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Abstract: Tomatoes are consumed worldwide as fresh vegetables because of their high contents of
essential nutrients and antioxidant-rich phytochemicals. Tomatoes contain minerals, vitamins, pro-
teins, essential amino acids (leucine, threonine, valine, histidine, lysine, arginine), monounsaturated
fatty acids (linoleic and linolenic acids), carotenoids (lycopene and β-carotenoids) and phytosterols
(β-sitosterol, campesterol and stigmasterol). Lycopene is the main dietary carotenoid in tomato and
tomato-based food products and lycopene consumption by humans has been reported to protect
against cancer, cardiovascular diseases, cognitive function and osteoporosis. Among the phenolic
compounds present in tomato, quercetin, kaempferol, naringenin, caffeic acid and lutein are the most
common. Many of these compounds have antioxidant activities and are effective in protecting the
human body against various oxidative stress-related diseases. Dietary tomatoes increase the body’s
level of antioxidants, trapping reactive oxygen species and reducing oxidative damage to important
biomolecules such as membrane lipids, enzymatic proteins and DNA, thereby ameliorating oxidative
stress. We reviewed the nutritional and phytochemical compositions of tomatoes. In addition, the im-
pacts of the constituents on human health, particularly in ameliorating some degenerative diseases,
are also discussed.

Keywords: nutrients; tomatoes; phytochemicals; antioxidants; human health; degenerative diseases

1. Introduction

Tomatoes (Solanum lycopersicum L.), which are frequently included in the Mediter-
ranean diet and are widely consumed as vegetables, play an important role in nutrition
because of their well-established health benefits [1]. Tomatoes are used in many processed
food products such as sauces, salads, soups, and pastes [2]. Common nutrients reported to
be present in tomatoes are vitamins, minerals, fiber, protein, essential amino acids, monoun-
saturated fatty acids, carotenoids and phytosterols [3–6]. These nutrients perform various
body functions including constipation prevention, reduction in high blood pressure, stimu-
lation of blood circulation, maintenance of lipid profile and body fluids, detoxification of
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body toxins and maintaining bone structure as well as strength [1,7,8]. Tomatoes are also
an excellent source of nutrients and bioactive compounds, commonly known as secondary
metabolites, the concentrations of which are correlated with the prevention of human
chronic degenerative diseases, such as cardiovascular disease (CVD), cancer, and neurode-
generative diseases [9–11]. Due to the high concentrations of different natural antioxidant
chemicals, such as carotenoids (β-carotenoids and lycopene), ascorbic acid (vitamin C),
tocopherol (vitamin E) and bioactive phenolic compounds (quercetin, kaempferol, narin-
genin and lutein, as well as caffeic, ferulic and chlorogenic acids), tomatoes can help
ameliorate many diseases, especially chronic diseases [12,13]. These compounds play
beneficial roles in inhibiting reactive oxygen species (ROS) by scavenging free radicals,
inhibiting cellular proliferation and damage, inhibiting apoptosis as well as metal chela-
tion, modulation of enzymatic activities, cytokine expression and signal transduction
pathways [12,14]. The main carotenoid in tomato is lycopene, which is responsible for
its red color. The pharmacological activities of lycopene and other phenolic compounds
include anticancer, anti-inflammatory, antidiabetic, anti-allergenic, anti-atherogenic, an-
tithrombotic, antimicrobial, antioxidant, vasodilator and cardioprotective effects [15–18].
In addition to having good nutritive value and health promoting activities, the polypheno-
lic compounds and carotenoids also contribute to sensory activities including maintaining
good aroma, taste, and texture [19]. Tomato is an important dietary source of both soluble
and insoluble dietary fibers, namely cellulose, hemicelluloses and pectins [20]. In general,
these fibers are resistant to intestinal digestion in the large intestine and are believed to
ameliorate bowel disorders, cancer, diabetes, CVDs, and obesity [21,22]. Important proxi-
mate composition parameters for tomatoes include sugar content, pH, energy, acidity and
reducing sugar contents [4]. The proximate compositions help in the characterization and
identification of tomato nutrients. The combination of vitamins, minerals, amino acids,
and fats all together contribute to making tomato part of a balanced diet. Phytosterols,
which are involved in the prevention of colon cancer and heart disease, are present in
tomatoes in lower amounts than that found in other fruits and vegetables [23]. Among the
phytosterols, β-sitosterol, campesterol and stigmasterol are the main ones [5]. The antiox-
idant compounds predominately present in tomato consist of several different types of
carotenoids, vitamin C, vitamin E, and phenolic compounds that confer their antioxidant
activities by neutralizing reactive oxygen species (ROS) and protecting the cell membrane
against lipid peroxidation [24,25].

Nutritional composition of tomato varies based on the tomato cultivar, extraction pro-
cedures, analysis methods and environmental conditions. During the processing of tomato
products, up to 30% of their original weight are turned into waste, which may still contain
some nutritive values [26]. For example, the seeds and the peel are the main waste product
of tomato, which are rich in protein, dietary fibers, bioactive compounds and lycopene [27].
The by-products are used as food additives especially in the meat industries [28]. Neverthe-
less, although the waste products of tomato are a rich source of nutrients, proper research
should be undertaken before their consumption. In spite of having health benefits, toma-
toes demonstrate some undesired effects on the body when consumed in large amounts
or in abnormal body conditions. The adverse effects of tomato intake are associated with
renal problems, allergies, arthritis, heartburn, and migraine [1].

Although scattered data are available, there is a lack of updated compiled information
on the nutrient composition and the health benefits of tomatoes. Therefore, in this review,
we bring together information on all the nutrient compositions of tomato such as proximate
composition, minerals, heavy metals, vitamins, fatty acids, amino acids, carotenoids, phy-
tosterols, antioxidant activity and different types of bioactive compounds. Consequently,
we discuss the associated health benefits of the bioactive compounds present in tomato in
preventing chronic degenerative diseases, such as CVDs, diabetes, and cancer.
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2. Methodology

A comprehensive literature search was performed by combining the appropriate key-
words including “tomato”, “nutritional composition”, “proximate composition”, “phyto-
chemicals”, “physiochemical properties”, “mineral”, “vitamin”, “fatty acid”, “amino acid”,
“carotenoid”, “phytosterol”, “antioxidant properties”, “bioactive compounds”, “health ben-
efits”, “human degenerative diseases”, “cardiovascular diseases”, “diabetes” and “can-
cer”. As for the search engine, Google Scholar, Scopus, Web of Science, ScienceDirect,
and Pubmed were independently searched. Only English language published articles were
considered. There was no year restriction, and the final search was conducted on 27 July
2020. The references were managed with EndNote software (version X7).

3. Nutritional Composition of Tomato
3.1. Proximate Composition

Proximate analysis is one of the first approaches for food characterization, particularly
for the identification of nutrients in any food products. Generally, water, ash, protein, lipid,
carbohydrate, sugar and reducing sugar contents, as well as pH, energy and acidity are the
key proximate compositions of a food sample [29]. For instance, ash content is an important
step in the analysis of nutritional element contents in food products. Ash refers to the
inorganic residue (mineral content) that remains after the complete oxidation of organic
matter and removal of water by heating (ashing) of a food sample in a furnace [30,31].
Next, moisture content (total solids) is important because it affects the chemical and
physical aspects of food, which determine its freshness and storage stability [32,33]. Protein,
lipids, and carbohydrates are principal components of foods and are the main elements in
proximate composition analysis.

Proteins, which are macromolecules present in food, are important for cellular struc-
ture and biological functions. Protein analysis is crucial for nutritional labeling, as well as
in describing the biological activities and functional properties of food products [33–35].
Lipids are another group of macromolecules that are generally insoluble in water but are
soluble in organic solvents. In fact, precise and accurate analysis of lipid content in food is
mandatory for the standard of quality and nutritional labeling and is important in ensuring
manufacturing specification [36].

Carbohydrate analysis is also important as a major (more than 70%) energy source.
Carbohydrate analysis yields nutritional information, standard of identity, water holding
capacity, flavors, desirable textures, and stability of food products [37,38]. In addition,
pH analysis of food samples is essential for food processing and storage. Dietary fiber is
another important component of proximate analysis because it ensures a variety of health
benefits, including protection against heart disease, colon cancer and diabetes [39]. In a
more recent study based on previously published original research articles, an average
tomato consists of ash 8.75%, water 94.17 (g/100 g), moisture 91.18 (g/100 g), total pro-
tein 17.71 (g/100 g), lipid 4.96 (g/100 g), carbohydrates 5.96 (g/100 g), total sugar 50.60
(g/100 g), pH 3.83, energy 34.67 kcal/100 g, acidity 0.48%, reducing sugar 35.84%, fruc-
tose 2.88%, glucose 2.45%, sucrose 0.02% and total fiber 11.44 (g/100 g) (Table 1).
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Table 1. Proximate composition of tomato.

Parameters Values Range References

Energy (kcal/100 g) 34.67 ± 18.74 18.00–75.00

[3–5,40–52]

Ash (%) 8.75 ± 1.69 5.90–10.60
Moisture (g/100 g) 91.18 ± 6.83 68.03–96.17

Total protein (g/100 g) 17.71 ± 5.40 10.50–25.03
Lipid (g/100 g) 4.96 ± 1.19 3.62–5.39

Carbohydrates (g/100 g) 5.96 ± 1.37 3.92–8.00
Total sugar (g/100 g) 50.60 ± 3.69 47.00–56.45

pH 3.83 ± 0.21 3.61–4.08
Acidity (%) 0.48 ± 0.07 0.39–0.55

Reducing sugar (%) 35.84 ± 4.57 30.03–41.21
Fructose (%) 2.88 ± 0.49 1.15–3.42
Glucose (%) 2.45 ± 0.48 1.74–3.18
Sucrose (%) 0.02 ± 0.05 0.01–0.02

Total fiber (g/100 g) 11.44 ± 9.31 1.32–19.36

Values are expressed as mean ± standard deviation.

3.2. Mineral Content

Minerals are naturally occurring inorganic solid substances. They are essential for a
variety of bodily functions, including the regulation of metabolic pathways, formation of
vital organs, maintenance of bodily physiological functions, regulation of pH balance,
fluid balance, blood pressure, nerve transmission, muscle contraction and energy produc-
tion [53–56]. Some minerals, such as calcium (Ca), potassium (K), sodium (Na), phosphorus
(P), magnesium (Mg), sulfur (S) and chlorine (Cl), are highly essential (average daily intake
>50 mg) and are therefore known as major elements. Others include iron (Fe), iodine (I),
zinc (Zn), fluorine (F), copper (Cu), selenium (Se), manganese (Mn), cobalt (Co), chromium
(Cr), nickel (Ni), molybdenum (Mo) and selenium (Se), which are required in comparatively
smaller amounts (< 50 mg/day) and are known as trace elements. Other elements, such as
aluminum (Al), arsenic (As), boron (B), barium (Ba), bismuth (Bi), bromine (Br), lead (Pb),
cadmium (Cd), cesium (Cs), germanium (Ge), lithium (Li), mercury (Hg), rubidium (Rb),
silicon (Si), antimony (Sb), tin (Sn), samarium (Sm), strontium (Sr), tungsten (W), tita-
nium (Ti) and thallium (Tl), which are needed in even smaller amounts, (1 µg/day) are
known as ultratrace elements [57–59]. Pb, As, Hg, Cd, Cu, Cr, Ni, Zn and Mn are heavy
metals that are toxic if present in low concentrations because they tend to accumulate in
living cells [59,60].

From a nutritional perspective, tomato is a good source of minerals and other ele-
ments [4,44]. In this review, 23 types of minerals and their amounts present in tomato are
compiled, including the major elements (calcium, potassium, sodium, phosphorus, magne-
sium, sulfur, chlorine) and trace elements (iron, iodine, zinc, fluorine, cupper, manganese,
cobalt, chromium, nickel, aluminum, arsenic, boron, lead, cadmium, nitrate, chlorine,
selenium, silicon) (Table 2).
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Table 2. Mineral contents in tomato.

Elements Units Concentrations Range References

Sodium (Na) mg/100 g 70.38 ± 12.20 56.90–80.65

[3,4,41,42,
44,45,47,51,

61–63]

Potassium (K) mg/100 g 403.02 ± 254.41 16.63–1097.00
Calcium (Ca) mg/100 g 105.21 ± 22.76 48.47–162.07

Magnesium (Mg) mg/100 g 172.58 ± 58.92 76.87–265.93
Phosphorus (P) mg/100 g 300.99 ± 32.12 173.00–379.31

Chlorine (Cl) µg/100 g 517.24 ± 0.00 517.24
Boron (B) µg/g 36.83 ± 3.27 25.84–48.59

Nickel (Ni) mg/100 g 0.66 ± 0.00 0.66
Nitrate (NO3

-) mg/100 g 274.37 ± 156.75 86.21–459.00
Iron (Fe) mg/100 g 4.55 ± 2.18 1.50–6.45
Zinc (Zn) mg/100 g 2.48 ± 1.05 0.17–3.17

Cobalt (Co) mg/100 g 19.66 ± 9.66 10.00 -29.31
Copper (Cu) mg/100 g 0.67 ± 0.15 0.06–1.10

Manganese (Mn) mg/100 g 0.60 ± 0.12 0.11–1.88
Chromium (Cr) µg/100 g 193.80 ± 133.80 60.00–327.59

Iodine (I) mg/100 g 2.65 ± 1.44 0.18–3.97
Fluorine (F) µg/100 g 413.79 ± 0.00 413.79

Aluminum (Al) µg/100 g 1241.38 ± 0.00 1241.38
Silicon (Si) µg/100 g 46.55 ± 0.00 46.55

Selenium (Se) µg/100 g 13.45 ± 3.45 10.00–16.90
Lead (Pb) µg/ g 1.21 ± 0.06 1.15–1.27

Cadmium (Cd) µg/ g 0.17 ± 0.06 0.11–0.22
Arsenic (As) µg/ g 0.20 ± 0.005 0.19–0.20

Concentrations are expressed as mean ± standard deviation.

3.3. Vitamin Content

The accurate and precise analysis of vitamin content is important for a standard
balanced diet because low or excessive amounts of vitamins can contribute to disease
conditions by hampering normal cell growth [64]. Tomatoes are one of the most versatile
and widely consumed vegetables in many countries and are a rich source of vitamins [65,66].
Vitamins C, B-complex, A, E and K are the main types of vitamins present in tomato,
with vitamin C reported to be the highest (Table 3). Vitamins C and E (tocopherol) exhibit
antioxidant activities making tomato a useful therapeutic agent for the prevention of
various diseases, including CVDs and cancer [12,67–70]. Among the various types of
vitamin B-complexes, the amount of folate is comparatively high in tomatoes. Nevertheless,
excessive amounts of water-soluble vitamin B do not cause any toxicity because these
vitamins can be easily excreted from the body. Vitamins perform various functions, such as
maintaining the nervous system, producing red blood cells and enzymatic function [71,72].

Table 3. Vitamin contents in tomato.

Vitamins Units Concentrations Range References

Vitamin A IU/100 g 614.44 ± 248.18 267.33–833.00

[4,46,61,62,
65,69,73–76]

Vitamin E µg/100 g 15.08 ± 1.06 14.02–16.13
Vitamin K µg/100 g 98.28 ± 0.00 98.28
Vitamin C mg/100 g 36.16 ± 29.64 10.86–85.00
Thiamine mg/100 g 0.66 ± 0.44 0.04–0.98
Riboflavin mg/100 g 0.48 ± 0.34 0.02–0.81

Niacin mg/100 g 9.68 ± 0.00 9.68
Pantothenic Acid mg/100 g 4.93 ± 0.41 4.52–5.34

Vitamin B6 mg/100 g 1.51 ± 0.22 1.29–1.72
Biotin µg/100 g 68.97 ± 0.00 68.97
Folate mg/100 g 14.00 ± 1.00 13.00–15.00

Concentrations are expressed as mean ± standard deviation.
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3.4. Fatty Acid Content

Tomato contains many different types of fatty acids (Table 4). Among them, linoleic
and polyunsaturated fatty acids are the highest. Linoleic and linolenic acids are two
essential fatty acids. Since the essential fatty acids cannot be synthesized by humans or
animals, they must come from the dietary sources and tomato provides a good source
of these acids. On the other hand, polyunsaturated fatty acids are also very important
for the body since they are essential for the maintenance of plasma membrane integrity,
cell growth and prevention of disease [77,78]. From this point of view, tomato is therefore a
rich and highly nutritious food product.

3.5. Amino Acid Content

Amino acids are the building blocks of proteins that conduct important bodily func-
tions, including the maintenance of cellular structure, transport and storage of nutrients,
wound healing, and repair of damaged tissues [79]. A total of 17 amino acids have been
identified in tomato (Table 5). It is estimated that essential amino acids constitute 39.75% of
the total protein in tomato. Among these, the highest was glutamic acid (approximately
10.13 g/100 g protein). Among the various types of essential amino acids present in tomato,
leucine is present in the highest concentration, while methionine is the lowest. Among the
nonessential amino acids, glutamic acid is the most common, while cysteine is the least.

Table 4. Fatty acid contents in tomato.

Fatty Acids Concentrations
(g/100 g) Range References

Myristic acid 0.56 ± 0.22 0.32–0.93

[5,41,47,49,62]

Palmitic acid 18.07 ± 2.90 12.40–22.50
Stearic acid 4.81 ± 1.50 2.80–6.84

Palmitoleic acid 0.25 ± 0.10 0.03–0.32
Oleic acid 14.24 ± 3.50 9.00–19.14

Linoleic acid 49.40 ± 4.16 46.33–54.10
Linolenic acid 10.17 ± 4.46 4.26–15.53
Caproic acid 0.03 ± 0.02 0.01–0.05
Caprylic acid 0.06 ± 0.04 0.02–0.10
Capric acid 0.04 ± 0.03 0.01–0.07

Heptadecanoic acid 0.26 ± 0.05 0.18–0.13
Lauric acid 0.09 ± 0.05 0.04–0.15

Pentadecanoic acid 0.12 ± 0.03 0.08–0.15
Arachidic acid 0.88 ± 0.24 0.61–1.26

Eicosadienoic acid 0.04 ± 0.02 0.02–0.06
Arachidonic acid 0.04 ± 0.02 0.01–0.06

Eicosapentaenoic acid 0.05 ± 0.01 0.03–0.06
Erucic acid 0.02 ± 0.01 0.01–0.03

Docosadienoic acid 0.07 ± 0.03 0.03–0.10
Behenic acid 0.59 ± 0.19 0.31–0.82

Tricosanoic acid 0.68 ± 0.54 0.16–1.52
Lignoceric acid 0.74 ± 0.20 0.45–1.01

Saturated fatty acid 27.40 ± 3.74 22.37–33.22
Monounsaturated fatty acid 13.80 ± 2.42 11.00–17.66
Polyunsaturated fatty acid 57.55 ± 23.51 55.78–58.63

Vaccenic acid 0.53 ± 0.05 0.50–0.60
Eicosanoic acid 0.10 ± 0.03 0.05–0.12

Concentrations are expressed as mean ± standard deviation.
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Table 5. Amino acid contents of tomato.

Amino Acids Concentrations
(g/100 g Protein) Range References

Threonine * 1.37 ± 0.97 0.40–2.34

[3,41,62,80,81]

Valine * 2.49 ± 2.09 0.40–2.49
Methionine * 0.57 ± 0.45 0.12–1.02
Isoleucine * 2.13 ± 1.73 0.40–3.86
Leucine * 2.80 ± 2.28 0.52–5.07

Phenylalanine * 1.77 ± 1.36 0.41–13.12
Histidine * 1.93 ± 1.71 0.22–3.64

Lysine * 2.45 ± 1.95 0.50–4.40
Arginine * 2.33 ± 2.02 0.31–4.34

Aspartic Acid ** 1.40 ± 0.70 0.70–2.09
Serine ** 1.78 ± 1.30 0.48–3.08

Glutamic Acid ** 10.13 ± 4.44 5.69–14.56
Proline ** 1.53 ± 1.25 0.28–2.78
Glycine ** 2.30 ± 1.99 0.31–4.29
Alanine ** 2.74 ± 2.29 0.45–5.02
Cystine ** 0.21 ± 0.19 0.02–0.39
Tyrosine ** 1.82 ± 1.61 0.21–3.42

Concentrations are expressed as mean ± standard deviation. * denotes essential amino acids. ** denotes
nonessential amino acids.

3.6. Carotenoid Content

Tomato contains various types of carotenoids and is rich in lycopene and β-carotenoids
(Table 6). Carotenoids are plant pigments that play crucial roles in protecting plants from
photo-oxidative processes. They are natural antioxidants useful for combating cellular
oxidative damage [82]. Recent studies have suggested that carotenoids play important
roles in improving vision [83], are effective for preventing CVDs [84], protect against
sperm health [85] and can prevent various types of cancer [7,86,87]. On the other hand,
carotenoids such as lutein and zeaxanthin improve skin health [88]. Lycopene is a type of
carotenoid found in tomato that is helpful in the prevention of liver, lung, prostate, breast,
and colon cancers [70,89].

Table 6. Carotenoid contents in tomato.

Units Concentrations Range References

β-carotene µg/100 g 9942.16 ± 264.74 3677.42–10,206.90

[5,7,46,47,
74,90–94]

α-carotene µg/100 g 101.00 101.00
Lycopene µg/100 g 8002.50 ± 243.54 5020.00–11,110.00
Lutein +

zeaxanthin µg/100 g 60.67 ± 43.86 18.07–123.00

Phytoene µg/100 g 668.33 ± 361.95 430.00–1860.00
Phytofluene µg/100 g 500.00 ± 100.49 390.00–820.00

All trans-lutein mg/kg 5.00 ± 0.82 4.00–6.00
All trans-β

carotene mg/kg 29.25 ± 27.26 4.00–75.00

9-cis-β carotene mg/kg 6.50 ± 2.29 3.00–9.00

Concentrations are expressed as mean ± standard deviation.

3.7. Sterol Content

Sterols are mainly found in plants, animals, and microorganisms. Plant sterols, also known
as phytosterols, commonly occur as a mixture of β-sitosterol, campesterol and stigmas-
terol. Phytosterols play important roles in human health. Phytosterols block cholesterol
absorption sites in the human intestine and reduce cholesterol absorption, leading to a
reduction in low-density lipoprotein cholesterol (LDL-C) and prevention of CVD [95].
Research has also suggested that phytosterols exhibit an anticancer effect by inhibiting
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cancer cell growth, carcinogens, angiogenesis, and invasion of metastasis by promoting
the apoptosis of cancerous cells [96,97]. Phytosterols also act as antioxidants to prevent
oxidative stress [98]. Additional important functions of phytosterols are stimulation of the
immune system and anti-inflammatory activities [99,100]. In fact, tomato is an excellent
source of phytosterols. Approximately 1283 mg of phytosterols are present per kg of tomato.
Among them, β-sitosterol and stigmasterol are the main ones (Table 7).

Table 7. Sterol contents in tomato.

Concentrations
(mg/kg) Range References

Campesterol 147.50 ± 31.13 100.00–18.00

[5,92]

Stigmasterol 387.50 ± 88.71 260.00–510.00
Stigmastanol 28.25 ± 10.92 10.00–38.00
β-sitosterol 720.00 ± 175.64 520.00–1000.00

∆5-Avenasterol 62.30 ± 2.21 10.00–65.87
Cholestanol 9.70 ± 1.80 2.10–11.54

Cholest-7-en-3-ol 3.60 ± 0.13 0.42–4.40
Cholesterol 41.90 ± 2.10 8.40–43.45

Lanost-8-en-3-β-ol 52.40 ± 6.80 4.50–60.65
24-Oxocholesterol 67.50 ± 3.20 14.20–70.69

Total 1283.25 ± 239.39 918.00–1570.00

Concentrations are expressed as mean ± standard deviation.

4. Antioxidant Properties and Bioactive Compounds in Tomato

Antioxidants are biomolecules that (1) prevent the oxidation of other molecules by
inhibiting the initiation and elongation of the oxidizing chain reaction of ROS and (2) by
inhibiting the proliferation of cells, free radical scavenging, the modulation of enzymatic
activity via chelation of metallic ions and signal transduction pathways [101]. Antioxidants,
which are bioactive reducing agents, prevent cellular damage caused by ROS, including
superoxide anion radicals, hydroxyl radicals and hydrogen peroxide [102,103]. Antiox-
idants are considered as the first line of cellular defense used to minimize the harmful
effects of free radicals by scavenging them while restoring the normal physiological system.
Most medicinal plants are abundant sources of natural antioxidants, such as phenolic acid
and flavonoids.

Tomatoes are consumed worldwide in various forms, either raw or processed and
provide a significant amount of important antioxidants [104,105] including β-carotene,
ascorbic acid, lycopene, tocopherol, phenolic acids, flavonoids, anthocyanins and other
bioactive compounds (Tables 8 and 9) [66,106–108]. The antioxidants present in tomato can
delay, hinder, and prevent free radical oxidation, and thus forming stable radicals [109].
Generally, antioxidant compounds play important roles in the prevention of several human
degenerative diseases, including CVDs, diabetes, cancer, neurological diseases, and aging,
by minimizing oxidative stress caused by ROS [110,111].

Phenolic compounds present in tomato are considered as the primary antioxidant based
on their ability to donate hydrogen atoms to reactive free radicals [104]. Carotenoid, ascor-
bic acid, lycopene, tocopherol, and anthocyanins are other important antioxidants in tomato.
Carotenoids act as antioxidants by quenching singlet oxygen and peroxyl-radicals [112]. Nor-
mally, antioxidant activity is confirmed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay,
thiobarbituric acid reactive substance (TBARS) inhibition, ferric reducing power (FRAP) and
ferrous ion chelating activities.
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Table 8. Antioxidant constituents in tomato.

Units Concentrations Range References

α-tocopherol mg/100 g 0.701 ± 0.110 0.59–0.88

[3,5,49,50,61,65,90,113]

β-tocopherol mg/100 g 0.030 ± 0.004 0.02–0.03
γ-tocopherol mg/100 g 0.810 ± 0.720 0.40–2.24
δ-tocopherol mg/100 g 0.020 ± 0.010 0.01–0.02

Total tocopherol mg/100 g 1.200 ± 0.150 1.02–1.44
Vitamin C mg/100 g 36.160 ± 29.640 10.86–85.00
β-carotene mg/100 g 9.420 ± 2.640 3.67–10.21
Lycopene mg/100 g 7.960 ± 1.780 5.02–9.49

Phenolic acids mg CIAE/g extract 25.500 ± 3.590 21.34–31.23
Flavonoids mg QE/g extract 4.230 ± 1.280 3.06–6.36

Anthocyanins mg ME/g extract 0.870 ± 0.470 0.23–1.36

Concentrations are expressed as mean ± standard deviation. CIAE: chlorogenic acid equivalents. QE: quercetin equivalents. ME: malvidin 3-glucoside equivalents.
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Table 9. Bioactive compounds in tomato.

Name of Bioactive
Compound IUPAC Name Molecular Formulas Structure Other Sources References

Quercetin 3,5,7,3′,4′-pentahydroxyflavone C15H10O7
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Table 9. Cont.

Name of Bioactive
Compound IUPAC Name Molecular Formulas Structure Other Sources References

Caffeic acid 3,4-dihydroxycinnamic acid C9H8O4
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Table 9. Cont.

Name of Bioactive
Compound IUPAC Name Molecular Formulas Structure Other Sources References

Chlorogenic acid 3-caffeoylquinic and
neochlorogenic acid C16H18O9
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Table 9. Cont.

Name of Bioactive
Compound IUPAC Name Molecular Formulas Structure Other Sources References

Lycopene lycopene, (7-cis,7’-cis
9-cis,9’-cis)-isomer C40H56
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Table 9. Cont.

Name of Bioactive
Compound IUPAC Name Molecular Formulas Structure Other Sources References

Epicatechin
(2R,3R)-2-(3,4-dihydroxyphenyl)-
3,4-dihydro-2H-chromene-3,5,7-

triol
C15H14O6
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5. Health Benefits of Tomato

The health benefits of tomatoes mainly associated with its rich supply of nutrients
and secondary metabolites, including vitamins, minerals, essential fatty acids, carotenoids,
antioxidants, and other bioactive compounds. In addition to its high amounts of vitamins
A, C, E, K and B-complex [5,37], tomato is also a good source of important minerals as
previously stated [3,47]. Additionally, tomato contains some dietary fiber, protein, essen-
tial amino acids, and a number of bioactive anti-oxidative organic compounds including
lycopene, quercetin, kaempferol, naringenin, caffeic acid, rutin, resveratrol, catechin and
luteolin, which contribute to the maintenance of good health [44]. Vitamins C and E are
natural antioxidants that can prevent degenerative diseases caused by free radicals [120].

Lycopene is a natural antioxidant that can help combat different types of cancer,
including prostate, breast, lung, stomach, colorectal, oral, esophageal, pancreatic, bladder,
cervical and ovarian cancers [10,17]. Abundant amounts of minerals are responsible for
maintenance of body’s physiological functions including blood pressure, blood clotting,
nerve transmission, muscle contraction and energy production [56,121], while the vitamins
help to maintain the health of the nervous system, facilitate blood cell production and
enzymatic function [122].

The consumption of carotenoid-rich tomato has been reported to protect against
vitamin A deficiency disorders and other chronic diseases including light-induced eye
damage, the development of cataracts and age-related macular degeneration [123]. In fact,
a high dietary intake of carotenoids (lutein and zeaxanthin) can prevent the risk of age-
related macular degeneration, making tomato useful in ameliorating eye diseases [124].
Other important constituents present in tomato are phytosterols, which prevent intestinal
cholesterol absorption by displacing it from the micelles, and thus stimulating its excretion,
preventing CVDs, and ameliorating different types of cancer including colon, prostate,
and breast cancers [1,125,126].

Oxidative stress is the main contributor to the development of chronic diseases in
humans. ROS, including superoxide anion radicals, hydroxyl radicals and hydrogen per-
oxide, are highly reactive oxidant molecules that are endogenously induced by regular
metabolic activity in the body, diet, and secondary lifestyle activities [127,128]. They react
with cellular components (DNA, lipids, and proteins) to cause oxidative damage [129].
Antioxidants are super-protective agents that inactivate ROS and prevent oxidative dam-
age [130]. Natural antioxidants such as vitamins C and E, different types of carotenoids
and phenolic compounds including quercetin, kaempferol, caffeic acid, naringenin, chloro-
genic acid, lutin, ferulic acid, lycopene, resveratrol, catechin and luteolin are present in
tomato [6,92]. These bioactive compounds will protect endogenously produced reactive
oxidant molecules and prevent oxidative damage. Therefore, they prevent the development
of different types of cancer, diabetes and cardiovascular, eye, hypertension, inflammatory
and neurodegenerative diseases [1,131–134].

In summary, the health benefits of tomato are associated with its rich supply of
nutrients to the body, such as minerals, vitamins, proteins, essential amino acids, fatty acids,
and other antioxidants. The consumption of tomato is associated with the relief of cancer,
diabetes, CVDs, eye disease and constipation, with blood pressure reduction, improved
blood circulation, improved body fluid balance, cholesterol reduction, detoxification of
toxins, reduction in inflammation, prevention of premature aging and improvement of
digestive function (Figure 1).
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6. Effects of Bioactive Compounds of Tomato on Some Human Degenerative Diseases
6.1. Tomato in CVDs

Generally, CVD is a category of disease that affects the blood vessels and the heart [135].
Common predisposing factors include hypertension, gender, age, hypercholesterolemia,
obesity, diabetes, and unhealthy lifestyle, such as minimal physical activity, smoking, the
consumption of a high fat diet and excessive alcohol [136,137]. The bioactive compounds
in tomato not only reduce the risk but also prevent or ameliorate CVDs [138] (Figure 2).
The antiplatelet aggregation effects of tomato and tomato products support the preven-
tion of CVD disorders [139]. For example, lycopene can improve endothelial function
among patients who suffer from CVD [140]. Lycopene functions as a crucial hypolipi-
demic and antioxidant agent and inhibits factors that play important prothrombosis and
pro-inflammatory roles, and thus improves CVDs [141]. Additionally, it is hypothesized
that lycopene can increase LDL degradation and reduce cholesterol synthesis. It has been
reported that both the thickness of the intima wall and myocardial infarction (MI) can
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be minimized by high lycopene intake [142]. As a radical scavenger, lycopene mops up
singlet oxygen along with other active free radicals, and thus protects against vascular cell
damage, which contributes to CVD [141]. Lycopene also shows antiplatelet and antithrom-
botic activities by hindering phospholipase C activation, which inhibits the breakdown of
phosphoinositol and the formation of thromboxane B2. Subsequently, the mobilization of
intracellular calcium, which is beneficial in CVDs, is impeded. In addition, the cyclic guano-
sine monophosphate (cGMP) /nitrate formation in the platelets activated by lycopene also
constrains platelet aggregation [143].
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Figure 2. Summary of the effects of nutrients and bioactive compounds in tomato on cancer, diabetes mellitus and
cardiovascular disease (CVD). UV: ultraviolet; DNA: deoxyribonucleic acid; RNA: ribonucleic acid; TGF-β1: transforming
growth factor beta 1; CTGF: connective tissue growth factor; NF-kB: nuclear factor kappa-light-chain enhancer of activated
B cells; p38 MAPK: p38 mitogen-activated protein kinase; JNK/SAPK: c-Jun N-terminal kinases/stress-activated protein
kinases; TC: total cholesterol; TG: triglyceride; LDL-C: low-density lipoprotein cholesterol; NO: nitric oxide; HDL-C: high-
density lipoprotein cholesterol.

Quercetin is a potential chelator of metal ions, constraining xanthine oxidase while
reducing lipid peroxidation and scavenging free radicals, which ultimately help to re-
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duce the risk of CVD [144,145]. Furthermore, it reduces the levels of oxidized LDL
in the plasma, since LDL oxidation is stimulated by macrophages or myeloperoxidase,
inhibits the generation of hyperoxide and reduces systolic blood pressure in obese pa-
tients [146–148]. Quercetin also decreases the expression of endothelin-1 messenger ri-
bonucleic acid (mRNA), which stimulates the dilation of coronary vessels and improves
endothelial function [149]. Another study showed that quercetin regulates the expression of
p47phox or neutrophil cytosol factor 1 and therefore reduces the levels of superoxide anion
(O2
−), as mediated by nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxi-

dase), ultimately preventing endothelial dysfunction in hypertension [150].
Caffeic acid, which can increase the plasma level of vitamin E, scavenge free radicals,

and reduce oxidative stress, demonstrates its effectiveness in MI [151,152]. It is also
reported to be a potential antihypertensive agent as well [153]. Kaempferol effectively
reduces oxidative stress, which is effective in CVD. On the other hand, naringenin, which is
efficacious against interstitial fibrosis and cardiac hypertrophy, can improve the function
of the left ventricle in mice with induced pressure overload. It also downregulates the
activation of the c-Jun N-terminal kinases (JNK), extracellular signal–regulated kinases
(ERK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKt)
signaling pathways, which may offer some cardioprotective effects [154].

Lutein reduces carotid artery intima-media thickness, especially in patients with sub-
clinical atherosclerosis [155]. Moreover, the use of dietary lutein has been reported to re-
duce atherosclerotic lesions, especially in combination with polyunsaturated fatty acids
(PUFAs) [156]. Luteolin confers cardioprotective mechanisms against ischemia/reperfusion
(I/R) injury by increasing pro-apoptotic molecules, Bcl2-associated agonist of cell death (BAD)
phosphorylation and manganese superoxide dismutase (MnSOD) activity, which helps to
inhibit the mitochondrial permeability transition pore (mPTP), stimulate the PI3K/AKt as well
as myocardial endothelial nitric oxide synthase (eNOS) pathways, upregulate leukemic in-
hibitory factor (LIF) and anti-apoptotic proteins such as fibroblast growth factor receptor 2
(FGFR2) expression and decrease the ratio of Bax to Bcl-2, particularly in diabetes [157,158].
Moreover, luteolin inhibits thrombin activity, fibrin polymer formation and thrombosis,
which is induced by oxidative stress and binds with thromboxane A2 receptor, which can
hinder platelet aggregation, and thus confers some antithrombotic effect [159,160].

Vanillic acid reduces hypertension and infarct size in I/R, improves ventricular
function and shows antioxidant mechanisms that can confer some cardioprotective ef-
fect [161–163]. Chlorogenic acid demonstrates antihypertensive, antiplatelet, antithrom-
botic and antioxidant activities involving A2A receptor and NF-κB and the adenylate cy-
clase/cyclic adenosine monophosphate/protein kinase A (adenylatecyclase/cAMP/PKA)
pathways, which can improve CVDs [164–166]. On the other hand, ferulic acid improves
the structure as well as the function of blood vessels and the heart [167]. Additionally,
p-coumaric acid exhibits a preventive role in cardiac hypertrophy and MI by stimulating
anti-hypertrophic and radical scavenging activities that constrain lysosomal dysfunction
and ameliorate the levels of lysosomal enzymes [168,169].

On the other hand, chrysin has an anti-atherogenic activity and can ameliorate MI
by activating peroxisome proliferator-activated receptor gamma (PPAR-G) and inhibiting
oxidative stress as well as inflammation, mediated by the advance glycation end prod-
uct [170,171]. Catechin regulates lipid and blood lipid metabolism, reduces, and regulates
blood pressure, protects vascular endothelial cells, reduces the cell proliferation of vascu-
lar smooth muscle, suppresses platelet adhesion, inhibits thrombogenesis and increases
vascular integrity, thereby reducing the risk for CVDs [172,173]. Epicatechin can decrease
platelet-induced endothelial activation along with catechin [174]. Cinnamic acid amelio-
rates myocardial ischemia due to its anti-inflammatory and anti-oxidative properties [175].
On the other hand, sinapic acid has membrane-stabilizing and free radical scavenging prop-
erties by which it can inhibit fibrosis and lysosomal dysfunction in heart diseases [176,177].
The protective effects of resveratrol occur by the upregulation of AMP-activated protein
kinase (AMPK) and sirtuin (SITR1) and the activation of endogenous antioxidant enzymes
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against cardiovascular complications. It also confers some lipid-reducing, antiplatelet and
anti-inflammatory properties that are beneficial in CVDs [178].

6.2. Tomato in Diabetes

Some bioactive compounds present in tomato are effective in diabetes (Figure 2).
For instance, lycopene has been reported to exert hypoglycemic effects by increasing serum
insulin levels and lowering glucose levels in diabetic animals as induced by streptozotocin
(STZ) [179,180]. Lycopene reduces angiotensin converting enzyme (ACE) activity, the level
of which can indicate diabetes or complications related to diabetes [181]. In addition, it has
been reported to improve renal function and exhibit a defensive effect against diabetic
nephropathy by regulating connecting tissue growth factor and p-Akt, reducing malondi-
aldehyde levels and enhancing antioxidant activities [182]. It has also been reported that
oocyte maturation, follicular growth and protection of ovaries are promoted by lycopene
in diabetic conditions [183].

Quercetin stimulates glucose uptake by regulating mitogen-activated protein kinase
(MAPK) insulin-dependent mechanisms, improving renal function, inhibiting the overex-
pression of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor
(CTGF), hindering polyol accumulation as well as blocking aldose reductase, and thus
reducing joint pain, irritation, and numbness, which are common symptoms observed in
diabetes [184]. Quercetin elevates transmembrane potential and membrane fluidity and
confers anti-inflammatory activity on immune and endothelial cells, which is beneficial
especially in the late stage of diabetes [185]. Due to its antiplatelet activity, quercetin de-
lays thrombus formation and plays a crucial role as an antioxidant by decreasing the
generation of lipid hydroperoxides and increasing the activity of glutathione peroxidase
in diabetes [186,187]. It also regulates NF-κB signaling and the mitochondrial pathway,
significantly preventing the death of β cells [188].

On the other hand, kaempferol minimizes α-glucosidase activity, increases antiox-
idant activity, reduces lipid peroxidation level, protects β cell function and improves
insulin sensitivity of the periphery, therefore exhibiting antidiabetic properties [189–191].
Kaempferol also downregulates I kappa B kinase (IKK), and thus inhibits the NF-κB
pathway, which reduces inflammatory lesions in hepatic cells and improves insulin signal-
ing [192]. Kaempferol also restores membrane-bound ATPase, which is normally affected
in diabetes [193].

Naringenin, which has the potential to diminish nephropathy and improve endothelial
complications along with lipid and glucose metabolisms in diabetes, shows antifibrotic, anti-
oxidative and anti-inflammatory activities [194,195]. Interestingly, naringenin also inhibits
increased cholinesterase (ChE) activity, which contributes to memory dysfunction [196].
Therefore, it is another important component present in tomato.

Caffeic acid has been reported to confer some anti-inflammatory and antiglycemic
activities in diabetic kidney disease [197]. Chlorogenic acid reduces plasma glucose levels
in fasting conditions and during late diabetes, where it lowers glycosylated hemoglobin
(HbA1c). Additionally, by modulating the signaling pathway of the adiponectin receptor,
chlorogenic acid improves diabetic kidney fibrosis [198]. It also prevents neurological
complications and retinopathy accelerated by diabetes by improving memory, inhibiting
TBARS production, reducing anxiety and reducing vascular hyperpermeability [199,200].

In pregnant women affected by gestational diabetes, lutein intake has been reported
to reduce neonatal oxidative stress during birth [201]. Moreover, lutein, which is another
important component present in tomato, prevents cataract progression and preserves
the composition of free fatty acids, which is abnormal in diabetic conditions [202,203].
Luteolin can inhibit α-glucosidase action and improve insulin resistance [204,205], which is
important in both diabetic encephalopathy and neuropathy [206,207].

Vanillic acid reduces blood pressure, plasma glucose and insulin by activating antioxi-
dants, thereby reducing oxidative stress [208]. Ferulic acid reduces oxidative stress, and thus
prevents testicular damage and downregulates both apoptosis and pro-inflammatory cy-
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tokine expression in diabetes [209,210]. Another important substance is p-coumaric acid,
which exerts glucose-lowering activity by activating pancreatic glucose transporter 2
(GLUT 2), regulating lipid and glucose metabolisms and exhibiting some antidiabetic
effects [211]. Moreover, p-coumaric acid shows anti-apoptotic, anti-inflammatory and
antioxidant activities that counter hippocampal neurodegeneration in diabetes [212].

Cinnamic acid and some of its derivatives have the potential to be applied in the
treatment of diabetes because of their many useful properties including (1) increased glu-
cose uptake, adiponectin secretion, insulin secretion and hepatic glycolysis; (2) improved
functionality of pancreatic β cells; (3) reduced adipogenesis; (4) improved hepatic gluco-
neogenesis, protein glycation, insulin fibrillation and intestinal glucose absorption and (5)
decreased activity of certain enzymes, including α-glucosidase, dipeptidyl peptidase-4,
pancreatic α-amylase and protein tyrosine phosphatase 1B [213].

Sinapic acid improves hyperglycemia and maximizes glucose utilization by regulating
the signals of phospholipase C (PLC) and protein kinase C (PKC) in diabetes [214]. Cate-
chin activates endothelial phosphoinositide (PI3K) signaling and consequently activates
eNOS, resulting in the generation of nitrous oxide against vascular endothelial dysfunction
(VED) in diabetes. In cases of vascular endothelial abnormalities (VEA), catechin confers a
protective effect by reducing high glucose, lipid peroxidation and oxidative stress [215].
In addition, catechin protects against diabetic nephropathy by constraining the formation
of advanced glycated end products and blocking inflammatory signaling pathways since
catechin can trap the metabolite methylglyoxal [216].

Epicatechin, another important constituent of tomato, reduces insulin resistance, in-
creases insulin sensitivity, and reduces oxidative stress [217]. It also improves pancreatic
insulitis and islet mass as well as muscle function [218,219]. Chrysin hinders the activity of
α-glucosidase, reduces oxidative stress, and generates moderate amounts of nitric oxide
to prevent diabetes-related complications [220,221]. In addition to its antioxidant prop-
erties, chrysin has anti-inflammatory properties and the ability to regulate the apoptotic
cascade by which it improves diabetic-associated cognitive deficits (DACD) and diabetic
nephropathy [222,223]. Resveratrol is another important component present in tomato.
In addition to having a significant effect on different signaling and metabolic pathways that
can improve diabetes, it enhances mitochondrial biogenesis and reduces mitochondrial
damage, oxidative damage, inflammation, lipid accumulation, liver steatosis and improves
the action of insulin [224].

6.3. Tomato against Cancer

Many recent studies have suggested that regular intake of fruits and vegetables that
are high in antioxidants prevents the progression of cancer cells [14,225]. There are many
important bioactive phytochemicals present in fruits and vegetables that are responsible for
cancer prevention. For example, bioactive phytochemicals can prevent cancer via various
mechanisms including (1) inhibition of cancer cell proliferation [226], (2) prevention of
oxidative stress via antioxidant effects [227], (3) alteration of cancer cell signaling path-
ways [228,229], (4) modification of enzymatic activity [230], (5) inhibition of oxidative DNA
damage [231], (6) increasing the expression of phase II enzymes [232], and (7) inducing
apoptosis of cancer cells [233,234] (Figure 2).

Many epidemiological studies have suggested that dietary intake of tomato can
ameliorate cancer [13,70]. In fact, the excessive consumption of tomato is reported to
confer some preventive effects against gastrointestinal tract cancer when compared to a
control [235]. A research conducted by Colditz et al. confirmed that the intake of tomato
and other types of vegetables is important for cancer prevention. In their research, from the
1271 elderly individuals investigated, 42 cancer patients died. However, those with higher
intakes of tomato had a better prognosis [236]. Studies from different countries have
reported that colon cancer is inversely correlated with a high tomato consumption [237,238].
Moreover, a case-control study from China and Italy indicated that approximately 60% of
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colon and rectal cancer patients showed some improvements following the intake of high
amounts of tomato [235,239,240].

Lycopene, a major carotenoid present in tomato, has antioxidant properties and can
prevent prostate cancer by blocking ROS generation, scavenging free radicals, and protect-
ing both cell membrane and DNA from oxidative damage [10,17,241]. In another study,
approximately 83% of prostate cancer was ameliorated in patients who received the highest
amount of lycopene (0.40 µm/L) in comparison with lower amounts (0.18 µm/L) [242].
Siler et al. investigated the protective effects of lycopene and vitamin E (two important
components present in tomatoes) on the growth of prostate tumors in a Dunning MAT-
LyLu rat model [243], where rapidly growing tumor cells were injected into the ventral
prostate of the experimental rats. Both lycopene- and vitamin E-treated experimental rats
showed a significant reduction in tumor size and necrosis when compared to untreated
rats. Moreover, molecular analysis of the tumor tissues indicated that vitamin E reduces
androgen signaling, while lycopene downregulates the expression of 5-α reductase 1,
interleukin 6 and insulin-like growth factor-1.

Quercetin confers both antioxidant and anticancer properties that prevent the prolifer-
ation of prostate cancer cells by increasing the levels of p21, Bax and caspase-3, and thus
preventing the expression of the cell cycle regulator cdc2/cdk-1, cyclin B1, phosphorylated
pRB and apoptosis markers Bcl-2 and Bcl-XL [244]. In another study, quercetin showed anti-
cancer properties by inhibiting the P13k-Akt/PKB pathway [245]. Quercetin also protects
against colon cancer by inhibiting β-catenin/Tcf signaling in SW480 colon cancer cell lines
and reducing β-catenin/Tcf transcription activity [246]. Luteolin, which is also present in
tomato, is an important polyphenol that exhibits anticancer properties by inhibiting rat
aortic vascular smooth muscle cell proliferation and DNA synthesis as induced by platelet-
derived growth factor-BB (PDGF-BB) via blockage of the phosphorylation of PDGF-BB
receptor [247]. Apigenin, another important flavonoid in tomato, also has some anticancer
properties since it inhibits pancreatic cancer cell proliferation by arresting the G2/M cell
cycle, and thus decreases the concentration of cyclin A, cyclin B and the phosphorylated
forms of cdc2 as well as cdc25 [248].

7. Limitations and Future Prospects

The nutritional composition of tomato depends on the maturation of fruits, ripen-
ing time, geographical location, tomato variety, freshness and whether they are tomato-
based food products. The nutritional composition will also differ depending on the condi-
tions of sample preparation, collection, and tomato parts. Nevertheless, to date, there are
limited data on the nutritional contents of tomato peel and pulp for a good comparison
to be made. Therefore, in this review, only the nutritional composition of fresh matured
tomatoes is discussed. Further study needs to investigate the bioactive compounds present
and investigate their impact on human health.

Additionally, although some research works have been published on tomato process-
ing by-products containing many bioactive nutrients including lycopene, beta-carotene,
amino acids, proteins, lipids, and dietary fibers [249,250], the bioavailability, safety, and phar-
macological toxicity have not been investigated. Another study Salehi et al. demonstrated
that tomato consumption, in addition to giving some beneficial effects, is also associated
with some health risks including renal problems, irritable bowel syndrome (IBS), migration,
allergy, body aches, arthritis, and urinary problems [1]. Therefore, research should also
focus on the possible health risks that may arise due to tomato consumption and the
amount consumed that leads to detrimental effects. Finally, there is a need to conduct
randomized clinical trials that can assess the effects of long-term tomato consumption on
its various health benefits.

8. Conclusions

Tomatoes are vegetables/fruits that contain significant amounts of dietary nutrients,
including dietary fiber, reducing sugars, vitamins, minerals, protein, essential fatty acids,
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phytosterols and carotenoids. The nutritive elements play an important role in bodily func-
tion and are beneficial in ameliorating chronic diseases. Tomatoes are also rich with health
promoting bioactive phytochemicals, such as phenolic compounds including lycopene,
quercetin, kaempferol, naringenin, caffeic acid and lutein. The bioactive constituents show
antioxidant, antiproliferative, antidiabetic, anti-inflammatory, and other health-promoting
activities, indicating the vast potential of tomato in preventing and/or ameliorating several
chronic degenerative diseases. Lycopene and β-carotene are two main active ingredients in
tomato that have strong antioxidant properties, which are linked with many health benefits,
including cancer and heart diseases. They also participate in preventing the development
of cataracts. Additionally, the water content and dietary fibers help the body in terms of hy-
dration, bowel movements, reducing constipation, improving obesity through weight loss,
and preventing colon cancer. All immune stimulating activities of tomatoes make them
active ingredients for the development of functional foods. Thus, tomato is an excellent
source of dietary nutrients and is useful in disease prevention.
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