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Abstract: This work investigates the dominant energy dissipations of the multi-frequency whispering
gallery mode (WGM) resonators to provide an insight into the loss mechanisms of the devices.
An extensive theory for each loss source was established and experimentally testified. The squeezed
film damping (SFD) is a major loss for all the WGMs at atmosphere, which is distinguished from
traditional bulk acoustic wave (BAW) resonators where the high-order modes suffer less from the air
damping. In vacuum, the SFD is negligible, and the frequency-dependent Akhiezer damping (AKE)
has significant effects on different order modes. For low-order WGMs, the AKE is limited, and the
anchor loss behaves as the dominant loss. For high-order modes with an extended nodal region,
the anchor loss is reduced, and the AKE determines the Q values. Substantial Q enhancements over
four times and an excellent f × Q product up to 6.36 × 1013 at 7 K were achieved.

Keywords: loss mechanism; MEMS resonator; multi-frequency; quality factor; whispering
gallery mode

1. Introduction

Micro-electro-mechanical system (MEMS) resonators with small occupation, IC compatibility,
and lower power consumption have emerged as a key enabling solution to constitute advanced RF-front
transceivers for future wireless communications [1–5]. The bulk acoustic wave (BAW) resonators are
extremely attractive for their high stiffness and low energy dissipation [6]. Based on high-performance
BAW resonators with promising f × Q products [7–10], many outperforming RF components have
been demonstrated, such as MEMS oscillators with low phase noise [11–13] and RF channel-select
filters with ultra-narrow passband [14,15].

Multi-frequency BAW resonators are highly desired for high-end applications such as multi-clock
oscillators and multi-band filters. For some widely-used BAW resonators, it is hard to maintain
high f × Q products in high-order modes as the Q values degrade sharply due to the severer anchor
loss. For example, in contour mode resonators, the Q of high-order modes was deteriorated by the
increasing displacement at the stem-supporting region [16]. In width extensional mode resonators,
the Q values in even modes suffer from severe energy loss at the tether attachment point [10]. However,
the loss mechanisms of various resonators are different [17]. In some devices, like Lamé mode
resonators [18], and composite thin-film piezoelectric-on-substrate (TPoS) resonators vibrating in
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extensional modes [19], high Q values as well as promising f × Q products have been achieved in
high-order modes. Nevertheless, the reported BAW resonators are still operating at single frequencies.
The whispering gallery modes (WGMs) with extended nodal region in high-order modes are apt
to achieve higher f × Q products owing to the reduced anchor loss, which is superior to contour
or extensional modes. In addition, the standing waves formed at the disk periphery are beneficial
for setting multiple electrodes to implement multi-mode excitations [20]. In [21,22], WGM based
switchable disk resonators have been demonstrated. Distinguished from traditional single-frequency
BAW resonators, multiple modes can be simultaneously excited to achieve wide frequency coverages,
and the Q values retain over 104 for each mode at atmosphere. To better understand their Q
limitations, it is significant to study the distinct loss mechanisms of such devices and explore their
potential applications.

The reported work mainly focuses on one or several loss sources on certain order WGMs.
The anchor loss of WGM resonators has been qualitatively studied in [23,24], which tends to be
negligible with increasing mode order, while the dominant dissipations of the high-order modes
have not been clarified. The effects of thermoelastic damping (TED) and phonon-phonon interaction
damping (PPID) on WGM resonators were analyzed in [25]. It was theoretically indicated that PPID is
more significant than TED and determines the upper limit of the f × Q product. In [26], the anchor loss,
TED, and PPID were compared for the 2nd WGM resonator with different supporting configurations
at 5 K. It was reported that the anchor loss could still remain dominated. However, for multi-mode
WGM resonators with wide frequency coverages, the dominant loss mechanisms of each mode can be
different and have not been reported yet; thus, the relevant loss sources should be fully taken into
account. In the previous work [22], the energy loss sources for the multi-mode WGM resonators have
been preliminarily investigated in different experimental conditions; however, the theoretical models
were not built up, although the theoretical analyses are essential for quantitatively evaluating each
loss mechanism.

In this work, extensive theoretical models were established and experimentally verified.
With promising agreement between the theoretical analysis and experimental results, the main
loss sources in different working conditions were clarified. For the first time, the distinct temperature
dependences of Q for various order modes were explicitly presented and the limiting loss mechanisms
at the cryogenic temperatures could be unveiled. Comprehensive analysis about the energy dissipation
of the devices was provided.

2. Design and Fabrication

The disk resonator is surrounded by eight uniformly distributed electrodes at the circumference.
Utilizing the one-pair of electrode configuration, i.e., two opposite electrodes, the 2nd to 7th WGMs can
be simultaneously excited [22]. The supporting stem is located at the center of the disk, corresponding
to the nodal region of the disk; thus, the anchor loss can be minimized [21]. The mode shapes are given
in Figure 1a. The resonance frequencies can be calculated by solving the following equations [27]:[

ψ
(
ζ
ξ

)
− n− q

]
[ψ(ζ) − n− q] = (n · q− n)2, (1)

ψ(x) =
xJn−1(x)

Jn(x)
, q =

ζ2

(2n2 − 2)
, (2)

ζ = 2π fnR

√
ρ(2σ+ 2)

E
, ξ =

√
2

1− σ
, (3)

where n is the mode order; Jn is the Bessel function of the first kind; fn refers to the resonance frequency
of the nth mode; R denotes the disk radius; and E, ρ, and σ refer to the Young’s modulus, density,
and Poisson’s ratio, respectively.
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Figure 1. The mode shapes of the 2nd, 4th, and 6th WGMs (a); the scanning electron microscope (SEM) 
photograph of the fabricated resonator (b); and the measurement setup of the WGM resonators (c). 

As shown in Figure 1c, with the central disk grounded, an AC signal together with a DC bias 
voltage were applied to the driving electrode using the bias-T; meanwhile, another DC bias voltage 
was applied to the sensing electrode to extract the motional current. The span angle of the electrode 
θ is critical for multi-mode excitations. According to dependence of the motional current on the span 
angle for each mode, the optimal angle of an individual mode is π/n. A small angle cannot provide 
sufficient electromechanical couplings for low-order modes, while the large one will suppress the 
high-order modes. Therefore, a traded-off value of 34° was employed [22]. The three-layer self-
aligned process was adopted to batch fabricate the 37 μm and 18 μm-radius WGM resonators [28]. 
The nano-scale spacing gap of 70 nm was made via the thermal oxidation to reduce the impedance. 
The low pressure chemical vapor deposition low pressure chemical vapor deposition (LPCVD) 
device layer with nearly zero stress yielded a higher reliability and reduced energy dissipation. The 
fabricated resonator is shown as Figure 1b. 

3. Theoretical Analysis 

The total Q of the MEMS resonators can be expressed as: 
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where i denotes one type of loss mechanism, and the total Q is dominated by the lowest Qi. The most 
relevant energy dissipation sources of RF-MEMS resonators are: anchor loss, air damping, TED, and 
PPID [29]. For a comprehensive analysis, each loss source should be individually modeled. 

3.1. Anchor Loss 

The anchor loss is associated with the acoustic waves radiating away from the resonator through 
the supporting stem and propagating into the substrate. The energy is thus dissipated. As shown in 
Figure 2a, the disk is suspended by the anchor stem. The bottom end of the stem is attached to the 
substrate. The semi-infinite substrate is modeled as the semicircle. The perfectly match layers (PML) 
are applied at the edge of the substrate to absorb the propagating acoustic waves [30]. For multiple 
WGMs, the thickness of the PML is set as the corresponding resonance wavelength of each mode. 

Figure 1. The mode shapes of the 2nd, 4th, and 6th WGMs (a); the scanning electron microscope (SEM)
photograph of the fabricated resonator (b); and the measurement setup of the WGM resonators (c).

As shown in Figure 1c, with the central disk grounded, an AC signal together with a DC bias
voltage were applied to the driving electrode using the bias-T; meanwhile, another DC bias voltage was
applied to the sensing electrode to extract the motional current. The span angle of the electrode θ is
critical for multi-mode excitations. According to dependence of the motional current on the span angle
for each mode, the optimal angle of an individual mode is π/n. A small angle cannot provide sufficient
electromechanical couplings for low-order modes, while the large one will suppress the high-order
modes. Therefore, a traded-off value of 34◦ was employed [22]. The three-layer self-aligned process
was adopted to batch fabricate the 37 µm and 18 µm-radius WGM resonators [28]. The nano-scale
spacing gap of 70 nm was made via the thermal oxidation to reduce the impedance. The low pressure
chemical vapor deposition low pressure chemical vapor deposition (LPCVD) device layer with nearly
zero stress yielded a higher reliability and reduced energy dissipation. The fabricated resonator is
shown as Figure 1b.

3. Theoretical Analysis

The total Q of the MEMS resonators can be expressed as:

1
Q

=
∑ 1

Qi
, (4)

where i denotes one type of loss mechanism, and the total Q is dominated by the lowest Qi. The most
relevant energy dissipation sources of RF-MEMS resonators are: anchor loss, air damping, TED,
and PPID [29]. For a comprehensive analysis, each loss source should be individually modeled.

3.1. Anchor Loss

The anchor loss is associated with the acoustic waves radiating away from the resonator through
the supporting stem and propagating into the substrate. The energy is thus dissipated. As shown
in Figure 2a, the disk is suspended by the anchor stem. The bottom end of the stem is attached
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to the substrate. The semi-infinite substrate is modeled as the semicircle. The perfectly match
layers (PML) are applied at the edge of the substrate to absorb the propagating acoustic waves [30].
For multiple WGMs, the thickness of the PML is set as the corresponding resonance wavelength
of each mode. The Comsol Multiphysics was used for simulation. Applying the eigenfrequency
analysis to the established model, a complex-valued result can be attained, which consists of a real part
referring to the resonance frequency and the imaginary part reflecting the exponential damping of the
displacement field. Figure 2a shows the displacement distribution of the 3rd WGM. The Qanchor can be
calculated as [31]:

Qanchor =
Re( fn)

2Im( fn)
. (5)
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Figure 2. The simulated displacement distribution of the WGM resonator as well as the substrate (a), 
the varied pressure profile of the air gap (b), and the temperature distribution (c). 

3.3. Thermal Elastic Damping 

The TED results from the irreversible heat flow arising from the temperature gradients 
associated with the differential volumetric changes [35]. For an isotropic thermoelastic solid with 
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thermodynamic equation [36,37]: 
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where Cv and κ are the volumetric heat capability and thermal conductivity [38], respectively; u, v, 
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Based on the coupling equations, with the reference temperature T0 given, similar to (2), a 
complex ω can be obtained and the Q can be extracted. The temperature distribution of the 5th WGM 
is shown in Figure 2c. 

3.4. Phonon-Phonon Interaction Damping 

Figure 2. The simulated displacement distribution of the WGM resonator as well as the substrate (a),
the varied pressure profile of the air gap (b), and the temperature distribution (c).

3.2. Squeezed-Film Damping

During the vibration of MEMS resonators, the air is moved in and out of the nano-scale spacing gap
alternatively. A varied pressure field is generated, which induces a significant force on the resonator
sidewall against the vibration; a portion of energy is thus dissipated. This effect is referred to as the
squeezed-film damping (SFD). To evaluate the QSFD, the total energy stored in the device as well as the
varied pressure induced energy dissipation should be determined. The stored energy can be calculated
using the following equation [32]:

Etotal =
1
2
ρh

∫ 2π

0

∫ R

0
[ωnX(r,θ)]2rdrdθ, (6)

where h is the thickness of the disk, ωn is the angular resonance frequency of the nth mode, and X(r,θ)
is the displacement of an arbitrary point in the disk, which can be expressed as [22]:

X(r,θ) = Qn
VPViε0R
ρω2

ng02

Xmode(r,θ)
∫ ϕ

2

−
ϕ
2

Xmode(r,θ′)dθ′∫ 2π
0

∫ R
0 [Xmode(r′′ ,θ′′ )]

2r′′dr′′dθ′′
, (7)

where Vp, Vi, and Qn are the DC bias voltage, AC voltage amplitude, and the quality factor of the nth
mode, respectively; ε0, ϕ, and g0 denote permittivity, the span angle of electrode, and the spacing gap,
respectively; and Xmode is the normalized mode shape function [32]:

Xmode =

[
d
dr

Jn(kn
r
R
) +

n
r

Nn

Mn
Jn(hn

r
R
)

]
cos nθ, (8)

where kn and hn are the frequency associated parameters, which can be expressed as:

kn = ωn
R√

E
ρ(1−υ2)

,

hn = ωn
R√

E
2ρ(1+υ)

.
(9)
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The relationship between parameters Mn and Nn is [20]:

Nn

Mn
=

Jn(kn)

Jn(hn)

2 kn Jn−1(kn)
Jn(kn)

+ h2
n − 2n(n + 1)[

hn Jn−1(hn)
Jn(hn)

− (n + 1)
]
· 2n

. (10)

Then, the energy dissipation due to the SFD should be extracted. The varied pressure inside the
gap is described through the Reynold’s equation [33]:

Pa∇
2(δp) −

12ηe f f

g2
0

∂(δp)
∂t

=
12ηe f f

g3
0

dX(R,θ, t)
dt

, (11)

where δp, Pa, and X(R,θ,t) are the variation pressure, ambient pressure, and time-harmonic displacement
at the circumference of the disk, respectively, and ηeff is the effective viscosity, which can be expressed
as [34]:

ηe f f =
η0

1 + 9.639Kn1.159
, (12)

where η0 denotes the viscosity in atmosphere, and Kn is the Knudsen number associated with the
ambient pressure:

Kn =
P0

Pa

λ0

g0
, (13)

where λ0 refers to the mean free path at normal atmospheric pressure P0.
The varied pressure field of the 7th WGM is given in Figure 2b. Furthermore, with the varied

pressure field and the displacements at the circumference numerically solved, the energy dissipation
per period Wloss can be extracted according to the following equation:

Wloss =

∫ Tn

0
ωn

x
S

δpX(R,θ, t)dS

dt, (14)

where Tn is the vibrational period of the nth mode, and S refers to the area of the disk sidewall.
The QSFD can be calculated via:

QSFD= 2π
Wtotal
Wloss

. (15)

3.3. Thermal Elastic Damping

The TED results from the irreversible heat flow arising from the temperature gradients associated
with the differential volumetric changes [35]. For an isotropic thermoelastic solid with arbitrary
geometrical shapes, the temperature distribution should be firstly attained via the thermodynamic
equation [36,37]:

κ∇2T −Cv
∂T
∂t
− α(3λ+ 2µ)Tre f (

∂
∂x
∂u
∂t

+
∂
∂y
∂v
∂t

+
∂
∂z
∂w
∂t

) = 0, (16)

where Cv andκ are the volumetric heat capability and thermal conductivity [38], respectively; u, v, and w
are the displacements in the x, y, and z axes; λ and µ refer to the elastic Lamé parameters; Tref and
T denote the ambient and distributed temperature, respectively; and α is the thermal expansion
coefficient [39]. Then, the temperature distribution should be incorporated into the mechanical domain.
Taking the thermal-mechanical equation in the x direction as an example, the expression takes the
form as:

ρ
∂2u
∂t2 = u

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
+ (λ+ u)

(
∂2u
∂x2 +

∂2v
∂x∂y

+
∂2w
∂x∂z

)
− α(3λ+ 2u)

∂T
∂x

. (17)
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Based on the coupling equations, with the reference temperature T0 given, similar to (2), a complex
ω can be obtained and the Q can be extracted. The temperature distribution of the 5th WGM is shown
in Figure 2c.

3.4. Phonon-Phonon Interaction Damping

The phonon-phonon interaction damping (PPID) arises from the scattering of the acoustic phonons.
When the sound wavelength (λs) is significantly larger than the phonon mean free path, i.e., fτph << 1,
where τph is the thermal relaxation time, the acoustic wave is assumed to interact with the whole
ensemble of thermal phonons. This process is referred as the Akhiezer regime (AKE), which is valid
for resonance frequencies within hundreds of MHz. On the contrary, if λs is less than the mean free
path, the acoustic quanta will interact with the lattice phonons individually, and the process is referred
as the Landau Rumer regime (L-R) [38,40], which is valid for very high frequencies exceeding GHz.
The WGM resonators with frequencies ranging from 53 to 362 MHz are vibrating in the AKE regime.
The QAKE takes the form as [41]:

QAKE =
ρva

2

CvTγe f f
2

1 +
(
ωnτph

)2

ωnτph
, (18)

where va and γeff are the averaged sound velocity and effective Grüneisen parameter, respectively.
The γeff characterizes the phonon frequency variations when the crystal volume is changed [42],
which is dependent on the mode shape, material properties, crystal orientation, wave propagation
direction, and so on [43]. In this work, an averaged value of 0.51 was employed [44]. The relaxation
time τph takes the form as [41]:

τph =
3κ

CvV2
D

, (19)

where VD, the mean Debye velocity, can be determined by:

1
VD3 =

1
Vl

3 +
2

Vt3 , (20)

where Vl and Vt are the longitudinal and transverse velocities, respectively [44]. It should be noted
that in the Akhiezer regime, QAKE is proportional to f−1 for longitudinal waves, and proportional
to f−0.75 for transverse waves [38]. For WGMs with both the P- and S-wave contributed, the QAKE
could have a complicated frequency-dependence of f-r with r between 0.75 and 1. As can be seen,
QAKE still decreases monotonically with the frequency. In addition, thermal conductivity κ varies
with the ambient temperature and reduces at lower temperatures [45]. According to Equations (18)
and (19), at cryogenic temperatures, the AKE will be effectively suppressed and the AKE-dominated
vibrating modes will gain substantial Q enhancements. To sum up, despite the relatively complicated
dependence of QAKE on the temperature and frequency, (18) is sufficient to evaluate QAKE values at
different temperatures and provides a deep understanding about the distinct AKE effects on multi-mode
resonators. The material parameters for different Q calculations are summarized in Table 1.

Table 1. The measured Q values of the 37 and 18 µm-radius resonators vibrating in the atmosphere.

Parameter Value Parameter Value

E 160 GPa µ 65.57 GPa
ρ 2320 kg/m3 α 2.6 ppm/K
σ 0.22 va 8305 m/s

Cv 1.65 × 106 J/(m3
·K) VD 5717 m/s

κ 34 W/(m·K) τph 1.89 ps
λ 51.52 GPa γeff 0.51
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4. Results and Discussions

A series of measurements were accomplished to characterize the loss mechanisms of WGM
resonators in different conditions. The measurement setup is shown in Figure 1c.

4.1. Resonator Performance in Air

A group of resonators were firstly tested at atmosphere; the measured Q values are summarized
in Table 2. For 37 and 18 µm-radius resonators, the calculated Q values using Equations (1)–(3) match
well with the measured ones. The discrepancies can be attributed to the slight differences between the
real and theoretical parameter values, process tolerances, and so on. The Q values of all the modes up
to the 7th WGM maintain around 104, indicating that the anchor loss could not be a major loss source
for the high-order modes. The Qanchor values of each mode for both 37 and 18 µm-radius devices were
simulated based on the described model in Section 3, Part 1. As shown in Figure 3, the Qanchor of the
2nd to 4th modes rises up from 105 to 109 as the nodal region is expanding towards the circumference,
and then it retains around 109 for the 4th to 7th modes. These results infer that the anchor loss is
negligible in high-order WGMs.

Table 2. The measured Q values of the 37 and 18 µm-radius resonators vibrating in the atmosphere.

Mode
Order

37 µm 18 µm

Freq. (MHz) Q Freq. (MHz) Q
Cal. Meas. Cal. Meas.

2 53.60 53.50 9440 110.17 110.11 10,080
3 82.11 82.70 10,400 168.77 170.46 11,550
4 106.71 107.02 11,530 219.35 221.70 13,060
5 129.74 130.58 13,890 266.70 269.55 14,540
6 152.03 152.51 10,200 312.51 315.95 11,640
7 173.90 175.11 12,450 357.50 361.57 12,800Sensors 2020, 20, x FOR PEER REVIEW 8 of 15 
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It should be noted that for WGMs, along the radial direction, the normalized motion at a given
point tends to decrease with the increasing mode order [21]; thus, the Qanchor values are expected to rise
with the mode order. However, the simulated Q values do not increase monotonously. Additionally,
supposing that the energy within the stem region is all dissipated, the ratio of the leakage energy to the
total energy takes the form as:

Estem

Etotal
=

1
2ρh

∫ 2π
0

∫ Rs

0 [ωnX(r,θ)]2rdrdθ

1
2ρh

∫ 2π
0

∫ R
0 [ωnX(r,θ)]2rdrdθ

=

∫ 2π
0

∫ Rs

0 [ωnXmode(r,θ)]2rdrdθ∫ 2π
0

∫ R
0 [ωnXmode(r,θ)]2rdrdθ

, (21)
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where Rs refers to the stem radius. Assuming β = r
R and substituting Equation (8) into (21) yields:

Estem

Etotal
=

∫ 2π
0 cos nθdθ

∫ Rs
R

0

[
d

dβ Jn(knβ) + n
β

Nn
Mn

Jn(hnβ)
]2
βdβ∫ 2π

0 cos nθdθ
∫ 1

0

[
d

dβ Jn(knβ) + n
β

Nn
Mn

Jn(hnβ)
]2
βdβ

. (22)

The stem radii of the 37 and 18 µm-radius resonators are 3 µm and 1.5 µm, respectively. Pursuant
to (22), with similar stem to disk radii ratios, the Qanchor values of each mode should be very close;
however, the simulations exhibit clear difference. The discrepancies can be caused by the supporting
stem, which is modeled as a longitudinal rod subjected to the time-harmonic vibrations with the
resonance frequency f n. The height and radius of the supporting stem affect the wave propagations
from the disk to the substrate, leading to the Qanchor values different from the expectation [46].

4.2. Resonator Performance in Vacuum

For WGM resonators with a nanoscale spacing gap, the squeezed film damping could be
significant. To provide a clear comparison between the SFD and anchor loss, the QSFD values of the
18 and 37 µm-radius resonators were calculated and plotted in Figure 3 to compare with the Qanchor
values. As can be seen, the QSFD values are much smaller than the Qanchor values even in the 2nd mode
with severe anchor loss. Clearly, there is more SFD than the anchor loss, especially in the high-order
WGMs. Substantial Q enhancements are expected for all the WGMs in vacuum.

The devices were subsequently tested in vacuum. A Lakeshore CRX-4K probe station was
employed to provide a high vacuum of 8 × 10−5 bar. For different WGMs, Q enhancements exceeding
2 times were achieved. As shown in Figure 4a,b, for the 2nd and 4th WGMs of the 37 µm-radius
resonator, the Q improves from 9440 to 26,610, and from 11,530 to 29,400, respectively. The similar
tendency can be obtained for the 18 µm-radius counterparts. Figure 4c,d show that for 5th and 7th
WGMs, the Q improves from 14,200 to 30,710, and from 13,020 to 38,160, respectively. An outperforming
f × Q product up to 1.38 × 1013 was implemented. The substantial Q enhancements of all the WGMs
infer that the SFD is a major loss source even for high-order modes. By contrast, the traditional
high-order BAW modes are insensitive to the SFD due to the increased stiffness [16,47]. The resonance
frequency shift could be attributed to the effect of hydrostatic pressure. The bulk elastic modulus goes
down with the decreasing pressure [48], which leads to a reduced frequency.
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Despite the fact that the anchor loss and SFD are negligible in vacuum, the Q values of the
high-order WGMs are not as high as expected. There could be some other loss sources that limit the Q
enhancements of high-order WGMs. The TED and AKE, which could be more significant at higher
frequencies, should be taken into account.

4.3. Resonator Performance at Cryogenic Temperatures

The TED and AKE can be effectively suppressed at cryogenic temperatures. The high-order
WGMs, which could be dominated by these two mechanisms, would exhibit higher Q enhancements at
low temperatures. For both two types of resonators, the Q values were measured with the temperatures
ranging from 7 K to 293 K, and the step was set as 16 K.

The measured frequency responses for the 37 and 18 µm-radius resonators at 7 K are given in
Figure 5. As can be seen, the Q of the 3rd mode for the 37 µm-radius resonator at 7 K is 82,300,
and relative to the Q of 29,100 at room temperature, the enhancement is only 2.83 times (Figure 5a).
By contrast, the Q in the 6th mode boosted from 30,440 to 214,500 at 7 K (Figure 5b), which achieves a
promising enhancement of 7.05 times. The 18 µm-radius counterparts exhibit the similar tendency.
As shown in Figure 5c,d, the Q values of the 2nd and 7th WGMs at room temperature were 28,200
and 32,550, and were raised up to 61,250 and 173,800 at 7 K, corresponding to the enhancements of
2.17 and 5.34 times, respectively. Besides, an outperforming f × Q product up to 6.36 × 1013 of the 7th
WGM was implemented at 7 K. The frequency shifts are determined by the frequency-temperature
(f -T) coefficients at cryogenic temperatures. For highly p-doped shear mode resonators, the f -T curve
is a parabola over a wide temperature range, wherein the frequency goes down with the decreasing
temperature in the low temperature range [49]. For highly p-doped WGM resonators with mainly
shear deformations, the f -T coefficient tends to be positive at cryogenic temperatures, which gives rise
to the frequency reduction.
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As expected, the Q enhancements of high-order WGMs benefit more from the temperature
reduction. Given that both AKE and TED dramatically decrease at low temperatures, these two sources
are difficult to be distinguished experimentally, but can be separated theoretically. The QAKE and QTED
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values of the 37 and 18 µm-radius resonators were calculated using the established models and also
plotted in Figure 3 to provide a clear comparison. As can be seen, the QAKE decreases monotonically
with the frequency and tends to approach the SFD in high-order modes. Therefore, the AKE contributes
to a substantial portion of energy dissipation for high-order WGMs at room temperature, which leads to
their limited Q improvements in vacuum. As for TED, it is identified as a negligible loss source in BAW
modes, especially in volume conserved WGMs [6], which is verified via the calculated results as shown
in Figure 3. It is worth mentioning that both the AKE and TED are not simply inversely proportional
to the temperature [39] since the thermal expansion coefficient α in (16) and thermal conductivity κ in
(19) are temperature-dependent variations. However, as demonstrated in [26], the QAKE retains much
lower than the QTED from 5 K to 293 K; hence, the TED can be ruled out as a major loss source for
the devices.

It should be noted that with AKE suppressed at lower temperatures, the other loss mechanisms
could override it and become dominated. Thus, there could be a turnover temperature in the Q-T
curve of an individual WGM. Between the turnover and room temperatures, the Q would decrease
with the increasing temperature, which could take a form as an approximate negative power function.
Given that the high-order modes have more striking Q enhancements, their Q dependences on the
temperature are expected to be stronger. On the other hand, when the temperature is lower than
the turnover point, the Q would be insensitive to the temperature. For high-order modes, since the
AKE contributes more energy dissipation, it would be dominated within a wider temperature range.
Therefore, the turnover temperatures of the high-order WGMs are supposed to be lower than the
low-order ones.

The Q values vs. the temperature are plotted in Figure 6. As can be seen from Figure 6a,b,
for the 37 µm-radius resonator, the turnover temperature of the 2nd and 7th modes are 80 K and 65 K,
respectively, indicating that the AKE plays a more important role in the high-order modes. The Q-T
dependences were quantitively evaluated using the allometric fitting method with the temperature
between the turnover points and 293 K. The Q dependence of T−1.14 for the 7th WGM was stronger than
that of T−0.96 for the 2nd WGM. Similarly, for the 18 µm-radius counterparts, as shown in Figure 6c,d,
the turnover temperatures of the 3rd and 6th WGMs occurred at 110 K and 65 K, corresponding to the
Q dependences of T−0.81 and T−0.93, respectively. For both two types of resonators, with temperatures
below the turnover points, the Q values are insusceptible to the temperature, consistent with the
tendency that the AKE can be overridden by other loss sources at lower temperatures. Furthermore,
as illustrated in Figure 3, for the low-order modes, the temperature-independent anchor loss becomes
the limiting mechanism when the temperature drops below the turnover point. As for the high-order
modes, the anchor loss is negligible, the fabrication process induced damage and defects might be the
main loss source [50,51].

Combining with the theoretical analysis and the experimental results, the distinct loss mechanisms
of WGM resonators can be inferred. The SFD is a major loss source for WGM resonators even with
high-order modes and high stiffness, while the AKE effect in high-order WGMs is nonnegligible.
In vacuum, the anchor loss and AKE become the Q limitations for low-order and high-order modes,
respectively, which have been testified with the cryogenic temperature tests.

Pursuant to the dominant loss mechanisms of various vibration modes, strategies can be taken to
further improve the Q values. For low-order modes, the anchor loss can be reduced by optimizing the
stem design [52] or introducing acoustic impedance discontinuity in the energy transmission path.
Fabricating disks and stems with different materials is an effective routing [53]. As for high-order
modes, optimizing the fabrication process could reduce the underlying process-induced energy
dissipation [54].
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4.4. Comparison between Theoretical and Experimental Results

With the Q values of individual loss sources are explicitly expressed, the overall values in
different conditions can be evaluated using (4). To further verify the efficiency of the proposed theory,
the theoretical values are compared with the measured results. As shown in Figure 7, for both 37 and
18 µm-radius resonators in air and vacuum, the calculated and measured tendencies are consistent.
However, the calculated values are far beyond the experimental ones. Firstly, the simulations were
carried out based on the ideal models, while the actual Q values can be affected by the fabrication
process tolerances, parasitic effects, and so on. In addition, the one-pair of electrode configuration
with the traded-off electrode angle was employed for multi-mode excitations. When propagating in
the whole disk, the vibrations driven with one electrode are more prone to decay due to various loss
sources and defects in the device. Besides, the limited driving force results in the sensing signals more
susceptible to the distortions caused by feedthroughs. What is more, some other losses, like electrical
damping, process induced damage, and surface loss, were not involved. These losses could contribute
to the energy dissipation. According to (4), the calculated Q values could be overestimated due to the
absence of such loss sources.

The theoretical and experimental Q enhancements for the 37 and 18 µm-radius resonators are
summarized in Table 3. As can be seen, in vacuum, the calculated enhancements are significant for
all the WGMs. At cryogenic temperature, the enhancements in the 2nd and 3rd modes are limited,
while those in higher-order modes are substantial. The calculations are in accordance with the measured
results. However, the calculated Q enhancements exhibit more significant differences among various
mode orders, especially at 7 K. As indicated by Figure 6, the divergence is attributed to the losses that
surpass the AKE at lower temperatures, which are not taken into account in the theoretical model.
Thus, the calculated Q enhancements are actually overestimated. Referring to these underlying losses
as Qothers, according to (4), it can be accessed via:

Qothers =
1

1
Qmeasured

−
1

Qcalculated

. (23)
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Table 3. Calculated and measured Q enhancements for the 37 and 18 µm-radius resonators.

37 µm-Radius Resonator 18 µm-Radius Resonator
Qvacuum, 293 K

Qair, 293 K

Qvacuum, 7 K
Qvacuum, 293 K

Qvacuum, 293 K
Qair, 293 K

Qvacuum, 7 K
Qvacuum, 293 K

Cal. Meas. Cal. Meas. Cal. Meas. Cal. Meas.

2 4.75 2.84 1.07 2.53 3.65 2.45 1.25 2.16
3 10.76 2.73 2.39 2.48 3.57 3.50 3.82 2.33
4 7.93 2.93 36.23 3.51 2.68 2.74 38.51 3.50
5 4.79 2.37 39.13 3.94 1.95 2.34 37.91 4.12
6 2.92 2.13 39.17 7.10 1.70 2.71 39.17 5.53
7 2.77 2.50 39.67 6.22 1.53 2.56 39.44 5.23

For both two types of devices, the Qothers of all the WGMs at room and cryogenic temperatures are
around 104 and 105, respectively. Therefore, the overall effects of the underlying losses could depend
on the temperature but not strongly on the resonator dimensions.

5. Conclusions

In this work, the distinct loss mechanisms of multi-mode WGM resonators with wide frequency
coverages are deeply investigated.

A comprehensive theory was established and matched well with the experimental results.
The dominant loss mechanisms can be clearly determined.

The SFD is verified to be a primary loss source for all the WGMs in air. In vacuum, the distinct
temperature-dependences of various order modes were clarified. Anchor loss and AKE play important
roles in the energy dissipations for the low-order and high-order WGMs, respectively.

Helpful guidance was provided. With the vacuum encapsulations, increasing f × Q products in
high-order modes can be implemented to meet the growing demands of future wireless communications.



Sensors 2020, 20, 7017 13 of 15

Above all, this study provides an insight into the loss mechanisms of the multi-mode WGM
resonators and makes a substantial step forward their high-end applications.
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