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ABSTRACT

BACKGROUND/OBJECTIVES: Chronic renal failure (CRF) is a complex pathological condition 
that lacks a cure. Certain Chinese medicines, such as melittin, a major component in bee 
venom, have shown efficacy in treating CRF patients. On the other hand, the mechanisms 
underlying the therapeutic effects of melittin are unclear.
MATERIALS/METHODS: A 5/6 nephrectomy model (5/6 Nx) of renal failure was established on 
rats for in vivo assays, and mouse podocyte clone 5 (MPC5) mouse podocyte cells were treated 
with angiotensin II (AngII) to establish an in vitro podocyte damage model. The 24-h urine 
protein, serum creatinine, and blood urea nitrogen levels were evaluated after one, 2, and 4 
weeks. Hematoxylin and eosin staining, Masson staining, and periodic acid-Schiff staining 
were used to examine the pathological changes in kidney tissues. A cell counting kit 8 assay 
was used to assess the cell viability. Reverse transcription polymerase chain reaction and 
Western blot were used to assess the mRNA and protein levels in the cells, respectively.
RESULTS: In the rat 5/6 Nx, melittin reduced the 24-h urinary protein excretion and the serum 
creatinine and blood urea nitrogen levels. Furthermore, the renal pathology was improved in 
the melittin-treated 5/6 Nx rats. Melittin promoted podocin, nephrin, Beclin 1, and the LC3II/
LC3I ratio and inhibited phosphorylated mammalian target of rapamycin (mTOR)/mTOR in 
5/6 Nx-induced rats and AngII-induced MPC5 mouse podocyte cells. Moreover, inhibiting 
autophagy with 3-MA weakened the effects of melittin on podocin, nephrin, and the LC3II/
LC3I ratio in podocytes.
CONCLUSION: Melittin may offer protection against kidney injury, probably by regulating 
podocyte autophagy. These results provide the theoretical basis for applying melittin in CRF 
therapy.
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INTRODUCTION

Chronic renal failure (CRF) describes the slowly progressing damage to the kidney as a 
complication of certain primary or secondary chronic kidney diseases, which could disrupt 
the essential functions of the kidney [1]. The clinical manifestations of CRF include the 
following: the accumulation of metabolites, toxins, and electrolytes; acid–base balance 
disorders; a group of syndromes characterized by abnormal endocrine function, which cause 
symptoms, such as nausea, vomiting, fatigue, and limb swelling; and at the terminal stage, 
uremia. Its diagnosis is often delayed because the symptoms of CRF are less evident in the 
early stages, by which time it has already caused severe harm to the patient. Furthermore, 
the current treatment of CRF is focused mainly on controlling the deterioration of the 
disease, e.g., via intestinal adsorbents and regulation of the acid–base balance, but they 
cannot cure the disease or reverse the damage. For end-stage patients, additional measures, 
such as dialysis or kidney transplantation, are required, which are expensive and have many 
side effects. The better treatment of CRF requires a more in-depth understanding of its 
pathogenesis and regulatory mechanisms.

Podocytes are highly differentiated epithelial cells covering the outer surface of glomerular 
capillaries. The damage to podocytes, which manifests as foot process fusion, cell density 
reduction, apoptosis, epithelial-mesenchymal transition, and hypertrophy, is an important 
marker of CRF and a potential target for its treatment [2]. Autophagy is a protective measure 
against podocyte damage under various pathological conditions and can help inhibit many 
renal diseases [3,4]. On the other hand, the effect of autophagy on CRF remains controversial. 
The mammalian target of rapamycin (mTOR) is an atypical serine/threonine protein kinase 
whose activity depends on the nutrient status and redox levels [5]. mTOR is a main regulator 
of cellular growth, proliferation, protein and lipid synthesis, autophagy, and metabolism. 
Promoting autophagy by inhibiting the mTOR pathway has renoprotective effects in rats with 
CRF [6]. On the other hand, inhibiting autophagy by activating the mTOR pathway alleviates 
renal fibrosis and protects the renal function in rats with CRF [7]. Further studies are needed 
to clarify the exact functions of autophagy in podocytes and their effects on CRF.

Traditional Chinese medicine has shown remarkable effects in treating CRF patients and has 
been found to alleviate symptoms, protect residual renal function, and delay the progress 
of the disease in early and intermediate-stage patients [8]. For example, Astragali Radix 
(Huangqi) is an essential component in the dry roots of Astragalus membranaceus (Fisch.) Bge 
that reduces the total cholesterol, triglyceride, and low-density lipoprotein levels, increases 
the plasma protein levels, and improves eGFR in CRF patients [8,9]. Abelmoschi Corolla 
(Huangshukui), the flower of Abelmoschus manihot (L.) Medic., is also used widely for CRF in 
China and has been shown to suppress proteinuria and maintain stable kidney functions in 
patients [10].

Bee venom (BV) is used to treat inflammatory diseases, such as rheumatoid arthritis [11]. 
One of the major active components in BV is melittin, a basic peptide consisting of 26 amino 
acids. Melittin can potentially treat renal diseases, such as renal fibrosis and acute kidney 
injury [12,13], suggesting that melittin may also have therapeutic effects on CRF. Melittin 
induces autophagy to prevent against rheumatoid arthritis [14] and protozoan pathogens 
[15]. Melittin also attenuates autophagy to alleviate cerebellar ataxia [16] and has shown 
strong potential in treating tumors [17]. Nevertheless, the roles of melittin-mediated 
autophagy in CRF are unclear.
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This paper provides in vivo and in vitro evidence that melittin could facilitate autophagy 
in podocytes and alleviate the podocyte damage caused by CRF. These results shed light 
on the cellular mechanism of the therapeutic effects of melittin on CRF and also provide 
compelling evidence supporting the ameliorating role of autophagy in CRF, highlighting it as 
a promising target for future drug development in the treatment of CRF.

MATERIALS AND METHODS

Animal study
Male Sprague–Dawley rats were purchased from the Zhejiang Academy of Medical Sciences 
and housed under standard conditions, as described elsewhere [18]. After 1 week of 
acclimation, the rats were subjected to a 5/6 nephrectomy [19] and divided randomly into the 
following groups: control group, 5/6-nephrectomized group (5/6 Nx), and melittin groups 
(n = 6 per group). The melittin groups underwent 5/6 nephrectomy but were then treated 
with melittin (25, 50, and 100 μg/kg/day; Sigma-Aldrich, St. Louis, MO, USA) for 28 days 
by intraperitoneal administration. The doses of melittin used in the in vivo experiments 
were determined according to previous studies [20,21]. On days 7, 14, and 28, the rats in 
each group were inspected for weight, total urine volume within 24 h, urine protein content 
(C035‐2‐1), serum creatinine (C011‐2‐1), and blood urea nitrogen (C013‐2‐1; all from Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China). On Day 28, all animals were euthanized, 
and the remnant kidney tissues were harvested for analysis. All animal procedures followed 
the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals. The 
experimental procedures were approved by the Research Ethics Committees of the Shanghai 
Yangpu District Kongjiang Hospital (LL-2020-KY-24).

Hematoxylin & eosin (H&E), Masson and periodic acid-Schiff (PAS) staining
For H&E staining, the kidney tissues were fixed in a 10% formalin solution, embedded in 
paraffin, and cut into 4–5 μm thick slices. The slices underwent H&E staining (D006-1; 
Nanjing Jiancheng Bioengineering Institute). The histopathology of the renal tissues was 
scored as previously described [22]. For Masson staining, interstitial collagen deposition 
in the kidney tissues was stained using a Masson staining kit (D026-1; Nanjing Jiancheng 
Bioengineering Institute). Semiquantitative analysis was performed based on the percentage 
of collagen area stained in the visual field [23]. For PAS staining, the sections were incubated 
with 100 μL of a periodic acid solution for 5 min, washed using ddH2O, and incubated 
with 100 μL of Schiff reagent for 30 min at 37°C in the dark. Semiquantitative scoring of 
glomerular sclerosis in PAS-stained slides was performed using a 5-grade method described 
elsewhere [24]. Hematoxylin counterstaining was performed for 2 min.

Cell culture and treatment
Conditionally immortalized mouse podocyte clone cells (MPC5) (Shanghai Enzyme-linked 
Biotechnology Co., Ltd, Shanghai, China) were cultured in RPMI 1640 medium (HyClone; 
Cytiva, Marlborough, MA, USA) containing 10% fetal bovine serum, 10 U/mL of interferon-γ 
(both from Thermo Fisher Scientific, Waltham, MA, USA), and 1% penicillin–streptomycin 
(Millipore Sigma, Burlington, MA, USA) at 37°C and 5% CO2. In certain experiments, MPC5 
cells were treated with 1 μM AngII (Sigma-Aldrich), followed by different concentrations 
of melittin (2, 4, or 8 mg/L; Selleck, Shanghai, China) in the absence or presence of 10 mM 
3-MA (Selleck) for 48 h. The melittin doses used in the in vitro experiments were determined 
according to previous studies [14,25-27].

212https://doi.org/10.4162/nrp.2024.18.2.210

Melittin alleviates chronic renal failure

https://e-nrp.org



Cell counting kit 8 (CCK‐8) assay
MPC5 cells (104 cells/well) were plated overnight into 96‐well culture plates. Subsequently, 10 
µL of a CCK‐8 solution (C0038; Beyotime Biotechnology, Haimen, China) was added to each 
well, where the cells were incubated at 37°C for 2 h. The absorbance at 450 nm was measured 
using a DR‐200Bs microplate reader.

RNA isolation and quantitative reverse transcription polymerase chain 
reaction (RT-PCR)
The total RNA was extracted from kidney tissues using Trizol reagent (Invitrogen, Carlsbad, 
CA, USA). The mRNA levels of podocin and nephrin were determined by quantitative 
RT-PCR. The primers used were as follows: podocin, 5′-CTTGGCACATCGATCCCTCA-3′ 
and 5′-CTCTCCACTTTGATGCCCCA-3′; nephrin, 5′-AACCGAGCCAAGTTCTCCTG-3′ and 
5′-GGACGACAAGACGAACCAGT-3′; GAPDH, 5′-GGAGTCTACTGGCGTCTTCAC-3′ and 
5′-ATGAGCCCTTCCACGATGC-3′.

Antibodies and western blotting
The primary antibodies used in this study included the following: podocin (Affinity; 
DF8593), nephrin (Affinity; AF7951), Beclin 1 (Affinity; AF5128), LC3I/II (Affinity; AF5128), 
phosphorylated mTOR (p-mTOR) (Affinity; AF3308), mTOR (Affinity; AF6308), and GAPDH 
(Proteintech; 60004-1-Ig). The secondary antibodies used in this study included horseradish 
peroxidase-conjugated goat anti-rabbit or goat anti-mouse secondary antibodies (Beyotime 
Biotechnology). The cells were lysed in ice-cold radioimmunoprecipitation assay buffer (50 
mM Tris-HCl [pH 7.5], 150 mM NaCl, 1% Triton X-100, 0.5% Na-deoxycholate) containing the 
protease inhibitors. The protein concentration was measured using a BCA protein assay kit 
(Thermo Fisher Scientific). Equal amounts of cell lysates were analyzed by western blotting 
using an enhanced chemiluminescence system (Bio-Rad, Richmond, CA, USA).

Data analysis
All experiments were repeated 3 times. All data were analyzed using GraphPad Prism 8.4.2 
(GraphPad Software Inc., San Diego, CA, USA) and plotted as the mean ± SD. An analysis 
of the variance was used to compare the averages of multiple groups. P-values < 0.05 were 
considered significant.

RESULTS

Melittin ameliorates body weight and renal function in a rat 5/6 Nx
The functional effects of melittin in CRF were examined by establishing a 5/6 Nx of renal 
failure in rats [19]. The rats were divided into 5/6 Nx group (no treatment) and 3 treatment 
groups and administered with low (25 μg/kg body weight), intermediate (50 μg/kg body 
weight), or high (100 μg/kg body weight) dose melittin via an intraperitoneal injection. After 
7 days, the rats in the 5/6 Nx group started to show a lower body weight (Fig. 1A) and higher 
serum creatinine (Fig. 1B), urea nitrogen (Fig. 1C), and urine protein levels (Fig. 1D) than 
the rats that did not undergo a nephrectomy. These observations persisted over the 4-week 
observation window, indicating renal damage. The administration of melittin partially 
restored the body weight of the rats under all 3 doses after 4 weeks (Fig. 1A). Furthermore, it 
also dose-dependently lowered the serum creatinine, urea nitrogen, and urine protein levels 
as early as one week after the nephrectomy, the effect of which also persisted throughout the 
4-week observation window (Fig. 1B-D).
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Melittin alleviates renal damage in a rat 5/6 Nx
Kidney tissue sections were acquired 4 weeks after the nephrectomy to observe the effects 
of melittin. H&E, Masson, and PAS staining were then performed on the tissue samples. 
Melittin dose-dependently decreased the kidney injury and histopathology scores in 5/6 
Nx mice (Fig. 2A and B). Masson staining revealed massive interstitial collagen deposition 
and significantly increased fibrosis in the 5/6 Nx mice, which was reduced by melittin in 
a dose-dependent manner (Fig. 2A and C). Hence, melittin reduced renal injury in the 5/6 
Nx mouse model. PAS staining showed that the 5/6 Nx mice had the typical characteristics 
of glomerulosclerosis, including glomerular hypertrophy, capsular adhesion, basement 
membrane thickening, and pedicle fusion. Melittin dose-dependently reduced the 
glomerulosclerosis index (Fig. 2A and D).

Melittin alleviates podocyte damage and induces autophagy in 5/6 Nx rats
The status of podocytes was examined to understand the mechanism of how melittin 
alleviated renal damage in 5/6 Nx rats. Podocin and nephrin are 2 proteins that are 
expressed and can serve as biomarkers of the slit diaphragm, an intercellular junction 
between podocyte foot processes [28]. Much lower podocin and nephrin mRNA and protein 
expression levels were detected in the kidney tissues, which were restored by melittin in a 
dose-dependent manner (Fig. 3A-E).
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Fig. 1. Melittin ameliorated the body weight and renal function in a rat 5/6 nephrectomy model. A 5/6 Nx of renal failure was established on rats. The rats were 
then administered low (25 μg/kg body weight), intermediate (50 μg/kg body weight), or high (100 μg/kg body weight) doses of melittin via intraperitoneal 
injection. One, 2, and 4 weeks after the administration, serum, urine, and kidney tissues were collected from the rats for assessment. (A) Body weight of each 
group of rats one, 2, and 4 weeks after administration. (B-D) Serum creatinine (B), urea nitrogen (C), and urine protein level (D) of each group of rats 1, 2, and 4 
weeks after the administration. 
5/6 Nx, 5/6 nephrectomy model. 
*P < 0.05,***P < 0.001 vs. control; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. 5/6 Nx.



The extent of autophagy in this context was further investigated, which took advantage of 
several autophagy biomarkers: Beclin 1, LC3I, LC3II, and p-mTOR. Beclin 1 is an important 
signaling hub in cell autophagy [29]. Autophagy induces LC3 cleavage by Atg4 to become 
LC3I, which undergoes further cleavage and lipidation to become LC3II [30]. On the other 
hand, mTOR is a serine/threonine kinase that inhibits autophagy upon phosphorylation-
induced activation [31]. Western blot showed that the nephrectomy caused a drastic decrease 
in Beclin 1 expression and the LC3II/LC3I expression ratio and a significant increase in 
p-mTOR expression, all indicating the inhibition of autophagy. In contrast, treatment with 
melittin effectively increased Beclin 1 expression and the LC3II/LC3I expression ratio and 
suppressed mTOR phosphorylation (Fig. 3C-H). These results showed that melittin could 
alleviate the inhibition of autophagy induced by the nephrectomy.
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Fig. 2. Melittin alleviated renal damage in a rat 5/6 Nx. The 55/6 Nx of renal failure was established on rats. The rats were then administered low (25 μg/kg body 
weight), intermediate (50 μg/kg body weight), or high (100 μg/kg body weight) doses of melittin via intraperitoneal injection. (A) Representative images of 
H&E, Masson, and PAS staining of kidney sections from mice 4 weeks after the administration. The blue arrows indicate the inflammatory infiltration or swelling 
of the kidney tissues. The yellow arrows indicate the fibrotic tissues. The green arrows indicate the glomerulosclerosis. Scale bar, 50 μm. (B) Quantification of 
the kidney injury score in H&E-stained sections. (C) Quantification of the renal interstitial fibrosis score in Masson stained sections. (D) Quantification of the 
glomerulosclerotic index in PAS-stained sections. 
5/6 Nx, 5/6 nephrectomy model; H&E, hematoxylin & eosin; PAS, periodic acid-Schiff. 
***P < 0.001 vs. control; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. 5/6 Nx.



Melittin alleviates AngII-induced podocyte damage by regulating the 
autophagy signaling pathway
An in vitro podocyte damage model that mimics CRF was established by treating the cells with 
AngII to investigate the cellular mechanism of the therapeutic effects of melittin. A CCK‐8 
assay was used to evaluate the cytotoxicity of melittin on MPC5 cells. As shown in Fig. 4A, 
2, 4, and 8 mg/L of melittin did not affect MPC5 cell viability. Furthermore, AngII treatment 
markedly reduced the MPC5 cell viability compared to the control group (Fig. 4B). On the other 
hand, melittin restored the viability. In particular, the AngII treatment significantly decreased 
podocin, nephrin, and Beclin 1 expression and the LC3II/LC3I expression ratio but increased 
p-mTOR expression. Melittin reversed these in a dose-dependent manner (Fig. 4C-H).

Interestingly, when an autophagy inhibitor 3-MA was added to the cells treated with AngII 
followed by melittin, it suppressed the extent of autophagy in the cells, as reflected by the 
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Fig. 3. Melittin alleviates podocyte damage and autophagy inhibition in 5/6 Nx rats. A 5/6 Nx of renal failure was established on rats. The rats were then 
administered low (25 μg/kg body weight), intermediate (50 μg/kg body weight), or high (100 μg/kg body weight) doses of melittin via intraperitoneal injection. 
Four weeks after the administration, kidney tissues were collected from the rats for assessment. (A) Podocin and (B) nephrin expression levels in the kidney 
tissues were assessed by qRT-PCR. Expression levels of (C, D) podocin, (C, E) nephrin, (C, F) Beclin 1, (C, G) LC3II/LC3I, and (C, H) p-mTOR/mTOR in the kidney 
tissues assessed by Western blot. 
5/6 Nx, 5/6 nephrectomy model; qRT-PCR, quantitative reverse transcription polymerase chain reaction; p-mTOR, phosphorylated mammalian target of 
rapamycin; mTOR, mammalian target of rapamycin. 
**P < 0.01, ***P < 0.001 vs. control; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. 5/6 Nx.
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Fig. 4. Melittin alleviates podocyte damage and autophagy inhibition induced by AngII. (A) MPC5 mouse podocyte cells were treated with 2, 4, or 8 mg/L of 
melittin. The cell viability was evaluated using CCK‐8 assay. MPC5 mouse podocyte cells were treated with 1 μM AngII followed by 2, 4, or 8 mg/L of melittin. 
Then (B) CCK‐8 assay was used to assess the cell viability and Western blot was used to assess the expression levels of (C, D) podocin, (C, E) nephrin, (C, F) 
Beclin 1, (C, G) LC3II/LC3I, and (C, H) p-mTOR/mTOR in the cells. 
AngII, angiotensin II; MPC5, mouse podocyte clone 5; CCK‐8, cell counting kit 8; p-mTOR, phosphorylated mammalian target of rapamycin; mTOR, mammalian 
target of rapamycin. 
*P < 0.05, **P < 0.01, ***P < 0.001 vs. control or 0 mg/L Melittin; ##P < 0.01, ###P < 0.001 vs. AngII.



decrease in the LC3II/LC3I expression ratio and resulted in lower viability of the podocytes, 
as reflected by the reduced expression of podocin and nephrin (Fig. 5). These results suggest 
that AngII induces podocyte damage, at least partially, by suppressing autophagy. Moreover, 
melittin alleviates AngII-induced podocyte damage by facilitating autophagy.

DISCUSSION

CRF is a disease with a complicated pathology, where many different factors play a role, 
e.g., microvascular environment, blood pressure, and inflammation. This may explain why 
it is difficult to treat. No new drug has been invented for CRF in the past 10 yrs [32]. Several 
drug development directions for CRF are ongoing, mainly including modulation of the renal 
hemodynamics, restoration of vascular integrity, restoration of slit diaphragm integrity, 
inhibition of inflammation, inhibition of fibrosis, and suppression of metabolic dysregulation, 
specifically in diabetes patients [32]. Among them, restoring the slit diaphragm integrity 
could benefit patients by improving the filtration function of the kidney. slit diaphragms 
are essentially a junction between podocyte foot processes. Therefore, the integrity of slit 
diaphragms is determined mainly by the proliferation and vitality of podocytes, highlighting 
podocytes as a potential target for CRF treatment. Indeed, previous studies have shown that 
podocyte loss contributes directly to kidney function decline, and compounds that protected 
the podocyte actin cytoskeleton integrity reduced albuminuria in a mouse kidney disease 
model [32,33]. The homeostasis of podocytes relies on the autophagy process, which helps 
eliminate dysfunctional cells and provides nutrition to healthy cells [34]; a dysfunction of both 
would lead to multiple renal diseases. On the other hand, whether the podocyte autophagy 
facilitates or suppresses CRF is unclear. This study examined the mechanism of melittin in 
alleviating CRF. This paper provides direct evidence showing that podocyte autophagy directly 
inhibits the symptoms of CRF and that melittin induces podocyte autophagy to alleviate CRF. 
This result provides cellular-level insights into the therapeutic effects of melittin on CRF and 
underscores podocyte autophagy as a potential target for treating CRF.
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Fig. 5. Melittin alleviates AngII-induced podocyte damage by regulating the autophagy signaling pathway. Mouse podocyte clone 5 mouse podocyte cells were 
treated with 1 μM AngII followed by 4 mg/L melittin and 10 mM autophagy inhibitor 3-MA. Western blot was then performed to assess the expression levels of (A, 
B) podocin, (A, C) nephrin, and (A, D) LC3II/LC3I in the cells. 
AngII, angiotensin II. 
*P < 0.05, ***P < 0.001 vs. control; ###P < 0.001 vs. AngII; ΔΔΔP < 0.001 vs. AngII + Melittin.



Autophagy describes the process where a cell decomposes and destroys old, damaged, or 
abnormal molecules in its cytoplasm. As an important factor in podocyte homeostasis, 
it is maintained at a high level in normal podocytes [35] but is downregulated by renal 
diseases, such as diabetic nephropathy. Reduced levels of podocyte autophagy can lead to 
damage in organelles, accumulation of proteins, and blockage of lysosomes. The mTOR is 
an atypical serine/threonine protein kinase whose activity depends on the nutrient status 
and redox levels [5]. mTOR is the main regulator of cellular growth, proliferation, protein 
and lipid synthesis, autophagy, and metabolism. Promoting autophagy by inhibiting 
the mTOR pathway has renoprotective effects in rats with CRF [6]. On the other hand, 
inhibiting autophagy by activating the mTOR pathway alleviates renal fibrosis and protects 
renal function in rats with CRF [7]. This study provided evidence supporting the view that 
podocyte autophagy alleviates CRF [36-38]. This is consistent with the role of podocyte 
autophagy in other renal disease models and emphasizes podocyte autophagy as a promising 
target for treating CRF in addition to other related renal diseases.

Melittin has been used widely in treating renal diseases because of its anti-inflammatory 
and anti-fibrotic effects. Nevertheless, melittin is a cytolytic peptide, and its intravenous 
administration causes non-specific cell toxicity (such as cell membrane pore formation) and 
hemolysis of red blood cells [39]. In the present study, rats were treated with melittin (25, 50, 
and 100 μg/kg) via intraperitoneal administration. Similarly, intraperitoneal administration 
of 0.75 and 1.5 mg/kg doses of melittin could not induce significant changes in the immune 
parameters. Hence, melittin was safe for the immune system [40].

The function of melittin in autophagy is controversial in biological systems. A facilitating role 
of melittin in autophagy has been found in human fibroblast-like synoviocytes and cancer 
cells, such as hepatocellular carcinoma cells and lung cancer cells, which contributes to an 
anti-arthritic and anti-tumor effect [14,41,42]. Nevertheless, melittin attenuated 3-AP-induced 
autophagy and improved the motor function, implying a potential for treating cerebellar ataxia 
[16]. Melittin inhibits the proliferation and migration of cancer cells by inhibiting the PI3K/
AKT/mTOR signaling pathway [43-45]. It ameliorates inflammation in acute liver failure and 
acne vulgaris by inactivating the mTOR signaling pathway [46,47]. This study confirmed that 
melittin could facilitate autophagy and inhibit the mTOR signaling pathway in podocytes, 
alleviating CRF. Moreover, 2, 4, and 8 mg/L of melittin did not affect the MPC5 cell viability, 
but it inhibited the AngII-induced decrease in the viability of MPC5 cells.

Melittin has shown cytotoxic effects on other cells [14,48]. Considering that multiple factors 
contribute to CRF and the varied effects of melittin, it would be interesting to test whether 
the therapeutic effects of melittin on CRF also involve other mechanisms, e.g., inhibiting 
inflammation and fibrosis.

In conclusion, melittin has therapeutic effects on CRF related to its facilitating function on 
podocyte autophagy. This study revealed the cellular mechanism for how melittin can treat 
CRF and highlights podocyte autophagy as a target for drug development against CRF.
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