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Abstract

Copy number variation (CNV) is a class of key biomarkers in many complex traits and diseases. Detecting CNV from sequencing data is a
substantial bioinformatics problem and a standard requirement in clinical practice. Although many proposed CNV detection approaches
exist, the core statistical model at their foundation is weakened by two critical computational issues: (i) identifying the optimal setting
on the sliding window and (ii) correcting for bias and noise. We designed a statistical process model to overcome these limitations
by calculating regional read depths via an exponentially weighted moving average strategy. A one-run detection of CNVs of various
lengths is then achieved by a dynamic sliding window, whose size is self-adopted according to the weighted averages. We also designed
a novel bias/noise reduction model, accompanied by the moving average, which can handle complicated patterns and extend training
data. This model, called PEcnv, accurately detects CNVs ranging from kb-scale to chromosome-arm level. The model performance was
validated with simulation samples and real samples. Comparative analysis showed that PEcnv outperforms current popular approaches.
Notably, PEcnv provided considerable advantages in detecting small CNVs (1 kb–1 Mb) in panel sequencing data. Thus, PEcnv fills the
gap left by existing methods focusing on large CNVs. PEcnv may have broad applications in clinical testing where panel sequencing is
the dominant strategy. Availability and implementation: Source code is freely available at https://github.com/Sherwin-xjtu/PEcnv
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Introduction
Copy number variation (CNV) refers to the deletion and dupli-
cation of DNA fragments. Their sizes range from thousands to
several million base pairs [1–3]. CNVs are common, compris-
ing more than 12% of the human genome [4, 5]. CNVs play a
crucial role in the diagnosis and treatment of various complex
diseases [6], including cancers [7], neuropsychiatric illness [8]
and Huntington’s disease [6, 9]. Thus, detecting CNVs became
routine in clinical laboratory practice. Compared to traditional
technologies, such as fluorescence in situ hybridization (FISH) [10]
and array comparative genomic hybridization (array CGH) [11],
sequencing-based approaches are popular due to their higher res-
olution, better efficiency and lower cost [12–15]. The past decade

has seen the development of several bioinformatics approaches
for detecting CNVs in next-generation sequencing (NGS) data.
Zare [16], Zhao [17] and others have comprehensively summa-
rized the CNV detection approaches; here, we start from their con-
clusions. Most methods have been developed for whole genome
sequencing (WGS) or whole-exome sequencing (WES) and sev-
eral CNV tools for panel sequencing data have been developed
(CONTRA [7], CoNVaDING [18]) as well. However, detecting CNVs
of varying sizes is challenging, especially from panel sequenc-
ing data.

Why is the detection of CNVs of different sizes challenging
for existing methods? Before better clarifying this question, we
highlight some well-known methods (CONTRA [7], CNVKIT [19],
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FACETS [20]) based on the read depth (RD) strategy [21, 22]. The
RD strategy consists of (1) read depth preprocessing to control
for bias and noise [23] and (2) locating copy number breakpoints
by segmenting the sequenced regions and identifying those seg-
ments, which may harbor CNVs. A non-overlapping static sliding
window is usually adopted here. The number of mapped reads
is calculated in each window bin, and then log2 copy ratios (LogR)
are computed as the read count versus the count from the control
(paired) sample or reference for bin or region [16, 24]. LogR is
the popular statistical indicator of CNVs [20]. Current approaches
present various algorithms and statistical models according to the
RD strategy. They primarily differ in their focus on either region
segmentation or bias/noise correction [16, 17]. However, these
two steps present challenges preventing the better application of
RD strategies when handling panel sequencing data. The main
challenge is that unsuitable window lengths destroy the signals
for short-to-medium copy number variations.

As mentioned above, current methods adopt a static sliding
window bin in which the average sequencing depth is calculated
to obtain LogR. The size of the window bin directly affects the
detection of differently sized CNVs. If the window bin is too large,
short CNVs cannot be detected, leading to false-negative errors.
A window that is too small yields false-positive errors. We can
formulate the problem as an ‘optimal window bin size’ problem,
explained in the following examples (see Supplementary 1).

Moreover, due to inter-individual variability (tumor hetero-
geneity in cancer sequencing scenario), the size distribution of
CNVs carried by different patients is inconsistent [16, 17, 20].
Therefore, existing methods that use a static sliding window can-
not precisely identify CNVs of varying sizes. Perhaps an exhaus-
tive enumeration of all window sizes may solve this problem,
but it dramatically increases the time required for analysis and
introduces false-positive results due to bias. In addition, panel
sequencing data yield complicated patterns of systematic errors,
and it is difficult to detect CNVs that can vary in size and copy
number in panel sequencing data (details in Supplementary 2).

We present a novel approach, PEcnv, to address the limitations
of traditional methods. The key features of PEcnv are threefold.

(1) Adjusting base-level coverage. We pioneered a strategy to
use base coverage information around the target base to
correct its coverage by the exponentially weighted moving
average. Considering base coverage around the target base
can effectively solve the complex distribution problem of the
read depth. The probability of consecutive low base coverage
is not significant in real sequencing; thus, we significantly
increase the number of control samples.

(2) Improved identification of varying sizes of CNVs by using
a dynamic sliding window. We divide the genome into
candidate and non-candidate CNV regions and set the
dynamic sliding window bin sizes according to the different
regions in the bias correction and segmentation steps.
This novel strategy helps detect all CNVs of different sizes
simultaneously.

(3) Our method applies to panel sequencing as well as WGS
and WES. PEcnv can precisely identify variously sized
CNVs simultaneously. We tested and validated PEcnv’s
performance detecting CNVs on simulation datasets and
real sequenced samples. We also compared its performance
to several existing methods. The results showed that PEcnv
performs well with sensitivity, precision and f1-score,
especially for detecting small CNVs (1 kb ∼ 1 Mb) in panel
sequencing data. Furthermore, our method can complement

existing methods and easily be integrated into existing
analysis pipelines for CNV.

Materials and methods
The input of PEcnv is a case sequencing mapped reads file (BAM
format [25]), a control sequencing mapped reads file (BAM for-
mat), and a reference sequence file (FASTA format). The output
is a CNV calling report file (CSV file). As an RD strategy-based
approach, the key points of PEcnv include adjusting base cov-
erage by accounting for reading depth information around the
base, dividing the genome into the candidate and non-candidate
CNV regions, and setting the dynamic sliding window bin sizes
according to the different regions from the bias of correction and
segmentation steps. Key components of PEcnv are presented here,
while the whole pipeline is illustrated in Supplementary 3.

Adjusting base-level coverage
One of the challenges of CNV detection for panel sequencing data
is the uneven RD distribution. We take several steps to reduce
systematic biases to correct RD. First, we use the reads from
intergenic (off-target) reads and, usually, intronic regions (target
reads) shown in previous studies [19, 26]. Second, we use the
coverage information of the bases around the targeted base to
correct its coverage. We correct the coverage of the bases in both
the case and control samples. The coverage of the surrounding
bases corrects the coverage of the target base. We adopt an
exponentially weighted moving average strategy to adjust the
coverage of the targeted base. Each coverage value is weighted
exponentially, decreasing with distance from the targeted base b,
with the closer base weighted more heavily. Still, a more distant
base also adds some weight. Base-level coverage is then computed
for each targeted base.

db = λXb + (1 − λ) db−1, 0 < λ < 1, d0 = μ0 (1)

Xb =
(∑N1

i=1xfi + ∑N2
j=1xrj

)
N

, N ≥ N1 + N2 (2)

where db is the adjusted coverage of the targeted base b, db-1 is
the adjusted coverage of the targeted base 5′ of b. We assume that
the xfi∈xf = {xf1, xf2, · · · , xfN1 } is the coverage of i-th base 5′ to the
targeted base b and the xrj∈xr = {xr1, xr2, · · · , xrN2 } is the coverage
of j-th base 3′ to the targeted base b. Xb is the raw coverage around
the targeted base. N is the number of bases around the targeted
base, N1 is the number of bases 5′ to the targeted base b, and N2

is the number of bases 3′ to the targeted base b. The term λ ∈
[0, 1] is a constant. μ0 is the centerline or the average value of all
genome coverage. Supplementary 3 describes some of the model
parameter settings.

We correct the coverage of the targeted base using Equations (1)
and (2). This effectively solves the complex distribution problem
of read depth and creates a robust baseline.

Identifying candidate CNV regions via a dynamic
statistical process
Identifying candidate and non-candidate CNV regions
To detect different sizes of CNV simultaneously, we designed a
novel two-stage strategy of dynamic sliding windows. The first
stage divides the genome into the candidate and non-candidate
CNV regions (Figure 1). It is well established that the LogR of
the abnormal region on the genome is likely to be a CNV. We
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Figure 1. The workflow for identifying the candidate and non-candidate CNV regions.

use control charts to find these exceptions [27] via a statistical
process. The system performs a statistical analysis of the adjusted
coverage of each base and then finds the abnormal region in the
shortest possible fragment. The adjusted coverage of each base is
a statistic derived from the raw coverage of the target base and the
raw coverages of the bases around the target base, as described in
Equation (1).

Unlike the exhaustive method, our method does not require
all past values to be saved, significantly reducing computational
effort and the spatial complexity of processing massive amounts
of sequencing data. The other benefit of the control limits is that
they are not significantly affected when a small or large value
is added to the calculation, thus helping to reduce the effect of
noise. On the other hand, finding abnormal regions in the shortest
possible fragment is similar to comparing whether the LogR of the
current interval is significantly different from that of the previous
interval. The length of the current and previous intervals change
depending on the statistical characteristics of the control charts.
We thus use the control limits to divide the genome sequences
into candidate and non-candidate CNV regions [27]. The region
between the control limits is considered a non-candidate CNV
region, and the region outside the control limits is regarded as a
candidate CNV region. The control limits are as follows (Equation
(3)) [27].

{
UCL = μ0 + Lσdb ,
LCL = μ0 − Lσdb ,

(3)

μ0 = E
(
db

) = E
(
Xb

)
(4)

σdb =
√(

λ

1 − λ

) [
1 − (1 − λ)2b

]
∗ Var

(
Xb

)
(5)

The expected db value μ0 and standard deviation σdb can be
calculated as Equations (4) and (5), respectively [27, 28]. Therefore,
the control limits can also be calculated (Equations (6)).

⎧⎪⎪⎨
⎪⎪⎩

UCL = μ0 + Lσ

√
λ

2−λ

[
1 − (1 − λ)2b

]
, σ =

√
Var

(
Xb

)
,

LCL = μ0 − Lσ

√
λ

2−λ

[
1 − (1 − λ)2b

]
, σ =

√
Var

(
Xb

)
,

(6)

where μ0 is the centerline or the average value of all genome
coverage and σ is the standard deviation of the raw coverage
around the targeted base. The σdb is the expected value of the
standard deviation of the adjusted coverage around the targeted
base. L is the parameter that needs to be selected. UCL is the upper
limit of the ‘alarm’, and LCL is the lower limit of the ‘notice’. An
alarm is triggered when db < LCL, the average value of the process
drifts down. Thus, there may be a deletion of the CNV region.
However, this method cannot accurately identify the boundaries
of the CNV region, so we define this genome region as a candidate
CNV region for deletion. An alarm is triggered when db > UCL, the
average value of the process drifts upward. As a result, there may
be a duplication of the CNV region, and we define this region as
the candidate CNV region of duplication. When LCL < db < UCL,
there may be neither deletion nor duplication of the CNV region;
we define this as a non-candidate CNV region. Figure 2 depicts the
dividing method workflow. We denote the candidate CNV regions
CR = {R1, R2, · · · , RM} and the non-candidate CNV regions as NCR =
{R1, R2, · · · , RP}, Ri belongs to CR or NCR. It can be expressed as
Ri = (s, d), where s and d are the start and end positions in the
genome region.

Setting the dynamic sliding window bin
This step refines the window bins to fit dynamic regions. We
propose adopting a dynamic sliding window bin, distinct from
existing methods. Based on candidate CNV and non-candidate
CNV regions, we can set the different sizes of window bins. The
size of the bin is dependent on the size of the region and can be
calculated as:

wi = li ∗ s (9)

where wi is the size of the sliding window bin of ith region. li
is the length of the region and s is the smoothing coefficient
for all regions. We calculate LogR across the window bin wi for
each region (non-candidate or candidate CNV). This dynamic pro-
cess is helpful for later bias correction and region segmentation
and helps accurately detect different sizes of CNVs simultane-
ously. In Supplementary 3, we further describe the parameter
settings.
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Figure 2. The PEcnv workflow.

Generating sequencing data
We produced simulation data by GSDcreator [29] (details in
Supplementary 4). These experiments were performed as follows:
we simulated paired samples for panel and WES with the read
length being 75 bp. We also simulated various gradients of
coverage depth, tumor purity, CNV type, CNV size for every
panel and WES samples. We were thus able to analyze the
model’s performance from different perspectives precisely. For
panel samples, we simulated sequencing data with coverage
depth from 500× to 2000×, tumor purity from 0.2 to 0.8, CNV
absolute copy number from 0 to 6, and CNV size from 1 kb
to 10 Mb. For WES samples, we simulated sequencing data
with a coverage depth of 60× with tumor purity of 0.67, CNV

absolute copy number from 0 to 6 and CNV size from 1 kb to
10 Mb.

A copy number variant is an element that may be present in
variable numbers of copies in the genome. Therefore, we defined
more or fewer copies of one element here as copy number vari-
ants. For example, a deletion, duplication or unbalanced translo-
cation is considered a copy number variant [30, 31]. The final
copy number status of chromosomal segments is determined by
correctly adjusting template sequence numbers. Specifically, we
enlarge or decrease the number of template sequences in the copy
number variant region according to the preset copy multiple. As
the number of copies increases, the number of templates will
increase according to the amplification ratio. According to the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac375#supplementary-data
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reduction ratio, if the number of copies reduces, the number of
templates will be reduced [29].

Samples from the 1000 genomes project
Twenty-three human individuals studied in both the HapMap
and the 1000 Genomes project were selected to evaluate the
model’s performance. The study group comprised Asian, African
and European individuals. The Asian samples IDs are NA18537,
NA18542, NA18547, NA18552, NA18564, NA18566, NA18570,
NA18582, NA18592, NA18942, NA18947, NA18969, NA18997,
NA18951, NA18972, NA18968 and NA18973. We also evaluated
European samples, NA10851, NA11893, NA12413, NA12775,
NA12878 and African samples NA19240. The gold standard CNV
calls were obtained from http://dgv.tcag.ca/dgv/app/downloads,
https://www.ncbi.nlm.nih.gov/genome, and the HapMap website.
The exome sequencing data (bam files) were downloaded from
the 1000Genomes project website.

Results
We developed PEcnv, a novel method for the simultaneous detec-
tion of CNVs of different sizes based on read depth. PEcnv is
a dynamic statistical process model based on the exponentially
weighted moving average strategy. A dynamic sliding window
achieves a one-run detection of varied-length CNVs, the size of
which is self-adopted according to the weighted averages. We also
defined a novel bias/noise reduction model, accompanied by the
moving average, allowing the model to accommodate complicated
patterns and extend training data. We analyzed the performance
of PEcnv in the context of CNV size and RD based on the simula-
tion data and real sample data. Other CNV caller tools, including
CNVKIT, CONTRA and FACETS, were used for comparison. To
assess the ability of our approach to correct coverage bias, we
constructed kitPEcnv, a model only for segmentation, without the
bias reduction step. We compared the sensitivity, precision and F1-
score of PEcnv and other methods, using the default parameters
for each model. We obtained CNV results from each caller and
defined calls with at least 50% overlap as matches [19].

Evaluating CNV models with simulation samples
We compared the performance of PEcnv, CNVKIT, CONTRA and
FACETS with a simulated dataset. The 180-panel sequencing case
series had CNV sizes of 1 kbp to 10 Mbp, depth from 500× to 2000×,
and tumor purity of 0.2 to 0.8. Each case contains 171 CNVs. We
also simulated a matched control for each case. Here, we only
evaluated the performance of each method in detecting different
sizes of CNVs and the different RDs. Supplementary 4 describes
other evaluations and method comparisons with various absolute
copy number calls and read lengths.

Performance on detecting different sizes of CNVs
We compared the performance of PEcnv with CNVKIT, CON-
TRA and FACETS with simulated panel sequencing cases with
CNVs ranging from 1 kbp to 10 Mbp. Overall, the sensitivity of
all methods increased with increasing CNV size (Table 1). PEcnv
provided the highest sensitivity for detecting small CNVs (1–
10 kb, 10–100 kb; 0.86, 0.88) as compared with 0.81 and 0.73
for CONTRA, the second-best performer (Figure 3A). PEcnv also
had the highest sensitivity (0.89, 0.90) for detecting large CNVs
(100–1000 kb, 1–1 Mb) compared with FACETS, the second-best
performer, which had sensitivities of 0.69 and 0.79. The kitPEcnv
model also performs very well, maintaining a detection sensitivity
above 0.67 for different sizes of CNVs. In general, for detecting

CNVs of various sizes, PEcnv had greater sensitivity than all other
comparator methods. CONTRA is more sensitive to small CNVs
than other methods (except our model), and FACETS is more
sensitive to large CNVs than other methods (except our model).
To further demonstrate our method’s effectiveness, we compared
it with others in terms of precision and F1-scores (Supplement 4).
In some cases, our method was slightly less precise than other
methods, but overall, not much worse (Supplemental Figure 2A).
In general, for detecting CNV of various sizes, the F1-score of
PEcnv is always higher (0.03 ∼ 0.13) than that of other methods
(Supplemental Figure 2B).

We also compared our method with other methods using
simulated WES data. We simulated sequencing data with a
sequencing coverage depth of 60×, tumor purity of 0.67, CNV
absolute copy number from 0 to 6, and CNV size from 1 kb to
10 Mb. Our approach is more sensitive for detecting small CNVs,
detecting 373/392 versus 246/392 for the second-best performer,
CNVKIT. In contrast, the detection sensitivity for large CNVs
remains unchanged, with 296/308 for PEcnv versus 248/308 for
FACETS, the second-best performer (Figure 3B). The results show
that the sensitivity of PEcnv is 0.957 versus 0.757 for the second-
best performer, CNVKIT (Table 2). The precision of our method is
slightly lower than other methods. The F1-score of PEcnv is 0.886
versus 0.784 obtained by the second-best performer, CNVKIT.
These findings suggest that our method works significantly better
on WES data than existing methods. All tools produced good
results with depth coverage of 60×, except for CONTRA.

Performance on different read depths
To evaluate the performance of PEcnv on different read depths,
we compared PEcnv with CNVKIT, CONTRA and FACETS on simu-
lated panel sequencing samples with depths from 500× to 2000×
and tumor purity 0.2 to 0.8. The results show that the average
sensitivity of PEcnv is 0.88 versus 0.71 obtained by CONTRA,
the second-best performer (Figure 3C). When the tumor purity is
greater than about 0.44, the sensitivity of all methods increases
with increasing read depth. When the tumor purity is less than
about 0.44, the sensitivity of all methods decreases slowly with
decreasing tumor purity, even if the depth increases. These show
that the effect of tumor purity is more significant than read depth
in CNV detection, similar to results published elsewhere [32].
Experimental results also showed that CONTRA is less affected by
tumor purity than the other algorithms tested. To further demon-
strate the effectiveness of our method, we compared it to other
methods in terms of precision (Supplemental Figure 3A) and F1-
score (Supplemental Figure 3B). The results show that the average
precision of PEcnv is 0.86 versus 0.89 obtained by CONTRA, the
best performer and the average F1-score of PEcnv is 0.87 versus
0.78 obtained by CONTRA, the second-best performer.

Evaluating CNV models based on real samples
with known CNV
We applied CNV models to panel sequencing data from 23
healthy human individuals that have been studied in both the
International HapMap Project (www.hapmap.org) and the 1000
Genomes Project (www.1000genomes.org). Previous studies have
tested the performance of CNV detection tools on datasets from
these sources [7, 33, 34]. However, there is no benchmark for
the panel sequencing data from the 1000 Genomes and HapMap
projects. To consider bias in sequencing, we chose WES data
instead of WGS to generate panel sequencing data. In a way,
WES can be regarded as an extended version of panel sequencing,
as the biases and errors caused during sequencing are similar
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Table 1. Performance of various tools in detecting CNVs of differing sizes in simulated panel sequencing data

CNV size CNVKIT kitPEcnv PEcnv CONTRA FACETS

Sensitivity 1–10 k 0.44 0.67 0.86 0.81 0.21
10–100 k 0.48 0.76 0.88 0.73 0.53
100–1000 k 0.52 0.77 0.90 0.61 0.74
1–10 M 0.70 0.78 0.90 0.71 0.78

Precision 1–10 k 0.77 0.82 0.86 0.86 0.77
10–100 k 0.80 0.82 0.85 0.90 0.87
100–1000 k 0.75 0.78 0.88 0.88 0.78
1–10 M 0.83 0.83 0.85 0.92 0.93

F1-score 1–10 k 0.56 0.74 0.86 0.83 0.33
10–100 k 0.60 0.79 0.86 0.80 0.66
100–1000 k 0.61 0.78 0.89 0.72 0.76
1–10 M 0.76 0.81 0.88 0.80 0.85

Figure 3. (A) The sensitivity of each method (CNVKIT, kitPEcnv, PEcnv, CONTRA, FACETS) for detecting different sizes of CNVs on the 180-panel samples.
The tested result of each tool on the sequencing coverage depth from 500× to 2000×, tumor purity from 0.2 to 0.8 with the CNV size from 1 kb to 10 Mb.
(B) The number of detected true CNV of each tool on WES samples (with the sequencing coverage depth 60×, tumor purity from 0.67), with the CNV size
from 1 kb to 10 Mb. (C) The sensitivity of each method (CNVKIT, kitPEcnv, PEcnv, CONTRA, FACETS) for CNVs with simulated panel sequencing sample
data with depth and tumor purity of 500× to 2000× and 0.2 to 0.8, respectively.

between panel sequencing and WES. The datasets from both
sources were limited to those with WES data with coverage from
10× to 80×. We then randomly selected previously verified CNVs
by IGV [35] and used these CNV regions to generate the panel
bed and sequencing data files. For each sample, a region was

considered real CNV if its HapMap copy is not two, and at least
four of the remaining 23 samples have a copy number equal to 2
for that region [7, 34]. These ‘known truth’ CNVs ranged from 1 kb
to 10 Mb. Previous studies used NA10851 as the control sample
and the rest as case samples [7, 16]. It is worth mentioning that,



PEcnv: accurate and efficient detection of copy number variations of various lengths | 7

Table 2. The current method as it compares to other methods with simulated WES data

Methods True CNV TP FP Sensitivity Specificity F1-score

CNVKIT 700 530 122 0.757 0.812 0.784
kitPEcnv 700 578 132 0.826 0.814 0.820
PEcnv 700 670 142 0.957 0.825 0.886
CONTRA 700 231 3 0.33 0.987 0.494
FACETS 700 462 38 0.66 0.924 0.770

We simulated sequencing data with coverage depth of 60×, tumor purity is 0.67, CNV absolute copy number from 0 to 6 except 2 and CNV size from 1 kb to 10 Mb.
Abbreviations: CNV: copy number variation. WES: whole-exome sequencing. TP: true positive copy number variation. FP: false-positive copy number variation.
cn: absolute copy number.

Figure 4. The average sensitivity of each method (CNVKIT, contra, PEcnv, FACETS) for detecting CNVs of differing sizes in real samples with (A) panel
sequencing sample data and (B) sensitivity with WES sample data.

for the sake of fairness, we have chosen NA18051 as the control
sample and the default parameters for all test tools.

We counted and analyzed the detection results of each CNV
detection tool on 22 real samples for different sizes of CNV. The
results show that the average detection sensitivity for different
sizes of CNVs (0–1 kb, 1–10 kb, 10–100 kb, 100 kb–1 Mb, 1–10 Mb)
was 0.92, 0.80, 0.69, 071 and 0.87 for PEcnv versus 0.50, 0.67,
0.64, 0.54 and 0.69 for the second-best performer (Figure 4A). We
compared our method with other methods in terms of precision
(Supplemental Figure 4A) and F1-score (Supplemental Figure 4B).
The results show that the average precision of PEcnv is 0.98
versus 0.94 obtained by CNVKIT, the second-best performer and
the average F1-score of PEcnv is 0.88 versus 0.72 obtained by
CNVKIT, the second-best performer. We also evaluated each tool’s
performance on WES data. The results show that the average
detection sensitivity for CNVs of varying sizes (0–1 kb, 1–10 kb,
10–100 kb, 100 kb–1 Mb, 1–10 Mb) was 0.88, 0.87, 0.83, 076, 0.92
for PEcnv versus 0.68, 0.68, 0.73, 0.71 and 0.89 for the second-
best performer (Figure 4B). These results, presented in Figure 4,
are similar to those in previously published studies [16, 34]. To
further demonstrate the effectiveness of our method, we com-
pared our method with other methods in terms of precision
(Supplemental Figure 4C) and F1-score (Supplemental Figure 4D).
PEcnv achieved an average precision of 0.95 and F1-score of 0.89.
CNVKIT, the second-best performer achieved precision 0.96 and
F1-score 0.83.

Discussion and conclusion
This paper presents PEcnv, a novel approach to detecting various
sizes of CNVs based on WGS, WES and panel sequencing. The
main task is detecting CNVs that can vary in size for panel
sequencing data. During segmentation and CNV prediction, we
divide the genome into candidate and non-candidate CNV regions
and set the dynamic sliding window bin sizes according to the
different regions in bias correction and segmentation steps. This
method is more helpful than the non-overlapping static sliding
window strategy. Our approach provides improved performance
compared to other CNV detection processes and can be used to
improve existing algorithms. PEcnv can be easily incorporated
into existing CNV detection algorithms, and we believe it can
help improve the detection accuracy of CNVs of different sizes.
In addition, current strategies do not reduce the negative impact
of errors in detecting CNV in panel sequencing data. PEcnv takes
full advantage of the coverage information from the region sur-
rounding the targeted base to correct for coverage, while other
methods do not. Our model has some parameters that users can
define according to their needs (Supplementary 3).

Through extensive simulated and real sequencing data analy-
ses, we have demonstrated that PEcnv can precisely detect various
sizes of CNVs, especially with panel sequencing data. The test
results show that it is suitable for the simultaneous detection
of CNVs of different sizes. We used the CNV detection tools for
comparison support for single and multiple control samples to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac375#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac375#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac375#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac375#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac375#supplementary-data
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build the reference set. However, some studies suggest there may
be problems if multiple control samples are used, as they may
increase the risk of false-negative or false-positive results [18, 30].
To avoid these problems, we used a single control sample to build
the reference set for each CNV detection tool. Some methods were
less effective in detecting CNV in our experiments may be due
to the fact that we used one control sample instead of a strong
sample pool, and most of our tests were for small CNVs. Still, our
test results to evaluate CNV callers were similar to other tests,
such as those published by Iria Roca et al. [36] and Talevich [19].

In the future, we will pursue two experimental aims. First,
we found that the existing methods are not very effective when
tumor purity is low, so we will continue to improve the detection
accuracy of CNV in samples of low purity. Second, we will expand
our method to detect genomic scars. A growing number of studies
have demonstrated that genomic scars play an essential role in
cancer research and that CNV detection is vital for accurately
identifying genomic scars [37].

Author Contributions
J.W. and X.W. conceived and designed this research; X.W., X.L.,
R.L designed the model; X.W., S.W. implemented the program and
performed the experiments; X.W. analyzed the 1000G data; X.W.,
Y.X., Y.L., X.Z. wrote the manuscript. X.W. and J.W conducted the
revision. All authors have read and agreed to the latest version of
the manuscript.

Key Points

• PEcnv is a novel approach to detect copy number varia-
tions that vary in size and copy number.

• PEcnv enables accurate detection of copy number vari-
ants with short-to-medium length, which are hard to
identify with existing approaches but have been empha-
sized recently in cancer research and treatment devel-
opment.

• PEcnv is among the first approaches to incorporate the
genomic bases’ features around a target base to correct
the bias and noise on the read depth. This solves the lack
of training data for clinical panel sequencing data.

• PEcnv applies to panel sequencing data and also
works for whole genome sequencing and whole-exome
sequencing data.
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