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Integrating the genotype with epigenetic marks holds the promise of better understanding the biology that underlies the
complex interactions of inherited and environmental components that define the developmental origins of a range of disorders.
The quality of the in utero environment significantly influences health over the lifecourse. Epigenetics, and in particular DNA
methylation marks, have been postulated as a mechanism for the enduring effects of the prenatal environment. Accordingly,
neonate methylomes contain molecular memory of the individual in utero experience. However, interindividual variation in
methylation can also be a consequence of DNA sequence polymorphisms that result in methylation quantitative trait loci
(methQTLs) and, potentially, the interaction between fixed genetic variation and environmental influences. We surveyed the
genotypes and DNA methylomes of 237 neonates and found 1423 punctuate regions of the methylome that were highly
variable across individuals, termed variably methylated regions (VMRs), against a backdrop of homogeneity. MethQTLs were
readily detected in neonatal methylomes, and genotype alone best explained ~25% of the VMRs. We found that the best
explanation for 75% of VMRs was the interaction of genotype with different in utero environments, including maternal
smoking, maternal depression, maternal BMI, infant birth weight, gestational age, and birth order. Our study sheds new light on
the complex relationship between biological inheritance as represented by genotype and individual prenatal experience and
suggests the importance of considering both fixed genetic variation and environmental factors in interpreting epigenetic
variation.

[Supplemental material is available for this article.]

The relationship between interindividual variation in the epi-

genome—especially DNA methylation—and disease risk is an area of

intense research interest. Although the effect of fixed genetic vari-

ation on DNA methylation is apparent in studies of allele-specific

methylation and genomic imprinting, there is also emerging evi-

dence for environmental influences as a source of epigenomic var-

iation. Perinatal cohort studies offer a unique opportunity to explore

the origins of variation across the epigenome, and in particular the

extent to which fixed genetic variation can moderate the relation-

ship between prenatal environmental factors and epigenetic status

at birth.

Epidemiological data link disease risk directly to the in utero

environment (Roseboom et al. 2001; Gillman et al. 2003; Hillier

et al. 2007; Painter et al. 2008; Alisi et al. 2011; Sohi et al. 2011;

Dancause et al. 2012; Schwarze et al. 2012) or to birth outcomes as

a surrogate for the in utero environment (Barker et al. 1989; Hofman

et al. 2004; Boney et al. 2005; Bouhours-Nouet et al. 2008; Broekman

et al. 2009; Skilton et al. 2011). This phenomenon is often called

fetal programming and defines, in part, the developmental ori-

gins of health and disease (Bjornsson et al. 2004; Gluckman et al.

2008).
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Stable alterations to the epigenome are considered to be a pu-

tative molecular mechanism for fetal programming. Thus the envi-

ronmental epigenetic hypothesis (Seckl and Meaney 1993; Meaney

and Ferguson-Smith 2010) suggests that the in utero environment

affects the epigenome and that resulting epigenetic marks alter

physiology to affect later disease risk (Gluckman et al. 2009). Evi-

dence for this hypothesis derives from studies documenting the re-

lationship between specific DNA methylation marks, in utero envi-

ronments, and later phenotypes (Guo et al. 2008; Perera et al. 2009;

Pilsner et al. 2009, 2012; van der Kaay et al. 2009; Feinberg et al. 2010;

Kaminen-Ahola et al. 2010; Ollikainen et al. 2010; Fryer et al. 2011;

Hoyo et al. 2011; Tobi et al. 2011; Relton et al. 2012; Stunkel et al.

2012). For example, maternal carbohydrate intake in early pregnancy

and offspring adiposity at 9 yr of age associate with the DNA meth-

ylation level of the RXRA promoter in the umbilical cord (Godfrey

et al. 2011). There are examples of persistent, environmentally in-

duced DNA methylation states. For instance, variations in maternal

care alter the methylation of the glucocorticoid receptor gene pro-

moter in rats (Weaver et al. 2004), and differential methylation at this

same region is associated with childhood trauma in humans

(McGowan et al. 2009). Although many aspects of the epigenome

such as histone modification are likely to be involved, current evi-

dence concentrates mostly on DNA methylation.

Multiple epigenome-wide association studies (EWAS) within

birth cohorts have been initiated to search for epigenomic signa-

tures of early life environment that may influence later life phe-

notype (Ng et al. 2012; Michels et al. 2013; Mill and Heijmans

2013). However, at least some DNA methylation marks are speci-

fied by sequence context in cis (Brandeis et al. 1994; Lienert et al.

2011), precluding exclusive environmental regulation. In humans,

interindividual variation in DNA methylation could be wholly or

in part a consequence of nucleotide polymorphism, as local genetic

variants influence the propensity for methylation of neighboring

cytosines. These polymorphisms can be defined as methylation

quantitative trait loci (methQTLs). MethQTLs have been postulated

as a link between GWAS SNPs and phenotype (Liu et al. 2013).

Gibbs et al. (2010) showed methQTLs in human tissue in

studies of multiple human brain regions and found between 4% and

5% of the 27,000 CpG sites studied had methylation levels that were

significantly dependent on genotype (as measured in 537,411

SNPs). Although both cis (defined as the CpG and SNP pair being

within 1 Mb of the chromosomal region) and trans effects were

detected in this study, cis methQTLs were in massive abundance.

The average distance between a SNP and CpG pair that made up

a significant methQTL was 81 kb, but the peak enrichment across

the cis methQTLs was 45 bp. Zhang et al. (2010) examined human

cerebellum and found 9% of CpGs tested (748/8590) were within

methQTLs. Another study (Bell et al. 2011) detected 180 (1%)

methQTLs in the 22,290 CpGs and 3 million SNPs investigated

across 77 HapMap lymphoblastoid cell lines, five of which were also

reported by Gibbs et al. (2010). Most methQTLs were found in cis

and over short distances of <5 kb. Moreover, genotype at one

SNP associated with methylation at multiple neighboring CpGs, as

might be expected given the positional correlation previously noted

in methylation data (Eckhardt et al. 2006). Similar results were

obtained by Grundberg et al. (2013), who also discovered methQTLs

in adult adipose tissue acting in cis, which explains 19% of the

observed variance in methylation levels.

Ethnicity can be used as a proxy for genotype and has been

shown to influence the DNA methylome (Zhang et al. 2011).

African and European individuals have population-specific patterns

of DNA methylation at ;30% of CpGs measured. Methylation

levels at ;50% of these population-specific CpGs are explained by

divergence in allele frequencies at cis-acting SNPs between pop-

ulations (Fraser et al. 2012). Studies of methylation differences using

Illumina InfiniumHumanMethylation450 BeadChip array data

from 133 lymphoblastoid cell lines from European and African

HapMap samples found that 13% of analyzed CpGs showed sig-

nificant methylation differences between the populations, >50% of

which were in methQTLs with local SNPs (Moen et al. 2013). CpGs

showing differential methylation levels across ethnicities are more

likely to be driven by genotype than other CpGs (Heyn et al. 2013).

Nevertheless, these studies also found that some methQTLs are

specific to one population with no correlation between genotype

and methylation in other populations, suggesting possible gene 3

environment interactions.

Methylomes are more similar in related than unrelated indi-

viduals (Bjornsson et al. 2008), and concordance tracks degree of

relatedness; the methylomes of monozygotic twins are more closely

related than those of dizygotic twins (Kaminsky et al. 2009). Meth-

ylation profiles from three different tissues of twin neonates gen-

erated on the InfiniumHumanMethylation27K BeadChip only

clustered into twin pairs between 29% and 71% during unsupervised

analysis, suggesting nongenomic influences on the newborn

methylome (Gordon et al. 2012).

In this article, we focus on the examination of the relative

influences of genotypic, environmental, and gene 3 environment

interactive effects on the neonatal methylome. Recent studies

describe evidence for gene 3 environment interactions (G 3 E

effects) on DNA methylation. Yousefi et al. (2013) found that the

LEPR genotype interacted with maternal smoking to associate with

methylation of LEPR. A SNP within the IL4R gene combined with

methylation at a CpG site within the same gene predicts the risk of

childhood asthma (Soto-Ramirez et al. 2013). Moreover, Klengel

et al. (2013) found that interaction of the FKBP5 genotype and

early childhood trauma affects methylation of FKBP5 intron 7,

FKBP5 expression, and subsequent deregulation of glucocorticoid

receptor signaling. The proportions of interindividual variation in

methylomes that are driven by genotype, environment, or an in-

teraction of gene and environment (G 3 E) are currently unknown.

To clarify the relative influence of gene and in utero environment

on epigenetic status at birth, we studied the variation in genome-

wide DNA methylation patterns in umbilical cord samples from

237 Asian neonates using the InfiniumHumanMethylation450

BeadChip together with genotyping and extensive measures of in

utero environmental conditions. We report that genotype, and in

particular G 3 E interactions, explain substantial proportions of

interindividual variation in the methylome at birth.

Results

Ethnicity associates with the first components of genotype
but not DNA methylation

Umbilical cord tissue DNA from 237 individuals (131 Chinese, 72

Malay, 34 Indian) in the GUSTO birth cohort (Soh et al. 2013) were

interrogated on both Illumina OmniExpress + Exome genotyping

arrays and InfiniumHumanMethylation450 BeadChip; 708,365

SNPs (from the 958,178 assayed) varied in genotype and 301,468

CpGs (from the 411,107 assayed) varied in methylation levels by

>5% across the 237 individuals under study (for study subject

characteristics, see Table 1). When the genotype data were subjected

to principal component analysis, the samples were cleanly sepa-

rated by ethnicity. The Indian subjects clustered away from Chinese
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and Malay subjects on principal component 1, and the Chinese

and Malay subjects separated on principal component 2 (Fig. 1A).

In contrast, when the DNA methylation data were subjected

to principal component analysis, the samples did not separate

well by ethnicity on components 1 or 2 (Fig. 1B). The methylation

and genotyping arrays do measure different subsets of the ge-

nome; however, each have probes in every coding gene in the

genome and so are broadly comparable. If methylation levels

were specified wholly by genotype, we would expect ethnicity to

drive the methylome in the same manner as observed for the

genotype.

Evidence for methQTLs

Methylation levels at the majority of CpGs in the neonate meth-

ylomes were very similar across individuals, with median absolute

deviation scores (MAD) <0.1. To identify regions with appreciable

interindividual variance that could reflect individual in utero ex-

perience or genotype, we defined interindividual variably meth-

ylated regions (VMRs) across the 237 individuals using a previously

published methodology (Ong and Holbrook 2014). This analysis

returned 1423 VMRs; these were found on every chromosome in

a manner roughly dependent on probe spacing (Supplemental

Table 1; Supplemental Fig. 1), although they tended toward north

shore (P = 1.77 3 10�4) and open sea (P = 9.11 3 10�12) regions

(Supplemental Table 2).

The CpG with the highest MAD score within each VMR was

used to represent each of the 1423 VMRs and denoted as VMR-

CpGs. For each VMR-CpG, we compared methylation levels to SNP

genotype at all 708,365 heterologous positions by linear regression,

controlling for sex. Strong sex effects on the autosomes have pre-

viously been noted in InfiniumHumanMethylation450 BeadChip

data and are at least partially artifactual, driven by cross-reaction of

probes with the sex chromosomes (Chen et al. 2013).

The best-match (lowest P-value) SNP for each VMR-CpG was

retained. The final data set of 1423 CpG–SNP pairs showed a range

of associative P-values skewed toward the low end, suggestive of

methQTLs in the data set (Supplemental Fig. 2). P-values obtained

from the regression analysis were binned into 1000 equally spaced

bins. Distributions were defined as skewed if the first bin contained

more than the 708 P-values expected for each bin if P-values were

distributed evenly. Nine hundred sixty-six (68%) of the individual

VMR-CpGs had a skewed P-value distribution. In addition, 1037

(73%) had a –log10 P-value above 6.5, which is approximately the

background noise level seen across the genome (Fig. 2B,D,F).

Best-matched SNP and VMR-CpG pairs tended to be closely
colocated in cis

Twelve of the 1423 CpG–SNP pairs (<1%) included a SNP located

within the CpG that either creates or eliminates a CpG site. We

denoted these instances as ‘‘disrupting pairs.’’ Eight hundred

twenty-eight of the 1423 pairs (58%) included a SNP and CpG from

the same chromosome. We denoted these as ‘‘cis pairs.’’ The

remaining 583 pairs (41%) include a CpG and SNP located on dif-

ferent chromosomes and were denoted as ‘‘trans pairs.’’ The pro-

portion of cis pairs was much greater than expected by chance

(chance would predict pairs to be equally distributed across chro-

mosomes at ;4.5%) and tended to be more likely to come from

a skewed P-value distribution and to have higher R2 values than the

trans pairs (Fig. 2A). The influence of a genotype operating in-

dependently of environmental context was undetectable for some

VMR-CpGs (e.g., Fig. 2B,C) and very clear for others (e.g., Fig. 2F,G).

Even in a mid-range where methylation at the VMR-CpG was not

Table 1. Ethnicity, sex, and in utero environmental exposures of subjects

Characteristic Time point Summary

Count (%) Mean ± SD Range

Ethnicity (no. [%])
Questioned at first clinic

visit and confirmed by
genotype

Chinese 131 (57.81)
Malay 72 (30.38)
Indian 34 (14.35)

Sex (no. [%])
Delivery

133 (56.12)
Male 104 (43.88)
Female

Maternal age (yr) Questioned at first clinic visit 30.13 ± 5.09 18–44
Birth weight (g) Delivery 3110 ± 406 2010–4210
Gestational age (wk) Delivery 38.66 ± 1.2 35.14–41
Maternal depression score EPDS instrument at 26 wk 8.36 ± 4.87 0–21
Maternal folate concentrations (ng/L) Serum at 26 wk 35.56 ± 27.62 3.6–272
Maternal glucose tolerance OGTT_120 at 26 wk 6.29 ± 1.38 3.4–11.2
Maternal BMI (kg/m2) Measured at 26 wk 26.68 ± 4.95 18.18–42.68
Maternal smoking (no. [%]) Questioned at 26 wk 10 (4.22)
Maternal vitamin B12 concentrations (pg/mL) Serum at 26 wk 216.63 ± 79.59 70–494
Maternal vitamin B6 concentrations (nmol/L) Serum at 26 wk 64.6 ± 51.32 9–304.4
Maternal plasma pyridoxic acid (nmol/L) Serum at 26 wk 36.81 ± 37.94 4–345.8
Maternal plasma magnesium (mg/L) Serum at 26 wk 19.17 ± 2.41 14.99–41.65
Maternal plasma iron (mg/L) Serum at 26 wk 1179.56 ± 793.42 374.52–9300.46
Maternal plasma ferritin (ng/mL) Serum at 26 wk 48.49 ± 17.55 13.6–137.8
Maternal plasma copper (mg/L) Serum at 26 wk 2328.36 ± 393.9 1540.49–3795.27
Maternal plasma zinc (mg/L) Serum at 26 wk 917.08 ± 176.48 644.24–1871.5
Maternal plasma EPA (%) Serum at 26 wk 58.59 ± 657.01 1.27–82.31
Maternal plasma DHA (%) Serum at 26 wk 155.08 ± 653.59 24.18–329.31
Parity (no. [%]) Questioned at first clinic visit 99 (41.77)
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strongly related to genotype on a scatter plot (e.g., Fig. 2E), there was

still a tendency for the best hit to be in cis (e.g., Fig. 2D).

Disrupting pairs had significantly stronger associations be-

tween genotype and methylation level than cis pairs, which in turn

had stronger associations than trans pairs (P = 7.3 3 10�117 by

Kruskal-Wallis test) (Fig. 3). Within the cis pairs, there was a strong

inverse relationship for the strength of association between meth-

ylation levels and genotype, and the distance between the CpG and

SNP (P = 8.84 3 10�5). The mode was within 0–10 bp or 50–60 bp

without the disrupting pairs (Fig. 4). There seemed to be a contin-

uum of genotypic influence on methylation levels, with ;68%–

73% of the VMR-CpGs showing an appreciable association with

genotype. Defining a genuine methQTL would necessitate choosing

arbitrary cut-offs. However, the trans CpG–SNP pairs tended to be on

the lowest end of the distribution of association statistics and hence

were less likely to represent genuine methQTLs (Fig. 2A).

G 3 E models best explained variation in methylation at most
VMR-CpGs

The GUSTO study has ascertained multiple environmental mea-

sures that are known to influence or reflect the quality of the in

utero experience. We chose 19 parameters as surrogate measures of

the uterine environment (see Table 1) and examined whether

methylation at each of our 1423 VMR-CpGs was better explained by

genotype, environment, or G 3 E. We ran 39 regression models (see

Methods), including the best SNP hit from the previous methQTL

analysis, described above. For the G 3 E models, we tested all the

SNPs located on the same chromosome as the CpG, as well as the

best hit from the methQTL analysis. All models contained sex and

were compared using Akiake information coefficients (AICs).

Methylation levels at ;25% of the 1423 VMR-CpGs were best

explained by genotype alone, while the rest were best explained by

G 3 E models (Fig. 5A). The models containing environment alone

were never the best explanation of methylation at the VMR-CpGs.

The information loss experienced between the two top models (D)

(Burnham and Anderson 2004) ranged from 0.0002–49.0 (calcu-

lated by delta in AICs). The genotype-only model tended to be

a ‘‘narrow winner’’; i.e., the D was low in comparison to the D shown

by the cases where G 3 E was the best explanation (Fig. 5B). The

majority of best models showed an adjusted R2 value above 0.12.

The distribution of adjusted R2 values for the cases where G 3 E was

the best model was shifted slightly to the right compared with that

for the cases of genotype being the best model (Fig. 5C). When the

results were restricted to models without substantial support for

the next best model, with D > 2 (Fig. 5D), and an adjusted R2 > 0.4,

the proportion of VMR-CpGs for which genotype only was the best

model was still ;24%.

The VMR-CpGs that were best explained by genotype alone

tended to be in open seas (P = 1.38 3 10�5), while VMR-CpGs

that were best explained by G 3 E tended to be both in open seas

(P = 2.12 3 10�6) and north shores of CpG islands (P = 0.012)

(Supplemental Table 2; Supplemental Fig. 1), consistent with pre-

vious observations (Feinberg et al. 2010). Once again the majority of

the SNPs in the best models were in cis with the VMR-CpGs (85%

for the winning G 3 E models and 78% for the G winning models).

When only models with high levels of support (D > 2 and adjusted

R2 > 0.4) are included, only cis SNPs remain (Supplemental Fig. 3).

The G 3 E models allow for methylation associated with en-

vironment in each of the genotypic subgroups present but with

different slopes. However, we often saw that environment and

methylation were very closely associated in one genotype and less

so in the other two genotypes. To identify these CpG-VMRs, we

segregated the subjects by the genotype in the best G 3 E model

and ran regressions of methylation and the phenotype for the best

G 3 E model. Fifty VMR-CpGs were significant after Bonferroni

correction. Examples are shown in Figure 6.

Restricting subjects to one ethnicity reduced the impact
of genotype

The 491 VMR-CpGs with differential methylation for ethnicity have

significantly stronger associations with SNPs compared with all

other 930 CpGs (P = 2.17 3 10�19). We reasoned that the inclusion

of multiple ethnicities would increase the genotypic influence on

the methylome. We thus conducted an analysis including only the

131 Chinese subjects in our data set. In the Chinese-only subgroup,

we still found many methQTLs, but there was a subtle (downward)

shift to less significant associations for the majority of CpG–SNP

pairs (Supplemental Fig. 4A). The number of VMR-CpGs for which

the methylation was best explained by genotype alone decreased

slightly to 21% (Supplemental Fig. 4B).

CpGs with the most variation across samples are most likely to
be driven by genotype

We noted that the CpG MAD score across samples or the range of

methylation values across samples was related to the strength of

association between the CpG methylation values and the geno-

type of the best SNP (P = 3.54 3 10�39) (Fig. 7). Our 1423 VMR-

CpGs were chosen to lie within VMRs. This approach improves the

Figure 1. (A) Unfiltered genotypes organize subjects by ethnicity. Principal
component 1 (x-axis) plotted against principal component 2 (y-axis) from
principal component analysis of genotypes for all 708,365 heterologous SNPs
across 237 subjects. Subjects are colored by self-reported ethnicity. (B) Un-
filtered methylomes do not organize subjects by ethnicity. Principal com-
ponent 1 (x-axis) plotted against principal component 2 (y-axis) for principal
component analysis of methylation levels at all 301,468 variable CpGs across
237 subjects. Subjects are colored by self-reported ethnicity.

Gene 3 environment shapes neonate methylomes
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specificity of the analysis (Ong and Holbrook 2014). However, we

also picked a further 1500 CpGs that had the most extreme MAD

scores in the data set and that were not included in a VMR. Indeed,

within this set the genotype-driven model is a better explanation

for a higher proportion of the CpGs (Supplemental Fig. 5).

Discussion
We used DNA obtained from the umbilical cord at birth to provide

evidence for the influence of genotype on interindividual vari-

ability in DNA methylation. MethQTLs were readily apparent in

the methylome of neonates born at term with birth weights that

spanned the normal range from a community sample of preg-

nancies that were not selected or weighted for any particular out-

come. Our findings are consistent with a recent report (Gutierrez-

Arcelus et al. 2013) of 14,189–32,318 methQTLs (3%–7%) found

within Infinium450K data by searching the SNPs (genotype 2.5

million) in 5-kb flanking regions on either side of each CpG in

umbilical cord tissue and cord blood. However, Gutierrez-Arcelus

et al. (2013) did not describe any phenotypic or environmental

data on their subjects or attempt to show any environmental in-

fluence on methylation levels. In these ways, our studies differ in

aims and scope. We found that the effect of genotype on methyl-

ation was more pronounced in multiethnic populations but was

also apparent within the sample of homogeneous ethnicity (Fig. 5;

Supplemental Fig. 4B). Moreover, there was a strong relationship

between the range of methylation values and influence of genotype

(Fig. 7; Supplemental Fig. 5). There is recent evidence that epigenetic

states may serve to directly mediate the relation between certain

genetic polymorphisms and phenotype (McVicker et al. 2013). The

mechanism by which sequence polymorphism affects local CpG

methylation is unknown (assuming the SNP is not within the CpG,

a situation we have labeled disrupting pairs). However, the effect is

likely mediated by the sequence-specific binding of proteins and

alteration of chromatin factors that subsequently affects binding of

de novo methylases or demethylating mechanisms. A similar

mechanism has been evidenced for other epigenetic marks, recently

shown to be affected by polymorphism in a similar way to meth-

ylation (Otani et al. 2009; Kasowski et al. 2013; Kilpinen et al. 2013;

McVicker et al. 2013). A study of these other epigenomic marks in

a similar context to that we describe for DNA methylation would

be fascinating.

Figure 2. (A) The strength of association between genotype and methylation levels is a continuum, with most VMR-CpGs showing some association with
genotype. Scatter plot of Pearson R2 (x-axis) for the VMR-CpG and best SNP match against log2 of the number of regression P-values in the first bin of 1000
equally distributed bins (y-axis); the red line represents an absolutely even 708 regression P-value in the first bin. (Black) Disrupting pairs, (dark gray) cis pairs,
(light gray) trans pairs. (B) Some VMR-CpGs are minimally influenced by genotype. Manhattan plot of methylation at one VMR-CpG against all SNPs (x-axis)
with�log10 P-value on the y-axis, as an example of VMR-CpG with low R2 and a low number of P-values in the first bin. (C ) Scatter plot of genotype (x-axis)
against methylation (y-axis) for the top pair from the same VMR-CpGs as in B. (D) Some VMR-CpGs are moderately influenced by genotype. Manhattan plot
of methylation at one VMR-CpG against all SNPs (x-axis) with �log10 P-value on the y-axis, as an example of VMR-CpG with moderate R2 and a moderate
number in the first bin. (E) Scatter plot of genotype (x-axis) against methylation (y-axis) for the top pair from the same VMR-CpGs as in D. (F) Manhattan plot
of CpG against all SNPs (x-axis) with�log10 of the P-value (y-axis), as an example of VMR-CpG with high R2 and a high number in the first bin. (G) Scatter plot
of genotype (x-axis) against methylation (y-axis) for the top pair from the same CpG as in F.
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Despite the evidence for genotypic influence independent of

environmental influences, we found that the majority of the VMR-

CpGs were best explained by the interaction of genotype and

maternal/fetal environment (Fig. 5). The environmental measures

selected for analysis included proxy factors such as birth weight

and gestational age, maternal smoking and depression, all of which

are known to influence a broad range of developmental outcomes.

Despite the importance of G 3 E models in explaining the majority

of VMR-CpGs, we failed to find VMR-CpGs that were best explained

by environmental conditions independently of genotype. This

finding emerged despite the considerable evidence for the effects

of environmental factors in pregnancy on both epigenetic states

(Barker et al. 1989; Roseboom et al. 2001; Gillman et al. 2003;

Hofman et al. 2004; Boney et al. 2005; Hillier et al. 2007; Bouhours-

Nouet et al. 2008; Painter et al. 2008; Broekman et al. 2009; Alisi

et al. 2011; Skilton et al. 2011; Sohi et al. 2011; Dancause et al. 2012;

Schwarze et al. 2012) and health outcomes (Godfrey et al. 2011).

Our data suggest that genotype exerts a moderating influence on

such environmental effects.

The regression models explained a high proportion of the

variance in methylation levels for a minority of the VMR-CpGs.

For most VMR-CpGs, the models explained only 10%–20% of the

variance (Fig. 5D). One reason why the models might fail to ex-

plain the majority of the variance for more VMR-CpGs is that the

association between methylation and a specific environmental

condition may only be apparent in one genotypic subgroup (Fig.

6). This observation is consistent with the emerging view that

genotype can determine the degree of environmentally induced

phenotypic plasticity (i.e., so-called ‘‘plasticity genes’’) (Belsky

et al. 2009; Simons et al. 2011) and that epigenetic mechanisms

serve to maintain environmentally induced phenotypic variation

(Meaney and Ferguson-Smith 2010; Pujadas and Feinberg 2012).

This is a particularly important finding for studies of either pop-

ulation differences or the influence of environmental factors on

phenotypic outcomes. The finding of G 3 E interaction effects on

the epigenome suggests that the necessary level of interrogation

extends beyond simple EWAS analysis to include genotype. The

failure to include assessment of genotypic moderation of envi-

ronment–epigenome relations might result in an underestimation

of the potential for environmental impact among subpopulations.

Patel et al. (2013) show that candidate SNP and CpG loci with

marginal associations in GWAS and EWAS, respectively, can show

strong associations with disease (in this case type 2 diabetes) when

combined.

Another possible reason for the modest explanatory power of

certain models is that they are limited to only 19 proxy factors

related to the in utero environment and that only single individual

genotypic and environmental influences were examined within

the models. Models containing multiple SNPs (epistasis) or com-

bining different facets of environments may explain more of the

variance in DNA methylation. Moreover, the population under

study did not show extreme values in the environmental measures

(Table 1), and stronger effects may emerge with the study of high-

risk populations.

Cellular heterogeneity may also compromise our ability to

account for variance across the methylome. The umbilical cords

that we studied include a mixture of cell types. Recent studies in

blood suggest that some of the interindividual variation in meth-

ylation is accounted for by differences in cellular content (Lam et al.

2012; Liu et al. 2013). We were unable to separate the cell types

in the GUSTO umbilical cords as the tissues were frozen at collec-

tion. Our study involved only a subset of the SNPs in the genome,

which included the 1 million SNPs on the OmniExpress + Exome

arrays. Although missing SNPs could have accounted for ad-

ditional variance in the VMRs, the 1 million SNPs were distrib-

uted relatively evenly across the genome and represented

the majority of haploblocks. Finally, the CpG sites assessed by

InfiniumHumanMethylation450 BeadChip are biased toward

gene bodies and flanking regions, and therefore we did not cover

intergenic regions thoroughly.

Our analysis was intended to estimate the relative influences

of genotypic, environmental, and G 3 E interactive effects on

the neonatal methylome. The models should not be considered as

fully determinative of specific outcomes. Indeed, many of the

environmental factors considered here are interdependent. Parity

and maternal age, for example, are obviously correlated. Moreover,

potential sources of environmental influence, such as socioeco-

nomic status, were not considered. Similarly, the associations

shown in Figure 6 derive from models that did not control for

Figure 4. Cis pairs tend toward short distances between the SNP
and CpG. Bar chart of –log10 of the P-value (y-axis) against the chro-
mosomal distance between the SNP and CpG (x-axis) for cis pairs
within 5 kb.

Figure 3. The strength of association between genotype and methyl-
ation is strongest for disrupting pairs and weakest for trans pairs. Box plot
of –log10 of the P-value of the association between genotype and meth-
ylation levels at each VMR-CpG, for CpG–SNP pair categories disrupting
(SNP is within CpG), cis (SNP is on same chromosome as CpG), and trans
(SNP is on a different chromosome to the CpG).
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potentially important covariates. In addition, due to the number of

predictive factors tested, it is difficult to ascribe significance to any

individual association; instead, we report the models that best

explain the variance in methylation values. Nevertheless our data

serve to underscore the importance of G 3 E interactions and

suggest that models of epigenetic variation should consider such

interactive influences.

Conclusions

To our knowledge, our report is the first attempt to quantify the

relative influence of genotype and environment, as well as their

interaction on the human epigenome. This quantification is

important as many reports compare DNA methylation to phe-

notype independently of genotype. Our results strongly suggest

that genotype is an essential factor in these relationships. In

particular, it is an important question to address in neonates

because the influence of prenatal environment on future disease

risk is intensely studied with respect to subsequent risk of illness.

Our findings suggest that such studies should include an assess-

ment of the degree to which environmental influences are mod-

erated by genotype.

Methods

Briefly, 244 umbilical cord samples from healthy babies who were
part of the GUSTO birth cohort study (Soh et al. 2013) were selected.
Subject characteristics can be found in Table 1. Genotyping was
performed on the Illumina OmniExpress + Exome array and pro-
cessed in a standard fashion. DNA methylation profiling was per-
formed on the InfiniumHumanMethylation450 BeadChip. Data
were processed as described previously (Pan et al. 2012). Sex chro-
mosome data were removed. A temporal batch effect was observed
and removed using empirical Bayes methodology (COMBAT)
(Johnson et al. 2007). All probes identified as cross-hybridizing in
either Chen et al. (2013) or Price et al. (2013) were removed from the
data set; 301,468 probes remained. (For detailed sample and data
acquisition, see Supplemental Material.)

Identification of interindividual CpGs

VMRs were detected as previously described (Ong and Holbrook
2014). A candidate VMR was defined as at least two spatially con-
tiguous probes within 1 kb of each other and with MAD values
greater than the 95th percentile. We expanded candidate regions to
contain more than two probes, as long as the distance between any
two neighboring probes within the region was not larger than 1 kb.

Figure 5. (A) The majority of VMR-CpGs are best explained by G 3 E models. Pie chart showing the proportions of 1423 VMR-CpGs, which are best
explained by the genotype (G), environment, or interaction between gene and environment (G 3 E) regression models. (B) Genotype tends to be a narrow
winner. Stacked histogram of deltas between delta AICs for best and next-best model across 1423 VMR-CpGs. Each box is colored to denote the model
that best explained methylation levels at the VMR-CpG. (C) The models explain the range of variation at VMR-CpGs. Stacked histograms of adjusted R2 of
the winning model across all 1423 VMR-CpGs. Each box is colored by the winning model. (D ) The proportion of VMR-CpGs explained by G 3 E is stable as
model confidence increases. Pie chart showing the proportions of 210 VMR-CpGs that were best explained by the genotype, environment, or G 3 E
regression models with no substantial support for the next-best model (D > 2) and adjusted R2 > 0.4.
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Figure 6. Association of methylation with environment in one genotypic group. Examples of VMR-CpGs whose methylation levels are significantly
associated with phenotype in only one genotypic group. Phenotypic values are shown on the x-axis, and methylation value in percentages on the y-axis.
(Left) Data for all samples. Samples are colored by their genotypic group (red indicates AA; blue, AB; black, BB), and a straight fit line is fitted for each
group. (Right) Genotypic subgroup with the highest R2.



For each VMR, the CpG with the highest MAD score was utilized as
the representative CpG. These 1423 CpGs were used as the data set
for subsequent analyses. In addition, the 1500 CpGs with the highest
MAD scores outside of VMRs were also captured for further analysis.

MethQTL analysis

Linear regression was performed for each of the 1423 VMR-CpGs,
against all heterologous SNPs identified on the genome-wide arrays.
For the purposes of these regressions, the genotype was coded as 1, 2,
or 3 and treated as continuous whereby the heterozygote represents
an intermediate state between the two homozygotes. In the model
analysis below, genotype is categorical. The regressions were ad-
justed for sex. For each of the 1423 VMR-CpGs, we selected the
CpG–SNP pair with the lowest P-value for further analysis. The
linear regression analysis was performed in R.

Model analysis

Methylation (Meth) at each CpG was subjected to the following
models [(1), (2), (3)], and models were compared using Akiake in-
formation coefficients (AIC) (Akaike 1973).

Genotype model: Meth ; G1 + sex; ð1Þ

where G1 is the best SNP from previous MethQTL analysis, treated
as a categorical variable.

Genotype model: Meth ; Envi + sex; ð2Þ

where Envi is the phenotype (i = 1–19) (for its corresponding
phenotype, see Table 1), which gave the lowest model AIC.

Genotype3 environment model: Meth ; G2 + Envi + G2 3 Env + sex;

ð3Þ

where Envi is the phenotype (i = 1–19) (for its corresponding phe-
notype, see Table 1), which gave the lowest model AIC, and G2 is the
SNP on the same chromosome as Meth, which gave the lowest model
AIC (also treated as a categorical variable).

The model with the lowest AIC was declared the ‘‘winner,’’ i.e.,
the model that best explained the Meth compared with the alter-
native models.

Akiake deltas were calculated as the difference between the AIC
for the best model and the AIC for the next best model (Burnham
and Anderson 2004).

Adjusted R2 was calculated by Equation 4:

1�
1� R2
� �

ðN � 1Þ
N � i� 1

; ð4Þ

where R2 is sample R2; i, the number of predictors; and N, the total
sample size.

Segregated analysis

For each of the CpGs for which a G 3 E model had the lowest AIC, the
subjects were segregated by the genotype, and regression against
phenotype was performed in each genotypic group. Bonferroni cor-
rection was performed for 2963 regressions that were run.

Genomic feature enrichment analysis

CpG island shores were defined as up to 2-kb regions from the
CpG island start or end as per convention (Irizarry et al. 2009). CpG
island shelves were next defined as another 2 kb from the shore
boundaries, as specified in the GenomeStudio Methylation Module
v1.8 User Guide from Illumina (Table 10) (http://supportres.
illumina.com/documents/myillumina/90666eaa-0c66-48b4-
8199-3be99b2b3ef9/genomestudio_methylation_v1.8_user_guide_
11319130_b.pdf). Open seas are regions that are not islands,
shores, or shelves. The TSS SwitchGear track in the UCSC Genome
Browser was used to delineate human promoters, and genomic
coordinates of human enhancers were obtained from the VISTA
enhancers track (Visel et al. 2007). For individual VMR lists, we
determined the total number of probes belonging to each of
the six genomic categories (CpG island, south shore, north shore,
south shelf, north shelf, and open sea) and also for a back-
ground list of 55,003 regions that are possible on the Infinium-
HumanMethylation450K BeadChip. The P-value for enrichment of
the region lists with each genomic category is computed by a
hypergeometric test (one-tailed).

Data access
The data from this study have been submitted to the NCBI Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
under accession numbers GSE53816 and GSE54445.
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