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Abstract

Electroencephalography (EEG)-based brain–computer interface (BCI) systems infer brain signals 

recorded via EEG without using common neuromuscular pathways. User brain response to BCI 

error is a contributor to non-stationarity of the EEG signal and poses challenges in developing 

reliable active BCI control. Many passive BCI implementations, on the other hand, have the 

detection of error-related brain activity as their primary goal. Therefore, reliable detection of this 

signal is crucial in both active and passive BCIs. In this work, we propose CREST: a novel 

covariance-based method that uses Riemannian and Euclidean geometry and combines spatial and 

temporal aspects of the feedback-related brain activity in response to BCI error. We evaluate our 

proposed method with two datasets: an active BCI for 1-D cursor control using motor imagery and 

a passive BCI for 2-D cursor control. We show significant improvement across participants in both 

datasets compared to existing methods.
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1. Introduction

Brain–computer interface (BCI) systems record brain activity directly from the brain using 

methods such as electroencephalography (EEG) and attempt to infer the user’s intent [1,2]. 

Active BCIs such as motor imagery (MI) BCIs are among common BCI systems in which 
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the user imagines moving a part of her/his body resulting in a decrease in power (called an 

event-related desynchronization or ERD) in various frequency bands [3,4]. Movement 

imagination of different body parts leads to spatially different desynchronization that can be 

used by the BCI to detect the imagined movement. In practice, the imagined movement 

classes (such as right/left hand) can be mapped to, for example, a switch, to control the 

movement of a robotic limb or a wheelchair. This BCI output is referred to as BCI feedback 

and the brain response to BCI feedback as feedback-related brain activity. One source of 

non-stationarity in EEG signals is the feedback-related brain activity [5]. Error-related 

potentials (ErrP) and error-related spectral components are among the components of this 

signal [5]. If not taken into account, these signals can pose challenges for real-world 

application of a BCI system [5–7]. In previous work, we have shown that when the 

feedback-related activity is appropriately modeled, the information can be combined with 

the motor imagery classification to greatly improve the overall BCI performance [5,6].

Separate work in passive BCIs (pBCI) [9,10] has shown that the user’s intentions or 

emotional states can be detected through passive cognitive monitoring and that this signal 

can be used as an (implicit) control source [11,12]. Therefore, in both active and passive 

BCIs, single-trial classification of the user’s state with respect to the BCI feedback (whether 

the BCI output is perceived as an error/undesired or not) is a critical component of a reliable 

BCI.

Previous work on classifying feedback-related brain activity varies by the type of features 

used and the classifier that is trained on these features [7]. For instance, authors in [8] and 

[13] focused on temporal features from one or two fronto-central channels, while others 

such as [11] considered all available EEG channels and used a windowed-means approach as 

instructed by [14].

Riemannian geometry has been shown to be promising for reliable classification in various 

BCI paradigms [15–18]. Methods based on Riemannian geometry have also been used for 

data augmentation to balance classes for error detection in a P300 speller task [19]. 

However, to our knowledge, there is no work in the literature that attempts to classify error-

related or feedback-related brain activity using Riemannian methods.

In this paper, we explore ways to improve the classification of the error-related brain activity 

so as to further improve its contribution to an overall BCI system. Specifically, we 

investigate the spatio-temporal aspects of the error-related brain activity using covariance 

matrices in two different BCI paradigms by looking at both space and time covariances 

through Euclidean and Riemannian geometry. Our goal is to better distinguish whether the 

BCI feedback (output) is perceived by the user as an error.

We evaluate our proposed methods through two different datasets: one from our previous 

study in which participants were actively controlling cursor movements using right/left-hand 

motor imagery and another dataset shared with us by Zander and Krol et al. [11] in which 

participants were passively controlling a cursor on a screen in front of them. An earlier 

version of this work appeared in [20].
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2. Data collection and pre-processing

2.1. Dataset I: active cursor control with motor imagery

Data were recorded from 10 participants after the study was approved by the University 

Institutional Review Board at UC San Diego. All participants signed a consent form prior to 

participating in the experiment. EEG data were recorded using a 64-channel BrainAmp 

system (Brain Products GmbH) at 5000 Hz. Channels were located according to the 

international 10–20 system and were referenced online to FCz.

Participants were instructed to use motor imagery of their right/left hand to control a cursor 

on a screen in front of them to the right/left toward a target [21]. At the beginning of each 

trial, the cursor and the target appeared at the center and three steps away from the center at 

either right or left side of the screen, respectively (see Figure 1). The cursor moved one step 

every second and trials ended when the cursor hit the target location or the other end of the 

screen. Participants believed that they were in control of the cursor movements; however, the 

cursor moved based on a pre-determined sequence of movements that was kept the same 

across participants. This was to have enough cursor movements toward/away from the target 

(i.e. good/bad movements) for each participant irrespective of the motor imagery 

performance. The cursor sequence of movement was randomly generated subject to a few 

constraints, e.g., no more than two consecutive changes in direction were allowed. For more 

details about the experiment, please refer to [5].

The overall goal in a motor-imagery BCI is to detect the imagined class. The common 

method is to train a classifier to distinguish between right-hand and left-hand motor imagery 

(or whatever imagery classes have been mapped to ‘move cursor right’ and ‘move cursor 

left’). As shown in our earlier work [5], there is another classifiable aspect in the EEG signal 

– whether the cursor moved in the desired or non-desired direction. In the analysis for this 

paper, our goal is to improve this classification of whether the user was satisfied with the last 

cursor movement or not, i.e. if the cursor had just moved toward (good) or away (bad) from 

the target. We call this a good/bad (G/B) classifier.

2.2. Dataset II: passive cursor control

This dataset was recorded at the Technische Universität Berlin, Germany, from 19 

participants and shared with us by Zander and Krol et al. [11]. All participants signed a 

consent form accepted by the ethics committee of the Department of Psychology and 

Ergonomics before taking part in the experiment. Data were recorded using a 64-channel 

BrainAmp system (Brain Products GmbH) at 500 Hz. Channels were located according to 

the international 10–20 system and were referenced online to FCz.

This study had multiple parts including offline and online cursor control; however, we 

considered only the offline data that were used for calibration in the original study. This part 

of the study consisted of a cursor moving randomly on a 4 × 4 grid. Participants were 

instructed to observe cursor movements on the grid and evaluate each movement as 

‘appropriate’ or ‘inappropriate’ with respect to reaching the target, which was located in one 

of the corners of the grid. The cursor moved randomly to one of up to eight adjacent nodes 
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until it reached the target, after which another target was selected and the procedure restarted 

in the next trial. For more details about the experiment, please refer to [11].

Angular deviance from the optimal path was used to describe and categorize the movements. 

In Figure 2, the target is in the top right corner and the cursor (red) at the bottom row. A 

movement upwards (depicted in Figure 2-b) has an angular deviance of 18°, whereas Figure 

2-c depicts an angular deviance of 63°. We considered angles that were below 45° as good 

movements and angles above 130° as bad movements and the EEG data corresponding to 

these two labels were used to train a good/bad (G/B) classifier. The angles in between were 

labeled as neutral and not used for classification.

2.3. Pre-processing

In each dataset, sections that were contaminated with excessive noise were removed. 

Independent component analysis (ICA) [22] was applied to data from each participant and 

independent components representing muscle and eye artifacts were removed. Pre-

processing was done in MATLAB [23] and EEGLAB [24]. A maximum of 1 and 3 noisy 

channels were removed from datasets I and II, respectively. The removed channels were 

interpolated using EEGLAB and all 64 channels were used for feature extraction and 

classification. Data were re-referenced to the common average, downsampled to 100 Hz, and 

filtered in 0.5–10, 1–3, 2–5, 4–7, 6–10, 7–12, 10–15, 12–19, 18–25, 19–30, 25–35, 30–40 

Hz with a 100th-order FIR filter using a Kaiser window. The first frequency band was used 

for the windowed-means method only as will be described in more detail later. Next, data 

were epoched 50–950 ms after each cursor movement and this segment is called a ‘step’ in 

what follows. Classification results are reported on a single cursor movement, i.e. for every 

step.

3. Feature extraction and classification

Feature extraction and classification were implemented in Python. We used scikit-learn [25] 

to implement classifiers and the pyRiemann toolbox [26] to calculate Riemannian distances 

and means.

In each dataset, classes (good and bad) were balanced by randomly subsampling the larger 

class. Therefore, we generated 10 instances of train-test combinations which were kept the 

same across the different tested methods. In each instance, the train-test ratio is about 4:1. 

On average, in dataset I instances, there are 573 train and 142 test steps. In dataset II 

instances, the average train and test steps are 197 and 49, respectively.

Covariance matrices are used at the core of several feature extraction methods in BCI 

applications [15,27,28]. The methods discussed in this work use space and time covariances 

of the good (toward the target) and bad (away from the target) steps. Moreover, we looked at 

different frequency bands, namely 1–3, 2–5, 4–7, 6–10, 7–12, 10–15, 12–19, 18–25, 19–30, 

25–35, 30–40 Hz covering the low and high theta, mu, and beta frequency bands and to 

cover for potential individual differences [5,29]. Covariance matrices were calculated in 

each frequency band separately. Next, we will explain how we estimated covariances to 

capture spatial and temporal features and how these were used for classification.
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3.1. Space and time covariances

Let p represent the number of channels, t the number of time samples and i ∈ {1, …, N} 

where N is the number of steps available. Let Xi ∈ ℝp × t be an EEG epoch (i.e. step) and Csi
and Cti be the sample space and time covariances for the ith step, respectively. Since the 

number of time samples in our case (i.e. 90 time samples at 100 Hz sampling rate) is larger 

than the number of EEG channels p = 64, time covariances are not full rank and thus not 

positive definite. Also, as we removed eye and muscle components through ICA, space 

covariances are also rank deficient. Therefore, we used regularization to make the covariance 

matrices full-rank. Space and time covariances were regularized as follows:

C (1 − α)C + αtrace(C)
N I, (1)

where C is the covariance matrix, α is the regularization parameter, trace(C) is the sum of 

the diagonal elements of C and I is the identity matrix with the same size as C. We used a 

data-driven method [30] to estimate the regularization parameter for data from each 

participant, in each frequency band for space and time covariances separately. We only used 

train data to estimate the shrinkage parameters (α).

3.2. Common spatial patterns (CSP)

The filterbank common spatial patterns (FB-CSP) algorithm was proposed by Ang et al. [32] 

to detect the imagined movement class in a motor imagery BCI. Inspired by this method, in 

our previous work, we used a similar approach to classify the error-related brain activity in a 

motor imagery BCI [5].

Let Csi
g  and Csi

b  represent the space covariance of the ith good and bad steps, respectively, for 

a specific frequency band. The average of the trace normalized sample covariances for each 

of the good and bad classes were estimated as:

Σg = 1
N ∑

i
Csi

g /trace Csi
g

(2)

and

Σb = 1
N ∑

i
Csi

b /trace Csi
b

(3)

respectively, where N is the number of steps. As mentioned earlier, the number of steps in 

good and bad classes were balanced. CSP filters for each frequency band were estimated by 

simultaneous diagonalization of the two covariance matrices:

W TΣgW = Λg W TΣbW = Λb (4)

where Λg and Λb are diagonal matrices such that Λg + Λb = I [27]. CSP filters, represented 

by the columns of W, are the solutions of the following generalized eigenvalue problem:
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ΣgW = λΣbW . (5)

Next, 6 filters (eigenvectors) corresponding to the 3 largest and smallest eigenvalues were 

selected. EEG epochs were filtered through the selected filters in each frequency band. The 

logarithm of the variance (across time) of the filtered EEG data through each of the 6 

selected filters were calculated as features. These 6 features in each of the 11 frequency 

bands were used for classification using a 66D regularized linear discriminant analysis (r-

LDA) classifier [25,27,31].

3.3. Common temporal patterns (CTP)

The common temporal patterns (CTP) algorithm, proposed by Yu et al. [33], is the temporal 

counterpart of the common spatial patterns in which the sample mean of the good and bad 

time covariances are considered instead of space covariances. Similar to FB-CSP, we 

consider a filterbank version of CTP. EEG epochs were filtered through 6 CTP filters 

(corresponding to the 3 largest and smallest eigenvalues) in each frequency band and the 

logarithm of the variance (across 64 channels) of the filtered epochs were selected as 

features (6 features for each band, hence a total of 66 features). A regularized linear 

discriminant analysis (r-LDA) was trained on the selected features [25,31].

3.4. Common spatial and temporal patterns (CSP-CTP)

To combine spatio-temporal features, we first calculated CSP filters and selected 6 filters 

(corresponding to the 3 largest and smallest eigenvalues). Then, EEG epochs were filtered 

through the CSP filters corresponding to the good class. The CTP method was then used to 

capture temporal features by learning 6 CTP filters (corresponding to the 3 largest and 

smallest eigenvalues). Another set of 6 CTP filters were trained using the EEG epochs 

filtered through the CSP filters corresponding to the bad class. Figure 3 describes this 

method.

The above procedure was done in each frequency band separately to select a total of 36 

features and the selected features from all 11 frequency bands were concatenated. Finally, a 

regularized-LDA classifier was trained [25,31].

3.5. Distance to Riemannian mean of spatial covariances (DRM-S)

Full-rank covariance matrices lie on a Riemannian manifold pertaining to the symmetric 

positive definite (SPD) matrices [15]. Let A(n) be the set of all n × n SPD matrices. The 

Riemannian distance between A1 ∈ A(n) and A2 ∈ A(n) is defined as follows:

δR A1, A2 = Log A1
−1A2 F = ∑

i = 1

n
Log2λi

1/2
(6)

where λi are the eigenvalues of A1
−1A2 . Since A1 and A2 are both SPD, λi are real positive 

(non-zero) values. Also, ∥.∥F represents the Frobenius norm and Log(.) the matrix logarithm.

Mousavi and de Sa Page 6

Brain Comput Interfaces (Abingdon). Author manuscript; available in PMC 2020 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The mean of the SPD matrices A1, A2, …, Al on the Riemannian manifold is defined as 

follows [15]:

M A1, A2, …, Al = argminX ∈ A(n) ∑
i = 1

l
δR

2 X, Ai . (7)

There is no closed form solution for (7); however, it can be solved iteratively [34].

Based on the defined matrix relationships on the manifold, we propose a filter bank 

generalization of the minimum distance to Riemannian mean (MDM) classifier [26]. First, 

the Riemannian mean of the good and bad space covariances in each frequency band on the 

training set were estimated as described earlier. Next, in each frequency band, features were 

selected as the Riemannian distances to the Riemannian means of the good and bad classes. 

This resulted in a total of 22 features: 11 frequency bands ×2 good and bad classes. A 

logistic regression classifier was trained on the selected features [25]. We trained a logistic 

regression classifier for all Riemannian methods since we found that the distribution of 

features was far from a multivariate normal distribution.

3.6. Distance to Riemannian mean of temporal covariances (DRM-T)

This method is the temporal counterpart of the DRM-S method described previously. After 

the Riemannian mean of the good and bad time covariances in each frequency band on the 

training set were estimated, features were selected as the Riemannian distances to the 

Riemannian means of the good and bad classes. This resulted in a total of 22 features: 11 

frequency bands ×2 good and bad classes. Logistic regression was trained on the selected 

features [25].

3.7. Distance to Riemannian mean of spatial and temporal covariances (DRM-ST)

This method combines spatial and temporal Riemannian geometry-based features by 

concatenating DRM-S and DRM-T features described in the previous two subsections. This 

resulted in a total of 44 features: 11 frequency bands ×2 good and bad classes ×2 time and 

space covariances. A logistic regression classifier was trained on the selected features [25].

3.8. Covariance-based Riemannian and Euclidean spatio-temporal classifier (CREST)

We combined DRM-ST and CSP-CTP to capture spatio-temporal features using both 

Riemannian and common spatial and temporal classifiers. We call this method CREST. For 

each classifier, we first calculated the signed distance of each trial to the decision hyperplane 

and applied a logistic function to estimate the probability of the trial belonging to the the 

good (or bad) class as the classifier score. Logistic regression was used to combine DRM-ST 

and CSP-CTP classifier scores [25].

3.9. Windowed-means (WM)

We compared our proposed methods with the windowed means method which is widely 

used for single-trial event-related potential (ERP) classification [11,14]. EEG data on each 

channel were bandpass filtered to 0.5–10 Hz as described earlier and epoched 50–950 ms 

after each cursor movement. We calculated the mean of the signal on each channel in 9 non-
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overlapping time windows, i.e. each covering 100 ms. Then, a regularized linear 

discriminant analysis (r-LDA) classifier was trained on the selected features [14,25,31].

3.10. CREST+WM

Finally, we combined DRM-ST, CSP-CTP and WM as well to compare with the WM 

classifier to determine whether WM and CREST capture different features. Logistic 

regression was used to combine DRM-ST, CSP-CTP and WM classifier scores as explained 

earlier [25].

4. Results and discussion

Figures 4 and 5 plot the event-related potential (ERP), i.e. the average EEG waveform time-

locked to the cursor movement, for ‘Good’ and ‘Bad’ classes on channel Fz across 

participants for datasets I and II, respectively. For the plot, EEG data for each participant 

were high-pass filtered at 1 Hz and epoched −100 to 1000 ms time locked to each cursor 

movement. Then, the average waveform for each participant was calculated in each class. 

The solid lines on each plot represent the average across participants and the shaded color 

represents the standard error of the mean. Note that the two classes correspond to cursor 

movements toward/away from the target and our goal in this paper is to train a classifier to 

reliably distinguish among them after every cursor movement.

We compared the G/B classification performance in datasets I and II using CSP and DRM-S 

as well as CTP and DRM-T. Tables 1 and 2 report the average (first number in each entry) 

and standard error of the mean (second number in each entry) for classification accuracy 

over 10 instances of train-test for each participant in datasets I and II, respectively. On 

average, Riemannian methods perform better across participants and this difference is 

statistically significant for dataset I (paired-sample t-test, p<0:03). DRM-T performs 

significantly better than CTP in dataset II (paired-sample t-test, p<0:01). However, in this 

dataset, the difference between DRM-S and CSP is not statistically significant across 

participants.

Tables 3 and 4 report the classification accuracy of the windowed-means method (WM) and 

our proposed spatio-temporal methods: DRM-ST and CSP-CTP, CREST and CREST+WM. 

We used paired-sample t-tests to compare the difference between WM and the other methods 

across participants for each dataset. CREST and CREST+WM outperform WM in both 

datasets (paired-sample t-test, p<0:006, which stays significant at the 0.05 threshold with 

Bonferroni correction for the number of tests).

The difference in performance of DRM-ST and WM is not statistically significant for either 

of the datasets. However, CSP-CTP outperforms WM in dataset II and this difference is 

statistically significant (paired-sample t-test, p<0:005, which stays significant at the 0.05 

threshold with Bonferroni correction for the number of tests), while the performance of 

CSP-CTP in dataset I is not statistically different from that of WM.

Figures 6 and 7 show WM, CREST and CREST+WM performance as bar plots for easier 

visualization.
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5. Conclusions

We proposed spatio-temporal methods to classify the error-related brain activity and 

evaluated our results on two different datasets. The first dataset is from an active motor 

imagery BCI in which the user’s brain response to the BCI feedback is an implicit piece of 

information and using this information can improve the overall BCI performance [5]. We 

also evaluated our proposed methods on a passive BCI dataset in which participants were 

evaluating the movements of a cursor. In the latter, error-related brain activity is the core 

information to be classified even though it is not explicitly provided by the user.

We compared DRM-S and DRM-T that use Riemannian distances as features, with CSP and 

CTP methods, respectively, in their capacity for classifying feedback-related brain activity in 

response to BCI error. Our results show that on average across participants in both datasets, 

methods that use features from Riemannian geometry are more powerful when considering 

spatial or temporal features separately.

We also proposed methods to combine spatial and temporal features that use Riemannian 

distances (DRM-ST) and Euclidean geometry-based methods of common patterns (CSP-

CTP). We also proposed to combine these two methods (CREST) and showed that this 

combined method outperforms the windowed-means (WM) method and the difference is 

statistically significant across participants in both datasets.

Acknowledgments

We would like to thank Laurens R. Krol and Thorsten O. Zander for sharing their dataset with us.

Funding

This work was supported by the NSF [IIS 1219200, 1817226, 1528214]; DAAD [short-term research grant]; UC 
San Diego [Chancellor’s Research Innovation Scholarships G2171, G3155 and the Mary Anne Fox dissertation 
year fellowship]; NIH [5T32MH020002-18].

Abbreviations

BCI brain-computer interface

CREST Covariance-based Riemannian and Euclidean spatio-temporal 

classifier

CSP common spatial patterns

CTP common temporal patterns

DRM distance to Riemannian mean

EEG electroencephalography

ERD event-related desynchronization

ERP event-related potential

G/B good/bad
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MI motor imagery

pBCI passive brain-computer interface

r-LDA regularized linear discriminant analysis

WM windowed-means
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Figure 1. 
An example of a trial in dataset I. Participants were instructed to use right/left-hand motor 

imagery to move the cursor (the blue circle) to right/left toward the target (white circle). We 

considered movements toward/away from the target as good/bad movements perceived by 

the participants [5].
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Figure 2. 
In dataset II, participants were instructed to ‘judge’ each cursor (red full circle) movement 

(indicated by the arrow in the static figure) as satisfactory or unsatisfactory with respect to 

its movement toward/away from the target (red empty circle) [11]. Diagram (a) depicts a 

cursor’s location and diagrams (b) and (c) specify different next cursor movements and how 

the angle between the cursor direction of movement and the direct line connecting the cursor 

to the target location is defined. We considered angles smaller than 45° as good movements 

and larger than 130° as bad movements perceived by the participants.
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Figure 3. 
Method of CSP-CTP: CSP filters are trained on each frequency band (p = 64 and t = 90). Six 

CSP filters (corresponding to the 3 largest and smallest eigenvalues) are selected and EEG 

epochs are filtered through each. Then, CTP filters are trained on the good (G) and bad (B) 

CSP-filtered data separately.
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Figure 4. 
ERP in dataset I. The blue curve corresponds to the brain response to ‘good’ cursor 

movements, i.e. toward the target. The red curve, on the other hand, corresponds to the brain 

response to ‘bad’ movements, i.e. away from the target.
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Figure 5. 
ERP in dataset II. The blue curve corresponds to the brain response to ‘good’ cursor 

movements, i.e. toward the target. The red curve, on the other hand, corresponds to the brain 

response to ‘bad’ movements, i.e. away from the target.
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Figure 6. 
WM, CREST and CREST+WM in dataset I. The bars and error bars represent the average 

classification accuracy and the standard error of the mean, respectively, i.e. first and second 

entries in Table 3 columns 2, 5 and 6.
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Figure 7. 
WM, CREST and CREST+WM in dataset II. The bars and error bars represent the average 

classification accuracy and the standard error of the mean, respectively, i.e. the first and 

second entries in Table 4 columns 2, 5 and 6.
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Table 1.

Dataset I: G/B classification accuracy using spatial and temporal features separately. Each table entry is the 

average classification accuracy (first number) together with the standard error of the mean (second number) 

over 10 instances of train-test for each participant. Riemannian methods outperform their counterparts and this 

difference is significant across participants (paired-sample t-test, p<0:03).

ID CSP DRM-S CTP DRM-T

A1 0.77/0.009 0.77/0.009 0.65/0.012 0.72/0.013

A2 0.74/0.017 0.74/0.011 0.64/0.015 0.68/0.014

A3 0.58/0.006 0.62/0.012 0.52/0.008 0.56/0.014

A4 0.74/0.007 0.76/0.010 0.63/0.011 0.64/0.011

A5 0.67/0.008 0.67/0.011 0.56/0.009 0.59/0.014

A6 0.73/0.006 0.72/0.010 0.62/0.011 0.68/0.014

A7 0.76/0.008 0.77/0.009 0.61/0.010 0.66/0.010

A8 0.66/0.016 0.71/0.009 0.66/0.013 0.71/0.007

A9 0.75/0.009 0.81/0.012 0.65/0.009 0.72/0.011

A10 0.67/0.016 0.71/0.015 0.66/0.012 0.69/0.012

Average 0.71/0.019 0.73/0.017 0.62/0.014 0.67/0.016
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Table 2.

Dataset II: G/B classification accuracy using spatial and temporal features separately. Each table entry is the 

average classification accuracy (first number) together with the standard error of the mean (second number) 

over 10 instances of train-test for each participant. DRM-T outperforms its counterpart and this difference is 

significant across participants (paired-sample t-test, p<0:01). However, the difference between CSP and DRM-

S is not statistically significant.

ID CSP DRM-S CTP DRM-T

P1 0.76/0.015 0.74/0.010 0.57/0.017 0.61/0.012

P2 0.64/0.018 0.65/0.015 0.61/0.016 0.67/0.015

P3 0.87/0.016 0.83/0.013 0.72/0.014 0.74/0.014

P4 0.65/0.026 0.73/0.023 0.62/0.021 0.71/0.016

P5 0.67/0.019 0.62/0.026 0.53/0.023 0.63/0.024

P6 0.63/0.027 0.62/0.018 0.54/0.019 0.53/0.022

P7 0.72/0.017 0.68/0.022 0.54/0.017 0.52/0.017

P8 0.84/0.017 0.80/0.012 0.52/0.019 0.62/0.024

P9 0.58/0.024 0.58/0.020 0.50/0.027 0.46/0.025

P10 0.54/0.027 0.58/0.018 0.55/0.017 0.61/0.019

P11 0.71/0.020 0.73/0.025 0.66/0.023 0.73/0.022

P12 0.64/0.023 0.69/0.014 0.59/0.017 0.62/0.023

P13 0.57/0.016 0.57/0.025 0.52/0.018 0.56/0.015

P14 0.60/0.017 0.62/0.023 0.58/0.016 0.56/0.016

P15 0.66/0.025 0.66/0.025 0.61/0.016 0.60/0.021

P16 0.77/0.016 0.71/0.026 0.63/0.010 0.64/0.011

P17 0.65/0.024 0.68/0.015 0.57/0.032 0.62/0.024

P18 0.59/0.018 0.64/0.023 0.60/0.030 0.55/0.027

P19 0.64/0.021 0.70/0.016 0.60/0.011 0.64/0.013

Average 0.67/0.021 0.68/0.016 0.58/0.012 0.61/0.016
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Table 3.

Dataset I: G/B classification accuracy comparing the proposed spatio-temporal methods and WM. Each table 

entry is the average classification accuracy (first number) together with the standard error of the mean (second 

number) over 10 instances of train-test for each participant. Significantly improved results across participants 

are represented in bold fonts (paired-sample t-test, p<0:006, which stays significant at the 0.05 threshold with 

Bonferroni correction for the number of tests, i.e. 4).

ID WM DRM-ST CSP-CTP CREST CREST+WM

A1 0.75/0.006 0.79/0.009 0.80/0.009 0.82/0.005 0.83/0.006

A2 0.79/0.010 0.77/0.012 0.76/0.007 0.82/0.007 0.85/0.007

A3 0.68/0.010 0.60/0.016 0.61/0.011 0.63/0.008 0.68/0.010

A4 0.83/0.011 0.77/0.014 0.88/0.011 0.91/0.007 0.90/0.009

A5 0.73/0.011 0.67/0.011 0.77/0.008 0.79/0.008 0.80/0.012

A6 0.72/0.009 0.74/0.015 0.69/0.008 0.76/0.004 0.78/0.005

A7 0.79/0.011 0.77/0.008 0.76/0.009 0.81/0.007 0.84/0.008

A8 0.69/0.014 0.72/0.005 0.71/0.012 0.76/0.011 0.77/0.014

A9 0.75/0.008 0.81/0.010 0.73/0.010 0.82/0.006 0.84/0.010

A10 0.74/0.014 0.73/0.016 0.75/0.009 0.78/0.007 0.80/0.009

Average 0.75/0.015 0.74/0.019 0.75/0.023 0.79/0.022 0.81/0.019
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Table 4.

Dataset II: G/B classification accuracy comparing the proposed spatio-temporal methods and WM. Each table 

entry is the average classification accuracy (first number) together with the standard error of the mean (second 

number) over 10 instances of train-test for each participant. Significantly improved results across participants 

are represented in bold fonts (paired-sample t-test, p<0:005, which stays significant at the 0.05 threshold with 

Bonferroni correction for the number of tests, i.e. 4).

ID WM DRM-ST CSP-CTP CREST CREST+WM

P1 0.77/0.008 0.72/0.019 0.83/0.017 0.84/0.012 0.81/0.013

P2 0.74/0.019 0.70/0.008 0.77/0.016 0.77/0.020 0.75/0.014

P3 0.84/0.021 0.83/0.011 0.90/0.013 0.90/0.010 0.89/0.016

P4 0.77/0.010 0.75/0.031 0.73/0.021 0.76/0.022 0.80/0.017

P5 0.70/0.020 0.66/0.025 0.79/0.018 0.79/0.017 0.78/0.022

P6 0.68/0.021 0.60/0.010 0.69/0.026 0.70/0.024 0.72/0.023

P7 0.72/0.017 0.67/0.011 0.73/0.017 0.73/0.012 0.76/0.014

P8 0.83/0.014 0.79/0.016 0.92/0.014 0.92/0.017 0.88/0.016

P9 0.58/0.023 0.54/0.025 0.64/0.024 0.65/0.023 0.63/0.024

P10 0.51/0.021 0.62/0.022 0.58/0.021 0.63/0.019 0.57/0.023

P11 0.77/0.017 0.76/0.021 0.78/0.017 0.79/0.023 0.84/0.018

P12 0.69/0.021 0.68/0.024 0.77/0.011 0.73/0.022 0.74/0.016

P13 0.59/0.015 0.58/0.013 0.72/0.024 0.71/0.023 0.66/0.010

P14 0.70/0.005 0.61/0.019 0.68/0.019 0.69/0.016 0.71/0.015

P15 0.68/0.016 0.66/0.019 0.67/0.024 0.70/0.020 0.73/0.016

P16 0.80/0.010 0.70/0.019 0.80/0.020 0.81/0.022 0.82/0.012

P17 0.80/0.009 0.68/0.021 0.77/0.025 0.77/0.020 0.82/0.019

P18 0.71/0.027 0.63/0.028 0.72/0.017 0.69/0.023 0.72/0.025

P19 0.57/0.026 0.71/0.021 0.73/0.009 0.74/0.017 0.73/0.016

Average 0.71/0.021 0.68/0.017 0.75/0.019 0.75/0.018 0.76/0.019
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