or a short-term radiother-
apy regimen of 5 Gy per day for 5 consecutive days.

The eligibility criteria were as follows: (1) T3–4/N + (con-
ventionally staged by MRI and computed tomography), (2) 
age 18–75 years, (3) received a full course of NAT, (4) 
regular restaging that adhered to the treatment protocol, (5) 
underwent radical surgery, and (6) tumor regression grade 
information available in the surgical pathology report. 
Patients were excluded if they had (1) multiple synchronous 
tumors or newly discovered tumors during treatment; (2) 
familial adenomatous polyposis, inflammatory bowel dis-
ease, or other diseases that predispose to colorectal cancer; 
and (3) local excision of the primary tumor only.

The patients were divided into a training set and a tun-
ing set (similar to internal validation set) at a 7:3 ratio. The 
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training set was used to build binary classifiers, which in 
turn was used to predict the cluster labels on the tuning set 
(held-out samples).

Clinicopathological selection and outcome 
definition

Patient, tumor, and treatment information were extracted 
from the electronic medical records. Patient information 
mainly included demographic characteristics (sex, age, 
height, weight, body mass index [BMI], family history, and 
tumor history); tumor information included radiology find-
ings (MRI: tumor invasion depth, distance from the anal 
verge, tumor location, tumor size, and tumor recurrence), 
endoscopic findings (tumor size by endoscopy: the pro-
portion that the tumor occupied the intestinal lumen), and 
peri-NAT serological tumor biomarkers (cancer antigen 125 
[CA125], CA199, CA153, carcinoembryonic antigen [CEA], 
and alpha-fetoprotein [AFP]). T1, T2, and DWI sequences 
were used to comprehensively translate tumor information 
on MRI. Given that CEA and CA199 play important roles in 
colorectal cancer progression and recurrence surveillance, we 
postulated that the changes in these biomarkers may reflect 
the microscopic alterations in the tumor after NAT; hence, 
we included the CEA difference, ratio of CEA difference, 
CA199 difference, and ratio of CA199 difference into the 
analysis. Treatment information included neoadjuvant radio-
therapy and neoadjuvant chemotherapy regimen. The onco-
logical outcome was pCR, which was determined by tumor 
regression grade 0 (TRG0) without lymph node metastasis; 
otherwise, it was non-pCR (TRG1-3). TRG was justified in 
accordance with the National Comprehensive Cancer Net-
work guidelines [26]. In this study, the area under the receiver 
operating characteristics (AUROC) was considered the pri-
mary index to evaluate the performance of the models, with 
sensitivity and specificity as secondary evaluation indexes.

Model development

ML framework

An ML ensemble algorithm based on extreme gradient boost-
ing (XGBoost) [27] was used to predict tumor response in 
LARC patients. XGBoost easily captures the nonlinear rela-
tionships between features and classification labels based on 
the concept of “exact greedy algorithm.” Essentially, it aggre-
gates multiple weak classifiers with limited accuracy into 
stronger ones by establishing a series of classification and 
regression trees (CARTS) iteratively with a highly adaptive 
approach. This was performed by iteratively fitting decision 
trees, with each iteration targeting the prediction residuals 
(also known as the loss function) of the preceding tree. The 

XGBoost algorithm optimizes the loss function via second-
order Taylor expansion; meanwhile, a regularization term that 
contained leaf nodes was applied to control the model com-
plexity to avoid over-fitting. Gains or losses after splitting of 
previous lead nodes determined further splitting, which was 
repeated until the minimum loss function and complexity of 
the model was less than the threshold setting. Therefore, the 
final predicted probability was calculated for all trees.

When training models, hyperparameters, including max_
depth, subsample, and colsample_by tree, were optimized 
separately for each tree in the training set by random sam-
pling. In addition, the effect of imbalanced data was cor-
rected by oversampling and undersampling [28, 29], and the 
XGBoost model was trained with the generated effectively 
balanced dataset. To further strengthen generalizability, a 
five-fold cross validation was used to split the whole train-
ing set into five subsets, with four subsets as the training 
set and the rest as the test subset each time until each subset 
was tested. For the features, the average value of the five 
trained XGBoost models was taken to measure their impor-
tance. SHapley Additive exPlanations (SHAP) [30] value 
was calculated to interpret the marginal contribution of the 
model features and explain the output of the model.

Nomogram model building

To compare ML models with conventional linear models, 
univariate analyses were used to identify factors that cor-
related with tumor response and incorporate them into a 
binary stepwise multivariate logistic regression model 
to identify independent risk factors. Thereafter, we con-
structed a nomogram model that used these independent 
risk factors and validated them internally. Harrell’s con-
cordance index (C-index) and AUROC were calculated to 
examine the predicted power of the nomogram, and a cali-
bration curve was drawn to judge the discrepancy between 
predicted and actual events.

Statistical analyses

Data are presented as mean ± standard deviation for con-
tinuous variables with normal distribution, medians with 
interquartile ranges for continuous variables with non-
normal distribution, and frequency (percentage) for cat-
egorical variables. During nomogram construction, some 
continuous variables were transformed into categorical 
variables for analysis. t-Test/Mann–Whitney test or chi-
square were used to conduct univariate analysis where 
appropriate, and multivariate analyses were implemented 
using the logistic regression method. The variables signifi-
cantly related to pCR in univariate analysis were included 
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in multivariate regression analysis, and the independent 
risk factors obtained from multivariate regression analysis 
were used for nomogram modeling. All statistical analy-
ses were conducted using SPSS software (version 26.0 for 
Windows, IBM Corp., Armonk, NY, USA) and R software 
(version 3.4.1, The R Foundation for Statistical Computing, 
Austria). The ML model was developed by the “xgboost” 
package, “shapforxgboost” package, and “imbalance” 
package. ROC was plotted by the “pROC” package. A two-
sided p value < 0.05 was considered significant.

Results

Patient characteristics

A total of 962 consecutive LARC patients during the 
2010–2020 period from the Sixth Affiliated Hospital, 
Sun Yat-sen University, were retrospectively included in 
this study (Fig. 1). The training and tuning sets included 
694 and 268 patients, respectively, with a comparable 
pCR rate between the groups (15.4% vs 14.9%). Com-
pared with the training set, clinical T stage evaluated 
qualitatively by the depth of tumor invasion was more 
advanced with 100% T3–4 tumors. A higher prevalence 
of upper-third rectal cancer, a higher level of preoperative 
CEA, and a tendency of larger tumor size by colonoscopy 

were observed, which combined in all manifestations of 
more invasive tumors in the tuning set. In addition, the 
proportion of radiotherapy was lower, and chemotherapy 
regimens were significantly different from the training 
set, which may help explain the poorer downward trend 
in CEA difference and ratio of CEA difference for LARC 
patients after receiving NAT in the tuning set (Table 1). 
Other clinicopathological parameters were comparable 
between groups.

ML model building and validation

Twenty-eight variables were used as inputs to determine their 
nonlinear relationships with category labels. We first pro-
cessed the training set to ensure a balanced and representa-
tive dataset, then started running the ML model with default 
hyperparameters, and adjusted them into an optimal model 
step by step. Finally, we stopped training at “max_depth” of 
10, “eta” of 0.2, “gamma” of 0.9, and “scale_pos_weight” 
of 0.1 after repeated attempts. As displayed in Fig. 2, the 
AUROC of the XGBoost model was 0.95, with a sensitivity 
of 82.2% and specificity of 91.6%, which indicated a perfect 
fit between the predicted results and actual events. In addi-
tion, we used the SHAP value to quantify feature importance, 
calculated feature importance scores (Fig. 3A) for each sam-
ple, and averaged features to obtain their final importance 
ranks (Fig. 3B). As shown in Fig. 3A, we were aware of the 

Fig. 1  Flow chart of the study 
design
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Table 1  Demographic 
characteristics of LARC patients 
who received neoadjuvant 
therapy

Variables All Training set Tuning set p value

Gender 0.936
Man 691 (71.8%) 499 (71.9%) 192 (71.6%)
Woman 271 (28.2%) 195 (28.1%) 76 (28.4%)
Age 57 (47.0, 64.0) 56 (46, 64) 57 (48.0, 65.0) 0.211
BMI 0.098
< 18.5 83 (8.6%) 64 (9.2%) 19 (7.1%)
18.5 ≤ X < 24 575 (59.8%) 424 (61.1%) 151 (56.3%)
≥ 24 304 (31.6%) 206 (29.7%) 98 (36.6%)
Family history of cancer 0.178
Yes 15 (1.6%) 8 (1.2%) 7 (2.6%)
No 947 (98.4%) 686 (98.8%) 261 (97.4%)
History of cancer 0.665
Yes 3 (0.3%) 3 (0.4%) 0 (0%)
No 959 (99.7%) 691 (99.65%) 268 (100%)
Differentiation 0.902
Well 260 (27.0%) 189 (27.2%) 71 (26.5%)
Medium 605 (63.0%) 438 (63.1%) 167 (62.3%)
Poorly 63 (6.5%) 43 (6.2%) 20 (7.5%)
Undifferentiation 34 (3.5%) 24 (3.5%) 10 (3.7%)
Depth of tumor invasion  < 0.0001
1–2 72 (7.5%) 72 (10.4%) 0 (0)
3–4 890 (92.5%) 622 (89.6%) 268 (100%)
Distance of tumor from the anal 5.5 (3.9, 7.6) 5.4 (3.8, 7.5) 6.0 (4.0, 8.0) 0.062
tumor location  < 0.0001
Upper 71 (7.4%) 37 (5.3%) 34 (12.7%)
Middle 439 (45.6%) 334 (48.1%) 105 (39.2%)
Lower 452 (47%) 323 (46.6%) 129 (48.1%)
Tumor size by MRI 3.0 (2.2, 4.0) 3.0 (4.0, 2.2) 3.0 (2.3, 3.7) 0.19
Recurrent tumor 1
Yes 9 (0.9%) 6 (0.9%) 3 (1.1%)
No 953 (99.1%) 688 (99.1%) 265 (98.9%)
Tumor size by colonoscopy 0.5 (0.33, 1.0) 0.5 (0.33, 0.81) 0.5 (0.4, 1.0) 0.069
Initial CA125 9.4 (6.6, 13.0) 9.2 (6.5, 12.9) 9.8 (6.63, 13.2) 0.526
Initial CEA 4.1 (2.1, 9.9) 4.0 (2.1, 9.1) 4.8 (2.2, 10.5) 0.157
Initial CA199 9.2 (4.2, 21.9) 9.2 (4.1, 21.3) 9.2 (4.4, 23.1) 0.449
Initial CA153 7.5 (5.8, 11.3) 7.5 (5.5, 11.1) 7.4 (5.7, 11.5) 0.626
Initial AFP 2.6 (2.0, 3.7) 2.6 (1.9, 3.7) 2.6 (2.0, 3.7) 0.984
Preoperative CA125 10.6 (7.6, 14.5) 10.4 (7.4, 14.6) 10.8 (7.7, 14.2) 0.736
Preoperative CEA 2.9 (1.7, 5.0) 2.5 (1.6, 4.5) 3.5 (2.2, 6.0)  < 0.0001
Preoperative CA199 7.3 (3.5, 15.5) 7.5 (3.5, 15.2) 7.2 (3.6, 16.2) 0.660
Preoperative CA153 10.2 (7.5, 15.0) 10.2 (7.5, 15.0) 10.3 (7.6, 15.1) 0.583
Preoperative AFP 3.4 (2.5, 4.9) 3.5 (2.5, 4.9) 3.3 (2.5, 4.8) 0.497
CEA difference  −0.8 (−5.1, 0.3)  −0.9 (−5.1, 0.1)  −0.4 (−4.9, 1.1) 0.001
Ratio of CEA difference  −0.3 (−6.2, 0.1)  −0.3 (−0.6, 0.1)  −0.1 (−0.6, 0.4)  < 0.0001
CA199 difference  −0.3 (−0.6, 0.1)  −0.3 (−6.7, 1.4)  −0.2 (−7.3, 1.2) 0.802
Ratio of CA199 difference  −0.1 (−0.5, 0.2)  −0.1 (−0.5, 0.2)  −0.1 (−0.5, 0.2) 0.847
Radiotherapy  < 0.0001
Yes 442 (45.9%) 358 (51.6%) 84 (31.3%)
No 520 (54.1%) 336 (48.4%) 184 (68.7%)
Chemotherapy  < 0.0001
Single-agent 145 (15.1%) 119 (17.1%) 26 (9.7%)
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nonlinear relationship between variables and labels that con-
ventional statistical methods could ignore. Figure 3B shows 
that neoadjuvant radiotherapy, preoperative CA125, tumor 
size by MRI, and depth of tumor invasion by MRI ranked 
the top four in terms of importance in our ML model, while 
CA199 difference, preoperative CA153, initial AFP, and ratio 
of CA199 difference made little contribution. Unsurprisingly, 
the results in the tuning set were highly consistent with the 
training set, with AUROC, sensitivity, and specificity of 0.73, 
71.93%, and 70%, respectively. For the feature importance 
evaluation, both sets showed similar trends.

Nomogram construction and validation

Univariate analysis revealed that the depth of tumor invasion, 
tumor size on MRI, tumor size by colonoscopy, initial CEA 
level, preoperative CA125 level, preoperative CEA, preopera-
tive CA199, and neoadjuvant radiotherapy were significantly 
associated with tumor response. Then, we incorporated these 
factors into a multivariate stepwise regression analysis to find 
preoperative CA125, preoperative CEA, preoperative CA199, 
and neoadjuvant radiotherapy were independent risk factors 
(Table 2). A nomogram model was then applied to quanti-
tatively visualize the contribution of each variable based on 
the multivariate analysis (Fig. 4A). As a result, the C-index 
(equal to AUROC) was 0.72, indicating a moderate predic-
tive ability (Fig. 4B). Calibration showed that the predictive 
curve was close to the ideal curve (Fig. 4C). Using optimal 
threshold criteria, this model can accurately distinguish pCR 
from non-pCR with 43% sensitivity and 87.1% specificity. A 
similar result was obtained in the validation group (AUROC, 
0.69; sensitivity, 55%; specificity, 78.5%) (Fig. 4D).

Comparison between ML classifier and nomogram 
model

As shown in Table 3, we compared the performance of the 
aforementioned models. Undoubtedly, the ML classifier 
presented full range superiority in AUROC, sensitivity, and 
specificity over the nomogram model.

LARC , locally advanced rectal cancer; BMI, body mass index; pCR, pathologic complete response; CA199, 
carbohydrate antigen 199; CA125, carbohydrate antigen 125; AFP, alpha-fetoprotein; CEA, carcinoembry-
onic antigen

Table 1  (continued) Variables All Training set Tuning set p value

Double-agent 651 (67.7%) 462 (66.6%) 189 (70.5%)
Triple-agent 159 (16.5%) 113 (16.3%) 46 (17.2%)
Unknown 7 (0.7%) 0 (0) 7 (2.6%)
pCR 0.849
Yes 147 (15.3%) 107 (15.4%) 40 (14.9%)
No 815 (84.7%) 587 (84.6%) 228 (85.1%)

Fig. 2  ROC curve for assessing clinical performance of the ML 
model. A ROC curve generated by five-fold cross validation in the 
training set. B ROC curve in the tuning set. ROC, receiver operating 
characteristics curve; ML, machine learning
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Discussion

The introduction of standard management in LARC 
(NAT + TME) has improved cancer survival and local con-
trol in recent years. However, the physical, mental, and 
emotional burden caused by invasive surgery has opened 
the discussion on the trade-off between recurrence risk and 
better QOL in cCR patients. Given the evidence that the 
conservative approach, i.e., W&W, taken by cCR patients 
to avoid morbidity and functional sequelae resection was 
not inferior to surgery in terms of prognosis, W&W was 
reported as a safe alternative to major surgery [6, 8]. A ques-
tionnaire survey of patients’ perspectives showed that even 
by emphasizing the detailed risks toward LARC patients 
with cCR, 83% of them were willing to consider the W&W 
strategy, 94% of them were willing to bear the 25% recur-
rence rate, and 95% accepted intensive surveillance despite 
its being troublesome [31]. However, there were no uniform 
and reproducible criteria for cCR, which led to a low con-
cordance rate between cCR and pCR. Previous studies have 
shown that the true pCR rate in those who were assessed as 
cCR ranged from 44 to 78%, and a proportion of approxi-
mately 10% pCR was misjudged as non-cCR. In addition, 
the sensitivity of biopsies was 12.9%, which was slightly 
consistent with 30.4% of the surgical specimens [32, 33]. 
Moreover, current restaging methods such as digital rectal 
examination, endoscopy, computed tomography, MRI, or 
positron emission tomography–computed tomography were 
not capable of being surrogate methods of surgical patho-
logical assessment to observe tumor response. Therefore, a 
precise and objective tool for the preoperative assessment 
of pCR is urgently needed. To address this, we constructed 
an ML classifier to predict pCR, which demonstrated high 
performance, and compared it with the conventional linear 
model to realize individualized precision therapy.

The AUROC of our ML classifier in discriminating binary 
tumor response of LARC patients after NAT was 0.95, with a 
sensitivity of 82.2% and specificity of 91.6%, and it achieved 
slightly lower values in the tuning set with an AUROC of 0.73, 
sensitivity of 71.93%, and specificity of 70%. When we ana-
lyzed the dataset, we found that demographic characteristics, 
depth tumor invasion, preoperative CEA, neoadjuvant radio-
therapy, CEA difference, and the ratio of CEA difference were 
not comparable between the training and tuning sets; whereas, 
it ranked the top few important parameters in both the ML 
classifier and nomogram model. This may fully explain the 
moderate performance on the tuning set. From the perspec-
tive of data analysis, the performance of our model could be 
optimized if we reassigned the training and tuning sets or per-
formed propensity-score matching to ensure comparability of 
key features; however, our current results reflect daily clini-
cal practice where protocols are subject to variations between 

different centers. Therefore, this may render our model more 
generally applicable. The tuning set conditions could exist in 
clinical practice, and we could not expect data distribution to 
meet the required standard. This, in another way, makes our 
model more representative even in some extreme situations. 
Based on these findings, we believe that the current results of 
the tuning set were the worst-case scenario that may prevail in 
clinical practice. However, the predictive ability was still far 
superior to that of the conventional linear regression model 
(nomogram). In addition, our ML classifier cannot only iden-
tify independent associated factors like that of the nomogram, 
but allows the determination of the internal law of the data for 
better use of the additional information than the linear model.

Neoadjuvant radiotherapy, which was recommended in 
various guidelines as part of the standard treatment in LARC 
patients, ranked first and second in feature importance in 
the ML classifier and nomogram, respectively. The results 
provide strong evidence for the guidelines once again. Pre-
vious studies have investigated the role of tumor size and 
pretreatment T stage as predictors of tumor response in 
LARC patients after NAT, and our study was consistent with 
their findings to show that indicators measured by MRI may 
help predict pCR outcomes [10, 34–36]. The use of CEA, 
CA125, and CA199 alone or in combination was reported 
to help in making decisions for digestive tract tumors or 
adenocarcinomas as prognostic indicators or in monitoring 
therapeutic effects [37–41], while the use of serological indi-
cations alone is insufficient for both sensitivity and speci-
ficity. These were in line with our findings; moreover, we 
found that indicator changes (e.g., CEA difference) before 
and after treatment may reflect treatment responses within 
the tumor to some extent. However, little research focused on 
this aspect, and this insight suggested a new view possibility 
in the monitoring of treatment response. Further studies are 
needed to investigate the value of indicator changes present-
ing in blood, radiology, or other areas.

Many studies predict pCR in LARC patients after NAT. 
van der Sande et al. [42] initiated a study in which three 
endoscopists predicted pCR using endoscopic features. The 
results showed that the sensitivity, specificity, and AUROC 
of human recognition fluctuated between 72 and 94%, 61 
and 85%, and 0.80 and 0.84, respectively. The interobserver 
consistency was mild to moderate. The performance of our 
model was better than that of van der Sande et al. and a ML 
model could eliminate the empirical dependence of human 
recognition. Besides, Bulens et al. [43] constructed multiple 
MRI radiomics by T1, T2, and DWI sequences, in which the 
highest AUROC was 0.86. Also, Jin et al. [44] proposed a 
multi-task deep learning model to predict pCR using MRI 
imaging, the AUROC reached 0.97 when they combined 
imaging analysis with CEA, and the model was well exter-
nally validated in multi-center data. Although their model 
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showed outstanding performance using artificial intelligence 
algorithm, different magnetic field intensity hampered them 
from clinical practice. However, our ML model was con-
structed using common clinicopathological parameters, 
which made it easy to apply to other centers.

This study has several limitations that restrict the 
interpretations of our findings. First, selection bias can-
not be excluded because of the retrospective nature of this 
study. Second, our models were internally validated using 
a tuning set within our institution; thus, external valida-
tion is needed. Although pooling of data permits addi-
tional analyses, interinstitutional biases and variations in 

Fig. 3  SHAP value distribution of each sample in different variables 
and feature importance rankings to predict outcomes of the model. A 
Nonlinear distribution of each feature in the training set: the higher 
the absolute value of SHAP, the stronger the effect on the outcomes. 
B Feature importance rankings in the training set. The horizontal axis 
represents the relationship between each feature and the probability 
of pCR. The longitudinal axis shows the variable names. Feature 
importance rankings in a descending order are dependent on the aver-
age values of SHAP. The color indicates the SHAP value of the fea-
ture where high value is coded in dark purple (positive impact) and 
dark yellow (negative impact) and a low value is coded in light pur-
ple and light yellow: the darker the color, the stronger the prediction. 
C Nonlinear distribution of each feature in the tuning set. D Feature 
importance rankings in the tuning set. pCR, pathological complete 
response; SHAP, SHapley Additive exPlanations

◂

Table 2  Univariate and 
multivariate analyses for 
identifying risk factors 
associated with binary tumor 
response in LARC patients who 
received neoadjuvant therapy

Variables Univariate analysis Multivariate analysis

Non-pCR pCR p value OR (95%CI) p value

Gender 0.492
Man 425 (72.4%) 74 (69.2%)
Woman 162 (27.6%) 33 (30.8%)
Age 0.351
 < 50 187 (31.9%) 39 (36.4%)
 ≥ 50 400 (68.1%) 68 (63.6%)
BMI 0.209
 < 18.5 59 (7.7%) 5 (4.7%)
18.5 ≤ X < 24 355 (62.8%) 69 (64.5%)
 ≥ 24 173 (29.5%) 33 (30.8%)
Family history of cancer 0.470
Yes 8 (1.4%) 0 (0)
No 579 (98.6%) 107 (100%)
History of cancer 1
Yes 3 (0.5%) 0 (0)
No 584 (99.5%) 107 (100%)
Differentiation 0.823
Well 161 (27.4%) 28 (26.1%)
Medium 372 (63.4%) 66 (61.7%)
Poorly 35 (6.0%) 8 (7.5%)
Undifferentiation 19 (3.2%) 5 (4.7%)
Depth of tumor invasion  < 0.001
1–2 47 (8.0%) 25 (23.4%) Reference
3–4 540 (92.0%) 82 (76.6%) 0.281 (0.159–0.498)  < 0.001
Distance of tumor from the anal 0.178
 < 5 249 (42.4%) 55 (51.4%)
5 ≤ X < 10 293 (49.9%) 47 (43.9%)
 ≥ 10 45 (7.7%) 5 (4.7%)
Tumor location 0.201
Upper 34 (5.8%) 3 (2.8%)
Middle 287 (48.9%) 47 (43.9%)
Lower 266 (45.3%) 57 (53.3%)
Tumor size by MRI  < 0.001
 < 2.5 168 (28.6%) 49 (45.8%)
 ≥ 2.5 419 (71.4%) 58 (54.2%)
Recurrent tumor 0.629
Yes 6 (1.0%) 0 (0)
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Table 2  (continued) Variables Univariate analysis Multivariate analysis

Non-pCR pCR p value OR (95%CI) p value

No 581 (99.0%) 107 (100%)
Tumor size by colonoscopy 0.006
 ≤ 0.5 328 (55.9%) 75 (70.1%)
 > 0.5 259 (44.1%) 32 (29.9%)
Initial CA125 0.279
 ≤ 7.5 213 (36.3%) 33 (30.8%)
 > 7.5 374 (63.7%) 74 (69.2%)
Initial CEA 0.011
 ≤ 2.0 145 (24.7%) 39 (36.4%)
 > 2.0 440 (75.3%) 68 (63.6%)
Initial CA199 0.053
 ≤ 12.5 342 (58.3%) 73 (68.2%)

 > 12.5 244 (41.7%) 34 (31.8%)
Initial CA153 0.945
 ≤ 6.0 183 (31.2%) 33 (30.8%)
 > 6.0 404 (68.8%) 74 (69.2%)
Initial AFP 0.318
 ≤ 5.0 529 (90.1%) 93 (86.9%)
 > 5.0 58 (9.9%) 14 (13.1%)
Preoperative CA125 0.023
 ≤ 7.5 160 (27.3%) 18 (16.8%) Reference
 > 7.5 427 (72.7%) 89 (83.2%) 0.425 (0.243–0.745) 0.003
Preoperative CEA 0.002
 ≤ 2.0 200 (34.1%) 53 (49.5%) Reference
 > 2.0 387 (65.9%) 54 (50.5%) 0.591 (0.380–0.920) 0.02
Preoperative CA199 0.011
 ≤ 12.5 394 (67.1%) 85 (79.4%) Reference
 > 12.5 193 (32.9%) 22 (20.6%) 0.519 (0.307–0.877) 0.014
Preoperative CA153 0.12
 ≤ 6.0 75 (12.8%) 8 (7.5%)
 > 6.0 512 (87.2%) 99 (92.5%)
Preoperative AFP 0.438
 ≤ 5.0 446 (76.0%) 85 (79.4%)
 > 5.0 141 (24.0%) 22 (20.6%)
CEA difference 0.251
 ≤ 0 432 (73.6%) 73 (68.2%)
 > 0 155 (26.4%) 34 (31.8%)
Ratio of CEA difference 0.251
 ≤ 0 432 (73.6%) 73 (68.2%)
 > 0 155 (26.4%) 34 (31.8%)
CA199 difference 0.436
 ≤ 0 385 (65.6%) 66 (61.7%)
 > 0 202 (34.4%) 41 (38.3%)
Ratio of CA199 difference 0.436
 ≤ 0 385 (65.6%) 66 (61.7%)
 > 0 202 (34.4%) 41 (38.3%)
Neoadjuvant radiotherapy  < 0.0001
Yes 280 (47.7%) 78 (72.9%) Reference
No 307 (52.3%) 29 (27.1%) 0.356 (0.222–0.571)  < 0.001
Chemotherapy 0.687
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LARC , locally advanced rectal cancer; BMI, body mass index; pCR, pathologic complete response; CA199, 
carbohydrate antigen 199; CA125, carbohydrate antigen 125; AFP, alpha-fetoprotein; CEA, carcinoembry-
onic antigen

Fig. 4  Nomogram construction and validation in both training and 
tuning sets. A The total points are calculated by adding the point 
value of each variable, which is decided by drawing a straight line up 
to the point axis. The probability of pCR is determined by drawing a 
straight line down from the total point axis. B ROC curve to evaluate 
the performance for predicting pCR in the training set. C The calibra-
tion curve of the training set shows the fitness of the predictive events 

to the actual events. The 45° dotted lines represent the ideal status 
with a 100% accuracy. The apparent line represents the predictive 
ability of the model; the closer the apparent line to the ideal line, the 
more precise is the model. D ROC curve to evaluate the performance 
for predicting pCR in the tuning set. ROC, receiver operating charac-
teristics; pCR, pathologic complete response

Variables Univariate analysis Multivariate analysis

Non-pCR pCR p value OR (95%CI) p value

Single-agent 102 (17.4%) 17 (15.9%)
Double-agent 387 (65.9%) 75 (70.1%)
Triple-agent 98 (16.7%) 15 (14.0%)

Table 2  (continued)
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treatment practices may affect data interpretation. A large 
single-institution experience with standardized treatment 
and pathologic evaluation can avoid this limitation. To 
the best of our knowledge, this study included the largest 
number of cases in related research. Huang et al. [36] built 
several ML classifiers to find an artificial neural network 
(ANN) algorithm with the best performance in predicting 
tumor response compared with k-nearest neighbor, sup-
port vector machine, naïve Bayes classifier, and multiple 
logistic regression. The performance of the ANN model 
was similar to that of our XGBoost classifier, but the rela-
tively small number of patients from the same cohort may 
impart substantial bias and poor generalizability. Finally, 
some variables included in our model were highly subjec-
tive and relied on personal experience. Despite these, we 
are making efforts to include more variables and patients 
to improve the predictive performance of the XGBoost 
model and collecting multicenter data for external valida-
tion. Once the predictive performance of the model meets 
the clinical needs, we will translate it into an online risk 
calculator that is free to the public [45]. Clinicians need to 
enter the specific values of the variables, and the calcula-
tor outputs the probability of pCR.

We constructed an ML classifier with a high-volume 
database using easily obtainable preoperative clinico-
pathological parameters to accurately predict the binary 
tumor response of LARC patients after NAT, which out-
performed the conventional linear model in predicting 
ability. It may serve as a robust tool for tumor response 
prediction and improve QOL in patients with pCR due to 
the omission of major surgery.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00384- 022- 04157-z.
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