
Yeast two-hybrid junk sequences contain
selected linear motifs
Yun Liu1, Nicholas T. Woods2, Dewey Kim1, Michael Sweet2, Alvaro N. A. Monteiro2 and

Rachel Karchin1,*

1Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University,
3400 N. Charles St, Baltimore, Maryland and 2Cancer Epidemiology Program, Population Sciences Division,
H. Lee Moffitt Cancer Center, Tampa, Florida USA

Received March 14, 2011; Revised July 4, 2011; Accepted July 6, 2011

ABSTRACT

Yeast two-hybrid (Y2H) screenings result in identifi-
cation of many out-of-frame (OOF) clones that code
for short (2-100 amino acids) peptides with no
sequence homology to known proteins. We hy-
pothesize that these peptides can reveal common
short linear motifs (SLiMs) responsible for their se-
lection. We present a new protocol to address this
issue, using an existing SLIM detector (TEIRESIAS)
as a base method, and applying filters derived from
a mathematical model of SLiM selection in OOF
clones. The model allows for initial analysis of
likely presence of SLiM(s) in a collection of OOF se-
quences, assisting investigators with the decision of
whether to invest resources in further analysis. If
SLiM presence is detected, it estimates the length
and number of amino acid residues involved in
binding specificity and the amount of noise in the
Y2H screen. We demonstrate that our model can
double the prediction sensitivity of TEIRESIAS and
improve its specificity from 0 to 1.0 on simulated
data and apply the model to seven sets of experi-
mentally derived OOF clones. Finally, we experimen-
tally validate one SLiM found by our method,
demonstrating its utility.

INTRODUCTION

Most critical cellular processes, including signaling, me-
tabolism and proliferation, depend on the binding of
proteins to each other and to small molecules such as
nucleic acids, peptides and metals. Many experimental
techniques have been developed to study protein binding:
yeast two-hybrid (Y2H), phage display, co-immunopre-
cipitation and co-crystallization of potential binding part-
ners. The Y2H method is based on a fusion between a

protein bait of choice and a DNA binding domain
(DBD) of a transcription factor (e.g. yeast GAL4), and
a fusion between an activation domain (AD) of a tran-
scription factor and a protein prey of choice (1). To
perform screenings, a library of cDNA clones is fused to
the AD. Upon interaction between the bait and the prey,
the DBD and AD are brought in close proximity, leading
to transcription of a reporter gene that allows for clone
selection. These screenings generally yield from a few to
hundreds of hits, which are then sequenced, translated
with a computer program, and mapped to known proteins.
Strikingly, in any Y2H experiment, up to 67% of the
clones lack homology to any known protein and are con-
sidered false positives. They are subsequently discarded.
These clones represent out-of-frame (OOF) clones gene-
rated when cloning restriction-digested cDNAs as a fusion
to the AD during library construction. While OOF clones
tend to be short (�20 amino acids) and have amino acid
residue compositions that resemble random sampling
from the codon table, selected OOF clones show an
overrepresentation of hydrophobic residues. These hydro-
phobic residues generate ‘sticky’ peptides that bind spuri-
ously to the bait. Thus, OOF clone hits are considered to
be false positives (2) in a Y2H screening experiment, an
assumption that we re-examine here.
Protein–protein interactions can happen mediated by

surface–surface contacts or, alternatively, between protein
modular domains and short linear motifs (SLiMs) (3).
Modular domains are structurally conserved regions of
approximately 100 amino acid residues that can fold inde-
pendently (4). Specific interaction sites where proteins
bind may be identified by the presence of short linear
motifs (SLiMs) in the protein sequence. There is consid-
erable evidence that these SLiMs are under evolutionary
selection (5–8), although the selection is weaker than se-
lection shaping protein domain evolution (7). It has been
suggested that SLiMs may be the products of convergent,
rather than divergent evolution (7). SLiMs are known to
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be more abundant in protein disordered regions or loops
(9) but are also found within functional domains (10).
Many bioinformatics methods have been developed or

applied to detect SLiMs (6,10–15). Detection methods in-
clude statistical analysis of overrepresented sequence
patterns, evolutionary conservation, protein interaction
data and sequence or structural similarity.
Given the high percentage of OOF clone hits from Y2H,

we hypothesize that some of these sequences have specific
affinity to the protein bait mediated by SLiMs, provided
that the bait is (or contains) a modular domain, and
contain SLiMs. These SLiMs may be present in the
human proteome but not be over-represented in the
Y2H in-frame hits because of their sparsity and because
libraries may constitute a biased representation of the
proteome due to methodological issues. Thus, they will
be missed if SLiM search is limited to the in-frame hits.
It is tempting to speculate that OOF sequences may even
contain novel SLiMs.
OOF sequences have different amino acid composition

and length distributions than natural proteins and
peptides, because they were not subject to the same evo-
lutionary pressures for protein functionality. Because
existing SLiM detection methods were not designed for
OOF sequences, we reasoned that modifications of these
methods could be useful to achieve improved detection of
SLiMs in the OOF setting.
Here, we describe a new approach to identify signatures

of selection (SOS) in OOF sequences by modeling the
length distribution of OOF clones that bind to protein
module baits in a Y2H experiment. This signature can
then be used to predict the presence of SLiMs in OOF
clones and several biologically relevant properties. We
demonstrate that our SOS model can be used to filter and
rerank SLiM hits from bioinformatics methods designed
for the in-frame setting. With this approach, and using
TEIRESIAS (11) as a base method, we show initial simu-
lation results, which indicate that our protocol may be
more effective than existing methods at finding SLiMs in
a high-noise OOF setting. With this approach, we are able
to double the prediction sensitivity of TEIRESIAS (11)
and improve its specificity from 0 to 1.0 on simulated data.
We also apply the SOS model and several existing SLiM
detection methods to sets of experimentally-derived OOF
clones from Y2H experiments in which tandem BRCT
domain protein modules from seven human genes were
used as baits. SOS, TEIRESIAS and SLiMFinder (12)
detected the well-known SPXF motif in the OOF clones
from the BRCA1 Y2H screen. SOS detected a novel SLiM
KKKKKK in OOF clones from the LIG4 Y2H screen, which
we have experimentally validated with a Y2H direct
binding assay.

MATERIALS AND METHODS

Assessment of SLiM detectors on OOF sequences

We developed a Monte Carlo-like algorithm to generate
benchmark sets that would mimic the biological produc-
tion of OOF sequences, either containing SLiMs or not, and
for which we would know the correct answer (Figure 1).

We applied the algorithm to simulate OOF sequences
bound to BRCT tandem domain baits from six human
genes, for which we had performed Y2H screens. The al-
gorithm generated OOF sequences by sampling nucleo-
tides according to their background frequencies in the
human transcriptome (A=0.261, C=0.245, G=0.245,
T=0.248) NCBI RefSeq database, Version 39, retrieved
26 February 2010 (16). For each artificial sequence, gen-
eration was terminated when a stop codon was produced
in the correct reading frame. Nucleotide sequences were
then translated and the process was repeated until a
desired number of sequences was generated. The Monte
Carlo-like algorithm currently does not model the redun-
dancy that occurs in real OOF datasets, which is not well

Figure 1. Monte Carlo-like algorithm to generate an in silico bench-
mark set of OOF sequences from a Y2H screen, with known motifs,
desired noise level, and estimated sensitivity of the Y2H screen to the
motifs. The resulting sequences simulate OOF clones that bind to a
protein module bait of interest in a Y2H screen. Inputs to the algo-
rithm are n, the number of desired OOF sequences; m, a list of binding
motifs known to bind to the bait of interest; o, desired noise level; g,
estimated sensitivity of the Y2H screen to the motifs (e.g. the frequency
with which the Y2H will bind an OOF clone if the motif is present).
With a slight modification, the algorithm can accept a motif-specific g
value (g may differ among motifs in the m list, i.e. a longer motif may
be more likely to be picked up in a Y2H screen than a shorter one.)
pA.pC.pG.pT=background frequencies of nucleotides in (human) tran-
scriptome. We quantify noise as a length-independent selection rate
(LISR), expected frequency of a reported binding interaction in a
Y2H screen when there is no SLiM present in the clone. At LISR of
5E6, only one out of 200 000 clones that do not contain a SLiM will
bind to the Y2H bait. At LISR of 5E1 one out of every two clones that
do not have a SLiM will bind to the bait.

e128 Nucleic Acids Research, 2011, Vol. 39, No. 19 PAGE 2 OF 12



understood biologically and varies widely from library to
library.

Positive and negative control sets. First, we generated a
positive control set, in which we required that the
sampling process yield a well-known SLiM, responsible
for binding of the BRCA1 BRCT tandem domains to
phosphorylated peptides (pSPXF, where X can be any
amino acid). After 100 000 sequence generation attempts,
the sampler produced 300 artificial OOF sequences con-
taining this SLiM. To generate the negative control, we
repeated the sampling process to yield an equal number of
sequences, without filtering for SPXF. These artificial
sequence sets model results of Y2H screens with BRCA1
BRCT tandem domain baits in which there was perfect
selection for the SPXF SLiM (positive control) and no
selection for the SPXF SLiM (negative control).
Biologically, SPXF must include a phosphorylated
serine. We make the simplifying assumption that the
SLiM is phosphorylated in vivo, based on the conservation
of kinases and their substrates in yeast and mammalian
cells.

More realistic artificial OOF sequences. Real Y2H screens
are noisy and are unlikely to yield perfect selection for a
SLiM of interest. We quantified the noise of a Y2H ex-
periment in terms of LISR (expected frequency of
reported binding interaction when true binding SLiM is
absent) and (LDSR) or Length-Dependent Selected Rate,
the expected frequency of reported binding interaction
when true binding SLiM is present, denoted as g in
Figure 1. At the lowest noise level, the LISR is 5E�6,
meaning that only one out of 200 000 sequences that do
not contain the SLiM will bind to the Y2H bait. At the
highest noise level (LISR=5E�1) one out of every two
sequences that do not have a SLiM will bind to the bait.
Furthermore, some OOF sequences may contain more
than one SLiM. To make our benchmarks more realistic
than the positive and negative controls, we selected 11
SLiMs derived from experimentally validated binding
sequences in tandem BRCT domains (17–19)
(Supplementary Table S1). The Monte Carlo-like algo-
rithm was used to create benchmarks at LISR ranging
from 5E�6 to 5E�1 and LDSR of 0.99. For each bench-
mark, we ran the algorithm until we had 300 sequences
containing at least one valdiated SLiM for the BRCT bait
of interest. For the BRCA1 and MDC1 benchmarks, more
than one selected SLiM was generated in some cases. We
provide details of the SLiMs in each benchmark in
Supplementary Table S3. Some benchmarks contain
hundreds SLiM copies and some contain no SLiMs.
While the LISR noise levels were evenly distributed on a
log scale, SLiM abundances were not evenly distributed.
These seeming discrepancies occurred because because the
algorithm incorporates stochastic variation that we expect
to see in real OOF datasets. The size 300 was chosen
because it is close to the average number of OOF se-
quences identified in our seven Y2H screens. The choice
of LDSR=0.99 was based on the assumption that if a
SLiM is present in an OOF clone, it was highly likely to be
picked up by Y2H.

SLiM detection method comparisons. We applied four
existing methods of SLiM detection to these in silico
OOF benchmarks: TEIRESIAS (11) webserver
(minimum number of specific amino acids was changed
from 3 to 2 since some SLiMs have only two specific pos-
itions); GLAM2 (13) (default parameters and each input
sequence permuted 100 times to obtain empirical P-values.
Hits were assessed as significant only if the score of the hit
was greater than at least 99% of the best scores from the
permuted sequences); SLiMFinder v4.1 (12) (default par-
ameters and with evolutionary filtering and masking
turned off); and the DILIMOT (6) webserver (http://
DILIMOT.embl.de) (minimum number of specific amino
acids set to 2 as above).
Each method was tested on the positive and negative

control sets described above and the 36 ‘more realistic’ sets
of sequences containing multiple SLiMs and varying levels
of noise.
We assessed:

. SLiM detection sensitivity: fraction of datasets out of
34 (one positive control and 33 out of 36 datasets in
which the noise level was sufficiently low to produce at
least one SLiM) in which the correct SLiM appeared
anywhere in the method’s ranked list of detected
SLiMs.

. SLiM prediction sensitivity: fraction of datasets out of
34 (as above) in which the correct SLiM appeared in
the top 10 ranked SLiMs identfied by the method.

. Specificity: fraction of datasets out of four (one
negative control, 3 out of 36 datasets in which the
noise level was sufficiently high so that no SLiMs
were generated) with no detected SLiMs.

Overall, TEIRESIAS had the highest detection sensitiv-
ity. SLiMFinder had the highest prediction sensitivity.
SLiMFinder, GLAM2 and DILIMOT had perfect speci-
ficity, while TEIRESIAS had the lowest specificity
(Table 1, details in Supplementary Table S2). While the
benchmarks are not comprehensive and our conclusions
may not generalize beyond these six baits, these tests
provided initial feedback about possible limitations, in
the OOF setting, of methods that were designed for
SLiM detection in in-frame sequences and functional
proteins.

Table 1. Initial assessment of SLiM detectors and SOS model on 38

simulated OOF datasets

TRS SF G2 DLM SOS

Detection sensitivitya 0.94 0.59 0.35 0 0.79

Prediction sensitivityb 0.38 0.59 0.35 0 0.74

Specificityc 0 1 1 1 1

TRS=TEIRESIAS, SF=SLiMFinder, G2=GLAM2, DLM=
DILIMOT. SOS=Signatures of Selection model. The results of using
the SOS model to post-process TRS are highlighted in bold.
aFraction with at least one SLiM in which the correct SLiM appeared
in the method’s ranked list of predicted SLiMs.
bFraction in which the correct SLiM appeared in method’s top 10.
cFraction (with no SLiMs) in which no SLiM was reported by the
method. See Supplementary Table S2 for more detailed results.
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Next we describe our new approach (SOS) to improving
detection of SLiMs in OOF sequences.

Improving SLiM detection in OOF sequences

We developed a probabilistic model to estimate the
presence and several key properties of SLiMs in a collec-
tion of OOF sequences. First we describe the model, then
discuss its utility in detecting OOF SLiMs when used in
conjunction with TEIRESIAS (mathematical and imple-
mentation details provided in the Appendix 1).

The SOS probabilistic model. The SOS model is based on
the length distribution of OOF sequences bound to a Y2H
bait of interest. In the absence of selection for a particular
SLiM, the lengths of the OOF sequences follow a geomet-
ric distribution, with fixed parameter s, which is the prob-
ability of a stop codon when there is no evolutionary
pressure for functional protein. The probability distribu-
tion is on the number X of Bernouli trials before the first
‘success’. Here each trial is a randomly generated sequence
of three nucleotides, or codon, when there is no selection
(evolutionary, binding or otherwise) and success is defined
as the occurrence of a stop codon. If a sequence contains a
selected SLiM, the geometric distribution is modified by
adding parameters for: SLiM frequency (p), SLiM length

(m), the expected frequencies with which the Y2H screen
reports a binding interaction when a true binding SLiM is
present (LDSR) or when it is absent (LISR). These four
parameters are fit using the length distribution of a set of
OOF sequences (Figure 2): E[sAA] (expected number of
selected amino acid residue positions necessary and suffi-
cient for binding specificity in the most abundant SLiM),
E[LDSS] (expected number of bound OOF sequences with
at least one SLiM) and E[LISS] (expected number of
bound OOF sequences that do not contain SLiMs) are
derived from these four parameters (Appendix 1).

Maximum likelihood estimation of parameters. For each
dataset of OOF sequences, we applied standard optimiza-
tion techniques to obtain maximum likelihood estimates
(MLE) of the parameters for the (modified geometric) dis-
tribution of OOF sequences containing SLiMs under
selection.

When applied to our artificial sequence datasets (for
which we know the number of SLiMs and the noise
levels), we observed that the shape of the four-dimensional
negative log likelihood function (NLL) (used for MLE)
(Equation A6) corresponded to presence of SLiMs and
noise levels. Sharp minimums in the NLL were a signature
of SLiM presence and low noise (Figure 3).

Figure 2. The parameters of the SOS model are fit based on the distribution of bait-bound OOF clone sequence lengths from a Y2H experiment. p is
the frequency of the most abundant SLiM in the sequences. m is the length of the most abundant SLiM, LDSR is the expected fraction of bound
OOF clones containing at least one SLiM, LISR is the expected fraction of bound OOF clones with no SLiMs. E[sAA] is the expected number of
selected amino acid residue positions in the most abundant SLiM necessary and sufficient for binding specificity. E[LDSS] is the expected number of
bound OOF sequences with at least one SLiM. E[LISS] is the expected number of bound OOF sequences that do not contain SLiMs.
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We reasoned that by using the parameters of a fitted
SOS model, we could post-process the output of a SLiM
detection method originally designed for in-frame protein
sequence and substantially improve its ability to find
SLiMs in Y2H OOF sequences (Figure 4). We focused
our efforts on TEIRESIAS because it returned the most
comprehensive list of putative SLiMs of the methods tested
and thus was most amenable to filtering and re-ranking.

Binomial test for significant SLiMs in OOF sequences. To
assess the statistical significance of SLiMs detected in
OOF sequences, we designed a one-tailed binomial test
using binomial density B(n,q0), where n is the number of
sequences in a dataset and q0 is derived from maximum
likelihood fitting of parameters of the SOS model for the
OOF sequence collection of interest. The parameter q0 is
the probability of finding one or more occurrences of a

specific SLiM in a sequence of average length in the
dataset. It is computed similarly to q but here x is the
average sequence length in the dataset (Appendix 1).
The binomial test yields a P-value for each putative
SLiM, which we correct for multiple testing with the
Bonferroni method.

Yeast two hybrid screening

To detect pair-wise interactions, we employed a yeast
two-hybrid system using the MATCHMAKER
Two-Hybrid 3 System (Clontech, Palo Alto, CA, USA).
The tandem BRCT domains of each protein of interest
was cloned into the pGBKT7 vector as a fusion to
GAL4 DBD and transformed into the Saccharomyces
cerevisiae strain AH109 [MATa] alone or in combination
with empty pGADT7 vector. Expression of MDC1 and

Figure 3. Length distributions of artificial Y2H OOF sequences generated to include one SLiM SFDK and with low, medium and high noise levels
(Supplementary Table S3). The impact of adding noise to the sequence generation process can be visualized by slices of the resulting 4D negative log
likelihood functions (NLL) (Equation A.6) used to fit the SOS model. Sharp minimums in the NLL are a signature of the presence of SLiMs in the
sequences and low noise in the Y2H OOF screen. Z-axis shows NLL value. X- and Y-axes show values of p and LISR, respectively. For visualization
purposes, the 4D NLL surface is sliced at the MLE estimates of m and LDSR. Low noise=LISR=5E�6. Medium noise=LISR=5E�4.
High noise=LISR=5E�1 (Figure 2).

Figure 4. Five OOF clones from Y2H experiment with BRCA1 tandem BRCT-domain bait. Examples of clones whose translated protein sequence
could not be mapped to the human proteome with BLAST.
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TP53BP1 tBRCT consistently led to the generating of very
few colonies suggesting toxicity. To circumvent this
problem both tBRCT domains of MDC1 and 53BP1
were sub-cloned into pGBT9, which has proven to less
toxic in Y2H studies (Clontech). We conducted these
two screens in triple drop out medium (SD-Trp-
Leu-His), The AH109 transformants containing the bait
alone were mated to Y187 [MATa] strain containing a
pre-transformed human testes cDNA library (Clontech)
and incubated for 8 days. Positive clones were re-streaked
into quadruple-selection master plates to confirm growth.
Yeast minipreps DNA was amplified by PCR and
sequenced. The frame of each sequence was identified
using the fusion protein sequence as the reference. Each
sequence was then analyzed using pBLAST (20).

Experimental test of predicted novel SLiM

pGBKT7-LIG4-tBRCT (tandem BRCT domains) was
co-transformed into yeast strain MaV203 (Invitrogen)
along with pACT2-Empty, pACT2-PA2G4 wild-type
(WT), or pACT2-PA2G4 6KA mutant (in which all six
lysines were mutated to alanines). Colonies expressing
both plasmids were selected on synthetic double
drop-out media (-Leu, -Trp) and then two colonies were
selected and re-streaked on -Leu, -Trp containing 0.2%
5FOA plates and grown for an additional 3 days. Only
cells lacking protein–protein interactions between bait and
prey grow on this selection, because 5FOA is converted to
the genotoxic 5FU when Ura is activated (in cells contain-
ing the interaction). (Details in Supplementary Data).

OOF Simulations. For each simulated OOF dataset, we
used maximum likelihood fitting of the SOS model to
estimate number of specific amino acid residue positions
required for binding (E[sAA]). If E[sAA] is close to zero, it
is likely that no selected SLiM is present in the dataset,
thus all hits can be rejected. In practice, we have found
that a threshold of E[sAA]< 0.1 works well. Otherwise if
E[sAA]� 0.1, sAA and the minimum residue span required
for binding (m) can be computed for each SLiM detected
(e.g. by TEIRESIAS) and compared to the fitted values of
E[sAA] and E[m] for the entire dataset.
Hits are filtered out unless they meet the following

criteria:

. a putative SLiM’s sAA must be either less than 7
(maximum number of specific residue positions in the
ELM database) or the E[sAA] estimated for the entire
dataset plus a ‘slack’ value z (Equation 1);

1 � sAASLiM � minð7;E½sAA� þ �Þ ð1Þ

. a putative SLiM’s m must be greater than three
(minimum residue span in ELM database) and less
than 12 (maximum residue span in ELM database)
or the E[m] estimated for the entire dataset plus a
‘slack’ value of z (Equation 2).

� � mSLiM � minð12;E½m� þ �Þ ð2Þ

sAASLiM and mSLiM are the number of specific amino acid
residues and the minimum residue span required for
binding calculated for each putative SLiM. E[sAA] and
E[m] are the same parameters estimated for the dataset.
min(a,b) represents the minimum of values a and b. Any
putative SLiM that did not satisfy both these requirements
was rejected. The slack variable z is intended to quantify
the error ranges in which parameter estimates will be
valid. It can be set to a value of choice. We set z=3
(details of z estimation in Supplementary Table S4).

Finally, we applied the binomial test to re-rank the re-
maining SLiMs and applied Bonferroni multiple testing
correction. Applying this protocol to the output of
TEIRESIAS on 38 simulated datasets yielded a tractable
number of hits and achieved the best balance between
SLiM detection sensitivity and specificity (Table 1,
Supplementary Table S2).

Next, we explored the utility of applying our method to
OOF sequences obtained from seven Y2H experiments, in
which the baits were tandem BRCT domains.

RESULTS

Experimental OOF sequences from Y2H screens

We collected OOF sequences from seven Y2H experiments
and BRCT tandem domains from seven human genes
(BRCA1, ECT2, LIG4, BARD1, PAXIP1, MDC1,
TP53BP1) were used as bait. The translated protein was
BLASTed (20) against human sequences in the NCBI
non-redundant protein database. Protein sequences that
did not yield any human hits (by a permissive threshold
of E-value >2.0) were considered OOF, as were short se-
quences from 4 to 10 amino acids residues beyond the
GAL4 AD. We fit an SOS model to each set of OOF
sequences.

We compared the shapes of the 4D NLL functions for
each OOF set to the shapes of artificially generated OOF
sets containing a single SLiM and varying levels of noise
(Figures 3 and 5). For visualization purposes, each NLL
function was sliced at its maximum likelihood values of m
and LDSR. We observed that the NLL functions of OOF
sets for BRCA1 and ECT2 BRCT-tandem domains have
the sharp minimums consistent with presence of a SLiM
and low noise in the Y2H experiment. In contrast, the
NLL functions for the BARD1, PAXIP1, MDC1 and
LIG4 (also TP53BP1 not shown) OOF sets have much
broader minimums. As expected, the NLL for our
positive control also has a sharp minimum and the NLL
for our negative control has a very broad minimum. The
expected number of selected amino acid residues was
highest for BRCA1, ECT2 and LIG4 (E[sAA]> 1),
lower for BARD1 and PAXIP1 (0.1<E[sAA]< 1) and
very low for MDC1 and TP53BP1 (E[sAA]< 0.1).
Interestingly, the screenings using both MDC1 and
TP53BP tandem BRCTs were initially problematic (due
to toxicity of the bait) and the method was adjusted to
allow the final screenings. The LIG4 set has a high E[sAA],
but it also has a high number of sequences expected to
bind to the bait which do not contain a SLiM
(E[LISS]=183.4) (Table 2).
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Following the protocol in Figure 6, after fitting SOS
models to the seven Y2H OOF sequence sets, we used
TEIRESIAS to detect SLiMs for all experiments except
MDC1 and TP53BP1. SLiMs with values of m and sAA
within the ranges defined by Equation 1 and Equation 2
were retained and ranked with a one-tailed binomial test
(Bonferroni corrected for multiple testing). A number of
SLiMs per experiment ranging from over 600 to 2500
remained.

SLiMs in putative interaction partners of the bait

Mapping all of these putative SLiMs onto the human
proteome is challenging, because of the very large
number of potential binding sites. To narrow the search
space, we targeted the in-frame translated clones
(identified with BLAST) from each of the seven Y2H ex-
periments. Importantly, while BLAST is able to identify
likely interaction partners of each BRCT tandem domain,

Figure 5. Negative log likelihood function slices after fitting with OOF sequences from six Y2H experiments. BRCT-tandem domains from six
human genes were used as bait. NLL slices of positive and negative controls also shown. The Z-axis shows values of the four-dimensional NLL
function. Each slice shows parameters p and LISR, with parameters m and LDSR fixed at their maximum likelihood estimates. Sharp minimums are
a signature of SLiM presence and low noise.
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the SLiM responsible for binding is not identified. We
used regular-expression matching to search through the
in-frame BLAST hits.
Using this protocol, we discovered several potentially

interesting SLiMs in the OOF clones that bound to
BRCA1, LIG4 and ECT2, which may point to physical
protein–protein interactions. For BRCA1, the
well-documented SLiM SPXF was top-ranked by our
method (and also by TEIRESIAS). The presence of this
SLiM in OOF clones provides a proof-of-concept that
linear motifs involved in binding specificity do occur in
OOF clones.
For LIG4, the top-ranked SLiM that we mapped onto

an interaction partner is KKKKKK mapped onto PA2G4
(aka EBP1), an RNA-binding protein involved in
growth regulation and ERBB3 binding (21,22). The only
available crystal structure for PA2G4 as of this writing
(PDB 2q8k) (23) does not contain electron density for
the C-terminal region containing KKKKKK and this
region is likely to be disordered, at least in the absence
of a binding partner. Interestingly, there is an X-ray
crystal structure of the LIG4 tandem BRCT domains in
complex with XRCC4 (PDB 3ii6) (24) in which LIG4 and
XRCC4 binding is mediated by a lysine-rich region. A
helix-loop-helix structure in the linker region that
connects the LIG4 tandem BRCT domains with each
other (Figure 7A) forms a gate surrounding the coiled-coil
of XRCC4 (Figure 7B). Lysines K187 and K188 in
XRCC4 are involved in salt bridges at the interface of
LIG4 and XRCC4 and are critical to their binding inter-
action (25). We propose that the KKKKKK SLiM in PA2G4
mediates binding to the LIG4 tandem BRCT domains at
the linker region, through a similar mechanism. If this is
the case, a PA2G4 dimer is likely required, since two alpha
helices containing lysine-rich regions are present in
XRCC4 to interact with a single LIG4 tandem BRCT
domain.
In order to verify whether the KKKKKK SLiM played a

role in the binding between the LIG4 tandem BRCT
domains and PA2G4, we tested direct binding using
Y2H. We compared binding of the LIG4 tandem BRCT

domains to the WT PA2G4 or to a mutated version of
PA2G4 in which the lysines in the SLiM were all mutated
to alanines. As shown, mutation of the KKKKKK SLiM
abrogated binding to LIG4 tandem BRCT domains
(Figure 8).

For LIG4, the sixth-ranked SLiM PRPRP was mapped
onto MAP2K2, a kinase involved in growth factor signal
transduction. The SLiM also occurs in a region that could
not be resolved by X-ray crystallography (PDB 1S9I), but
it is anchored by two ends that are solvent accessible (26).
For ECT2, the third-ranked SLiM is PSPXL, which maps
onto SI, a glucosidase enzyme and the sixth-ranked SLiM
is SXPXXAA, which maps onto PCOLCE, an enzyme
involved in processing of procollagen. Both SI and
PCOLCE have X-ray crystal structures (PDB 1uap and

BRCT Tandem 
Domains

Gal4 BD

Bait

Prey Gal4
AD

Reporter gene

Sequence Prey
Gal4
AD

OOF sequences

Fit SOS Model

Detect motifs with 
in-frame method 
(e.g. TERESIAS)

E[sAA]>1?

Y2H

Filter and rerank 
motifs with

SOS protocol

Map to human proteome

E-value>2?

Figure 6. Flow chart of protocol to detect SLiMs in OOF clones from
a Y2H experiment. Positive clones are sequenced and analyzed by
BLAST (20). Human cDNA sequences that do not translate as
human proteins (the OOFs) are used to fit the model. If the expected
number of specific amino acids in the sequences (E[sAA]) > 1.0, an
in-frame SLiM detection method (e.g. TEIRESIAS) is applied. We
then iterate over the ranked list of putative SLiMs identified by the
in-frame method, check whether each SLiM has length and number of
specific amino acids and length within a range predicted by the model.
Putative SLiMs that pass these criteria are re-ranked with a one-sided
binomial P-value test and Bonferroni testing correction (data not
shown).

Table 2. Fitted MLE parameters demonstrate predicted properties of

motifs under selection in seven Y2H screens

Bait E[sAA] p m LDSR LISR E[LDSS] E[LISS]

BARD1 0.6 0.15 6 0.99 1.0E-6 366.0 0.0
BRCA1 4.6 1.0E-6 5 0.98 4.0E-6 260.2 63.8
ECT2 3.4 3.9E-5 5 1.00 1.0E-6 117.8 0.2
LIG4 4.6 1.0E-6 8 0.89 1.6E-5 145.6 183.4
MDC1 0.0 0.97 4 0.18 3.8E-2 261.9 9.1
PAXIP1 0.5 0.24 11 0.73 3.4E-2 429.7 18.3
TP53BP1 0.0 1.0 20 0.22 0.47 42.0 139.0

E[sAA], expected number of specific amino acid residues in the motif
(all non-wildcard positions); p, motif frequency; m, motif length;
LDSR, Length-Dependent Selection Rate of Y2H screen; LISR,
Length-Independent Selection Rate of Y2H screen; E[LDSS],
expected number of Length-Dependent selected sequences in the Y2H
screen (Equation A7); E[LISS], expected number of Length-
Independent selected sequences in the Y2H screen.
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3lpp) and in both cases the SLiMs were in regions not
resolved in the structures (27,28).

Finally, we applied the published SLiM detectors tested
on our in silico benchmarks to the seven experimental
OOF sets. With the exception of the BRCA1 set, in
which all methods except DILIMOT identify the well-
known SPXF motif, there is very little consensus among
methods. SLiMFinder run with relaxed parameters
identifies a putative SLiM HPXXL in the LIG4 set, which
is also ranked at 109 by our SOS method. This is an inter-
esting hit and warrants further investigation. Details of
top hits from all methods are in Supplementary Table S5.

DISCUSSION

We have presented a new approach to extract biologically
relevant information from experimental data that is cur-
rently discarded after researchers perform Y2H screening

of cDNA libraries. The intent of Y2H screening is to
discover which gene products bind to a bait of interest.
Yet by discarding OOF sequences, which typically
comprise up to two-thirds of the hits (2), a researcher
may be discarding meaningful information. With our
method, it is possible to detect signatures of selection
that point to the biological relevance of why sequences
do or do not bind to the bait. Although the OOF
sequence itself is not part of a gene product, if signatures
of selection indicate interaction specificity, then it is very
likely to contain a SLiM. Our results suggest that the
proposed method can help researchers ascertain if ‘junk’
sequences from a Y2H experiment are likely to contain
SLiMs. This allows experimental work to focus on
promising OOF datasets and to abandon efforts on
datasets with high noise.
We have developed a novel computational method to

detect signatures of selection in OOF sequences. Our
method detects signal by considering the sequence
lengths in a collection of OOF clones, which can be rep-
resented as a list of integers. We derive two probabilistic
models to represent: the case of this length distribution
when the clones do not contain a SLiM that selects for
binding to the Y2H bait; and the case where the clones
contain one or more selected SLiMs. The first case is
modeled as a simple geometric distribution, where
success is the occurrence of a stop codon. The second
case is modeled as a modified geometric distribution
with additional parameters, representing properties of
selected SLiMs. Our basic hypothesis is that if the clones
contain selected SLiMs, the length distribution will fit the
modified geometric distribution better than the simple
geometric distribution, and vice versa. Thus, a likelihood
ratio test can be used to assess the presence of selected
SLiMs in a collection of OOF clones. In contrast to
method such as BLAST (29), the likelihood score is not
applied to individual sequences, but to the entire collec-
tion of clones. A novel aspect of our method is that it
allows a user to reject an entire OOF sequence dataset

Figure 7. Proposed binding mechanism for the LIG4 BRCT tandem domains and PA2G4 as mediated by the SLiM KKKKKK. (A) LIG4 BRCT
tandem domains (PDB 3ii6) with the linker region in magenta. (B) LIG4 BRCT tandem domains (PDB 3ii6) bound to coiled coil of XRCC4 (in
cyan). Lysine residues are shown as orange sticks. Two lysines in XRCC4 (K187, K188) are critical to the binding interaction. If a similar mechanism
is involved in the interaction of LIG4 and PA2G4, it would likely require a PA2G4 dimer, since both helices in the XRCC4 coiled-coil contain lysine
rich regions. Figures created with PyMOL.

Figure 8. Y2H direct binding assay. Mutation of the KKKKKK SLiM
abrogates binding to LIG4 tandem BRCT domains. Only cells lacking
protein-protein interactions between bait and prey grow on this selec-
tion (-Leu, -Trp containing 0.2% 5FOA plates) because 5FOA is con-
verted to the genotoxic 5FU when Ura is activated in cells containing
the interaction. Empty vector and wild-type PA2G4 vector shown as
controls. Cells were plated in serial dilutions of a saturated liquid
culture.
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as unlikely to contain a SLiM so as not to squander re-
sources. We present a protocol that allows a user to first fit
the SOS model based on the distribution of sequence
lengths in a Y2H OOF dataset and then to assess
whether SLiMs are present.
From the experimentalists point of view, it is important

to stress that the work described here was limited to
datasets recovered in Y2H experiments in which only
the ‘protein module’ domain(s), in this case the BRCT
tandem domains, was used as bait. In our experience,
OOF clones from Y2H screenings, in general, show an
overrepresentation of ‘sticky’ short hydrophobic peptides
that interact non-specifically to the bait. We have found
that reducing the bait space to the protein module
domain(s) decreases the number of these non-specific
hits. Thus, Y2H screens conducted with full length
proteins may generate may not be as enriched for poten-
tial OOF SLiMs, as screens focused on a protein module
domain(s).
In future work, we plan to develop an automated

pipeline for the analysis of OOF datasets. The pipeline
will map predicted SLiMs back to both the original
in-frame dataset and to disordered regions of the human
proteome, which are expected to be enriched for SLiMs.
Currently, MATLAB and python scripts are available
from the authors on request.

CONCLUSION

We believe that the method described here will be an im-
portant addition to the search of biologically meaningful
SLiMs that are important in signal transduction.
Moreover, because the method tests for interactions
in vivo it may be particularly useful when searching for
motifs in which post-translation modifications are
required for optimal recognition.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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APPENDIX 1

Mathematical details

Length distribution of OOF sequences with no SLiM
selection. In the absence of selection for a particular
SLiM, the lengths of the OOF sequences follow a
geometric distribution, with fixed parameter s (Equation
A1), which is the probability of a stop codon when there is
no evolutionary pressure for functional protein.

We estimated s by taking the frequencies of each
nucleotide in the human transcriptome and computing
expected stop codon frequency as the sum over products
of the possible component nucleotides (TAA, TAG and
TGA) (s=0.048561).

fðxÞ ¼
ð1�sÞx

0 x � 1

0 otherwise

(
ðA1Þ

where x is OOF sequence length and k is the normalizing
constant (in practice we find that summing up to length
300 yields sufficient accuracy for normalization).

Length distribution of OOF sequences with SLiM
selection. If a sequence contains a SLiM, Equation A1 is
modified by adding parameters for: SLiM frequency (p),
SLiM length (m), the expected frequencies with which the
Y2H screen reports a binding interaction when a true
binding SLiM is present (LDSR) or when it is absent
(LISR) (Equation A2).

gðxÞ ¼

ð1�sÞxðq�LDSRþð1�qÞ�LISRÞ

k
0 x � m

ð1�sÞxLISR

k
0 1 � x5m

0 otherwise

8>><
>>: ðA2Þ

where x is sequence length, q is the probability that the
sequence contains at least one SLiM (Equation A3)

q ¼ 1� 1� pð Þ
x�mþ1

ðA3Þ

and k0 is a normalizing constant.
SLiM frequency (p) (Equation A4) is defined using

nucleotide frequencies from the human transcriptome.
Similar to our estimate of s (geometric distribution
under no selection), for each position in a SLiM, we
sum over the frequencies of all possible codons and all
allowed amino acids, then take the product over all
positions. We make the simplifying assumption that
each position in a SLiM is independent. Given a SLiM
without variable length positions, p can be computed by
Equation A4.

p ¼ hðYÞ ¼
Y
i

X
j

X
k

1

1� s

Y
l

yijkl

" #
ðA4Þ

where Y is a SLiM and yijkl is the frequency of a nucleotide
in the human transcriptome. i indexes positions in the
SLiM, j indexes the ‘allowed amino acids’ for each
position, k indexes possible codons for each amino acid,
and l indexes the component nucleotides for each codon.
1

1�s normalizes the codon frequencies so as to exclude stop
codons. Allowed amino acids for each position are
included in the definition of a SLiM. Where more than
one amino acid is allowed, regular expression patterns are
used. For example, the frequency of the SLiM [ST]XXF is
calculated as [0.0966+0.0673]*1*1*0.0310.
To estimate the expected number of specific amino acid

residues in a SLiM or sAA (amino acid residues in the
peptide that are necessary and sufficient for binding), we
compute log0.05(p), which gives the expected number of
amino acids that are necessary to yield a specific value
of p, under the simplifying assumption that all amino
acids are equally probable in SLiMs. Wildcard positions
do not factor into this calculation since these positions
have a frequency of 1.0. Caution should be taken when
interpreting sAA. For example, a promiscuous SLiM such
as S[YADL] [YAD] [IYD] has an estimated sAA of 2.67
even though 4 positions are being selected for because
many positions have multiple accepted amino acids.
SLiM length (m) is the minimum length of the sequence

necessary for binding and includes all positions in the
regular expression. For example m=5 for the SLiM
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(XNPFX) even though specific amino acids are selected for
only in the span of the central 3 positions.

Maximum likelihood estimation of parameters. The
likelihood function for the modified geometric distribution
in Equation A2 is:

Lð~�Þ ¼
Y
i

gð~�jxiÞ ðA5Þ

where ~� ¼ ðp;m;LDSR;LISRÞ. The negative log
likelihood is:

NLLð~�Þ ¼ �
X
i

logðgð~�jxiÞÞ ðA6Þ

For each collection of OOF sequences that bind to a
protein bait, we used the Trust Region-Reflective
Optimization algorithm (30,31), with gradient estimated
by central differences, as implemented in Matlab 2007a,
to obtain MLE of p, LDSR and LISR, using Equation A6
as the objective function.
To increase the tractability of this optimization

problem, we did a grid search to find the best fit of the
discrete parameter m. First, we identified the range of

likely SLiM lengths in our sequences, using the ELM
database of SLiMs (32) (February 2010 release). Almost
all SLiMs in ELM are between 3 and 14 positions in
length. We therefore repeated the MLE of p, LDSR and
LISR for each value of m from 3 to 20 and selected the
model with the highest likelihood. As positive and
negative controls, we repeated the maximum likelihood
fitting using our artificial set of simulated BRCA1
BRCT OOF sequences (positive) and the OOF sequences
with no selection (negative).

Expected number of length-dependent and length-
independent selected sequences from Y2H screen. After
obtaining MLE of the parameters, we used Equation A2
to derive the number of LDSS and the number of LISS of
a Y2H screen.

E½LDSS� ¼
X
xi�m

q � LDSR

q � LDSRþ ð1� qÞ � LISR
ðA7Þ

The expected number of length-independent selected
sequences, E[LISS] is the total number of OOF sequences
minus E[LDSS].
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