
biomedicines

Review

An Overview of ICA/BSS-Based Application to Alzheimer’s
Brain Signal Processing

Wenlu Yang 1, Alexander Pilozzi 2 and Xudong Huang 2,*

����������
�������

Citation: Yang, W.; Pilozzi, A.;

Huang, X. An Overview of

ICA/BSS-Based Application to

Alzheimer’s Brain Signal Processing.

Biomedicines 2021, 9, 386. https://

doi.org/10.3390/biomedicines9040386

Academic Editor: Arnab Ghosh

Received: 27 February 2021

Accepted: 30 March 2021

Published: 6 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Information Engineering College, Shanghai Maritime University,
Shanghai 200135, China; wlyang@shmtu.edu.cn

2 Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown,
MA 02129, USA; apilozzi@mgh.harvard.edu

* Correspondence: Huang.Xudong@mgh.harvard.edu; Tel.: +1-617-724-49778; Fax: +1-617-726-4078

Abstract: Alzheimer’s disease (AD) is by far the most common cause of dementia associated with ag-
ing. Early and accurate diagnosis of AD and ability to track progression of the disease is increasingly
important as potential disease-modifying therapies move through clinical trials. With the advent
of biomedical techniques, such as computerized tomography (CT), electroencephalography (EEG),
magnetoencephalography (MEG), positron emission tomography (PET), magnetic resonance imaging
(MRI), and functional magnetic resonance imaging (fMRI), large amounts of data from Alzheimer’s
patients have been acquired and processed from which AD-related information or “signals” can
be assessed for AD diagnosis. It remains unknown how best to mine complex information from
these brain signals to aid in early diagnosis of AD. An increasingly popular technique for processing
brain signals is independent component analysis or blind source separation (ICA/BSS) that separates
blindly observed signals into original signals that are as independent as possible. This overview
focuses on ICA/BSS-based applications to AD brain signal processing.

Keywords: Alzheimer’s disease; blind signal separation; brain signal processing; fMRI; independent
component analysis; MRI

1. Introduction

Alzheimer’s disease (AD), which was first recognized by Alois Alzheimer in 1906,
is the most common cause of dementia in older adults [1,2]. According to the 2008
Alzheimer’s Disease Facts and Figures [3], recently released by the Alzheimer’s Asso-
ciation, an estimated 5.8 million people in the United States presently have AD, with
projections indicating growth to as many as 13.8 million by mid-century. Understanding
all behavioral, anatomical, and physiological aspects of this disease is vitally important to
populations worldwide. Improving the accuracy of diagnosis of AD at its early stage is
critical to finding a successful treatment.

AD has a presymptomatic phase, likely lasting years, during which neuronal degen-
eration is occurring but clinical symptoms have not yet appeared. Critical to the early
treatment of AD is the ability to discriminate between older individuals who will and
will not ultimately develop the disease during this preclinical stage. Early treatment is
beneficial to prevent or at least slow down the onset of the clinical manifestations of dis-
ease [4]. Moreover, to aid in the development of these treatments, specifically drugs for the
treatment of AD at its early stage, early diagnostic tools and techniques to monitor disease
progression in the presymptomatic phases of the disease are needed.

With the advent of biomedical engineering techniques, more and more brain signals
have been acquired and processed for AD diagnosis. These brain signals come from
electroencephalography (EEG) [5], magnetoencephalography (MEG) [6], computerized
tomography (CT) [7], single photon emission computed tomography (SPECT) [8], positron
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emission tomography (PET) [9], magnetic resonance imaging (MRI) [10], and functional
magnetic resonance imaging (fMRI) [11].

Correspondingly, a number of signal processing approaches have been proposed to
process these brain signals for diagnosing patients with AD. These include: wavelet trans-
formation (WT) [12], principal component analysis (PCA) [13], independent component
analysis (ICA) [14], also known as blind source separation (BSS), parallel factor analysis
(PARAFAC) [15], and so on. In this review, we will focus on applications of ICA/BSS/in
processing of brain signals for potential AD diagnosis.

2. Alzheimer’s Disease

Since the end of the 19th and the beginning of the 20th century, it has been recognized
that two classic silver-positive lesions occur in the Alzheimer’s brain: the intraneuronal
neurofibrillary tangles and extracellular deposits of amyloid called senile plaques [16].
Plaques are made primarily of the amyloid β peptide, Aβ-40, and Aβ-42, derived from
the amyloid precursor protein [17]. Neurofibrillary tangles, by contrast, are stained by β-
pleated sheet histological reagents but are made of a different proteinaceous substance.
These intracellular lesions are composed primarily of the microtubular-associated protein,
tau, which changes from its normal neuronal localization in axons to occupy and dominate
the somatic and dendritic compartments of a subpopulation of the large projection neurons
in neocortex and limbic systems [18]. Gomez-Isla et al. introduced the concept of a third
type of lesion, focusing on the neuritic changes that occur in dendrites and axons that
are not (necessarily) silver-positive, but which reflect changes in morphology, trajectories,
and post-synaptic structures that may also contribute to the breakdown of neural system
function.

Clinical features of AD include a decline in memory and other cognitive functions.
AD is the most common form of dementia, with prominent symptoms of memory loss,
language difficulties (aphasia, anomia), and deficits in visual spatial skills (agnosia) and
motor spatial skills (apraxia) [1]. General complaints of visual problems (difficulty reading,
blurry vision, vague complaints of poor visual acuity) may be the presenting symptoms
in AD, but patients may lack objective signs on ophthalmological examination [19–21].
Most research suggests that visual dysfunction is caused by neuropathology of the visual
association cortices [22], rather than by changes in the retina, optic nerve or retino-calcarine
pathways [23,24].

3. Biomedical Techniques for Detecting Alzheimer’s Brain Signals

With advances in biomedical techniques, it is possible to obtain Alzheimer’s brain
signals to diagnose AD at an early stage. In this section, we will briefly introduce these
biomedical techniques.

EEG [5] is a test used to detect abnormalities related to the electrical activity of the
brain. Small metal discs with thin wires (electrodes) are placed on the scalp that sends
signals to a computer for their recording. Normal electrical activity in the brain makes a
recognizable pattern. Through an EEG, doctors can look for abnormal patterns that indicate
seizures and other problems. EEG has good temporal resolution but relatively poor spatial
resolution [25]. Since Hans Berger in 1931 first observed pathological EEG sequences in
a historically verified AD patient, a large number of studies about the EEG of AD have
been presented [26–29]. The primary EEG markers of AD include decreased alpha and beta
activities, slower dominant-posterior rhythms, increased diffuse-slow activity, as well as a
decrease in coherence [5].

MEG [30] is a complex reference-free non-invasive function brain imaging technique
with millisecond temporal resolution that detects neuromagnetic signals produced by
neuronal activity in the cortex of the brain. Compared to EEG, MEG is less distorted by
the resistive properties of the skull, skin, and cerebral fluid, which act as a low pass filter.
Several studies have been performed on AD and mild cognitive impairment (MCI) using
MEG [31–43].
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PET [9] and SPECT are two molecular imaging techniques that provide pictures of
the brain that reflect the distribution of radioactive-labeled drugs (radioligands or tracers)
injected into the body. Then, sensors that surround the injected body part detect the
positrons emitted from the tracer in opposite directions, localizing the tracer. The most
common tracer used is a glucose analogue, fluorodeoxyglucose (FDG), which measures
regional cerebral glucose metabolism, a sign of neuronal activity. PET has been explored
to determine its ability to differentiate between a diagnosis of AD and fronto-temporal
dementia (FTD) [9,44–48]. SPECT also has been used to investigate functional alteration of
the brain in patients with AD [46,49]. PET measurements of cerebral glucose metabolism
also have been found to have superior accuracy compared to SPECT measurements of
cerebral perfusion in differentiating AD from vascular dementia, regardless of dementia
severity [50]. Klunk et al. presented the first human study of a novel amyloid-PET tracer,
termed Pittsburgh Compound-B (PIB), in patients with diagnosed mild AD and controls
and suggested that PIB can provide quantitative information on amyloid deposits [51] and
detect cerebrovascular β-amyloid for identifying the extent of cerebral amyloid angiopathy
(CAA) [52] in living subjects. More recent PET tracers have been found to be more effective
than PIB for AD diagnosis, however [48].

CT and MRI are two biomedical imaging techniques that search for atrophy in the
brain structure in vivo. With the use of CT, atrophy of medial temporal regions where AD
pathology is seen early in the disease has been observed [7]. MRI techniques sensitive to
changes in cerebral blood flow and blood oxygenation were developed by high-speed echo
planar imaging. They allow one to obtain completely non-invasive tomographic maps of
human brain activity through the use of visual and motor stimulus paradigms [53,54]. MRI
has more recently surpassed CT in AD studies due to its greater accuracy, manipulability,
and precision [55]. Moreover, compared to PET, MRI has the advantage of not using
radioactively-labeled compounds and being non-invasive and safe for repeat studies. For
AD diagnosis, MRI can act as a sensitive tool, detecting structural brain abnormalities,
consistently revealing atrophy of hippocampus [56], entorhinal [10], and temporal–parietal
cortices [57].

As discussed by Pekar [54], fMRI provides the opportunity to study brain function
non-invasively. Since the early 1990s, it has been a powerful tool used in both research
and clinical arenas [53]. The most popular form of fMRI uses blood-oxygenation-level-
dependent (BOLD) contrast, that is based on the differing magnetic properties of oxy-
genated (diamagnetic) and deoxygenated (paramagnetic) blood. When brain neurons are
activated, a localized change in blood flow and oxygenation results that causes a shift in
the magnetic resonance (MR) decay parameter T2*. These blood flow and oxygenation
(vascular or hemodynamic) changes are temporally delayed relative to the neural firing,
a confounding factor known as hemodynamic lag. Although fMRI does not share the
temporal resolution of EEG or MEG, it does have a spatial resolution of millimeters, and
the experiments suggest that it may detect activations at the level of the cortical layers [58].

The detection of changes in neural activity using BOLD-fMRI [53,59] generally in-
volves the identification of voxel signals that correlate with an imposed experimental
paradigm [60].

4. Theory and Model of ICA/BSS

The essential problem of blind source separation is the isolation of original signals from
their resulting mixture that is gathered from an array of sensors, without any information
about the original signals or how they are mixed. BSS can be applied to a variety of fields,
including audio processing, and is not unique to neuroimaging [61,62].

A fairly general BSS problem can be formulated as:

y(k) = Wx(k) (1)

where x(k) = [x1(k), x2(k), . . . , xm(k)]T is the observed sensor signals, W is the unmixing ma-
trix, y(k) = [y1(k), y2(k), . . . , yn(k)]T is the ouput signal, and k is a discrete time. BSS assumes
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that x(k) is the output signal from an unknown and inverse multiple-input/multiple-output
(MIMO) mixing and filtering system, x(k) = As(k) (A is the mixing matrix), in which the
inputs are the source signals s(k) = [s1(k), s2(k), . . . , sn(k)]T. It should be noted that n will be
less than m if the system is not inversed.

The objective of BSS is to estimate the original source signals s(k). To separate the
source signals s(k), a number of approaches have been developed such as ICA and its
extensions, sparse component analysis (SCA), sparse principal component analysis (SPCA),
non-negative matrix factorization (NMF), parallel factor analysis (PARAFAC), and so on.

PCA [63], one of well-known unsupervised analysis methods, projects the data into a
new space spanned by the principal components. Each successive principal component is
selected to be orthonormal to the previous ones and to capture the maximum variance that
is not already present in the previous components.

ICA [64,65], as a specific embodiment of BSS, has been further developed in the last
few decades. ICA, [66–68] as a generalization of PCA, separates the observed signals into
statistically independent components using higher-order statistics whereas PCA obtains
uncorrelated components using only second-order statistics. ICA is different from BSS;
The basic goal of ICA is to solve the BSS problem by expressing a set of random variables
(observations) as linear combinations of statistically independent component variables
(source signals), whereas the objective of BSS is to estimate the original source signals, even
if they are not all statistically independent. A more thorough description of ICA has been
written by Comon (Comon, 1994 #58).

The technique of ICA was first used in 1982 for analyzing a problem pertaining to
neurophysiology [69]. In the middle of the 1990s, after the term ICA was first coined
by Comon [70], ICA received wide attention and growing interest when many efficient
approaches were put forward, such as the Informax principle by Bell and Sejnowski [64],
natural gradient-based infomax by Amri [71], and the fixed-point (FastICA) algorithm by
Hyvärinen [72,73].

ICA [64,65] is becoming increasingly popular as a tool for analyzing biomedical
data [14,74–76]. In the next section, we will introduce the basic model of ICA/BSS of fMRI
and its variants for different purposes of application.

5. ICA/BSS Model for fMRI

Due to the spatial and temporal natures of fMRI data, the use of ICA can generally
be grouped into two groups, namely, spatial ICA (sICA) and temporal ICA (tICA). These
techniques are discussed in general terms, and the studies do not pertain to AD (or another
specific neurological disorder) unless otherwise stated.

5.1. Spatial and Temporal ICA Models of fMRI

Makeig et al. [14] have first applied spatial instantaneous mixing ICA to the analysis of
EEG data and event-related potential (ERP) data using the original Infomax algorithm [64].
Independently, Vigario et al. [77,78] have developed a method for artifact identification
and noise removal from EEG and MEG through a FastICA algorithm [72].

Since then, ICA has become increasingly popular for analyzing biomedical data [14,
74,75,79], especially for analysis of biomedical imaging, such as fMRI data [80]. A typical
model for applying ICA to fMRI data, was introduced in a study [81] and provided a
framework for understanding ICA as it applies to fMRI data and for introducing the
various processing stages in ICA of fMRI data.

As an example, in the ICA processing of fMRI time series data by Calhoun et al, data
was generated from a set of statistically independent (magnetic) hemodynamic source
locations in the brain. These sources have weights that specify the contribution of each
source plied by each source’s hemodynamic time course [80,81]. The first stage of the
data generation takes place within the brain, in which the sources are mixed. The second
stage of data generation involves the fMRI scanner. The sources are sampled, and each
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represents a function of scan-specific MR parameters such as flip angle, slice thickness,
pulse sequence, and field-of-view.

Data preprocessing consists of a number of possible preprocessing stages, including
slice phase correction, motion correction, spatial normalization, and smoothing. After
preprocessing, it is common to perform data reduction such as dimensionality-reductions
using PCA or some other approach. The resultant estimated source, along with the unmix-
ing matrix, can then be thresholded and presented as fMRI activation images and fMRI
time courses, respectively [80,81].

Conventional ICA embodies the assumption that data can be decomposed into under-
lying sources that are independent over space (spatial) [79] or time (temporal) [14,82] and
that the probability density functions (pdf) of these sources are highly kurtotic (distribution
has heavy-tails) and symmetric [79,82,83]. Different assumptions can be made between
sICA and tICA [82]; sICA seeks a set of mutually independent component (IC) source
images and a corresponding (dual) set of unconstrained time courses [79]. By contrast,
tICA seeks a set of IC source time courses and a corresponding (dual) set of unconstrained
images [14]. In concrete fMRI data, sICA finds independent images and a corresponding set
of dual unconstrained time courses and embodies the assumption that each image in X is
composed of a linear combination of spatially and statistically independent images. Unlike
sICA, tICA finds independent time courses and a corresponding set of dual unconstrained
images and embodies the assumption that each eigensequence in X is a linear combination
of temporally and statistically independent sequence S [83].

In addition, spatiotemporal ICA (stICA) [83] embodies the assumption that each eigen-
image in A is a linear combination of spatially independent images, and each eigensequence
in S is a linear combination of temporally independent sequences.

5.2. Variants of ICA Models for fMRI Data

Moreover, researchers have proposed many variants of ICA/BSS based on differently
statistical characteristics [83,84] in fMRI data or on different purposes of analyzing fMRI
data [15,85,86]. The variants include probabilistic ICA, skew-ICA, group ICA, tensor ICA,
and cortex-based ICA.

Probabilistic ICA. To address the issues of what is attributable to the “real effects”
of interest and what simply is due to observational noise, Beckmann et al. examined the
probabilistic ICA (PICA) model [84,87] for fMRI data. PICA allows for a nonsquare mixing
process and assumes that the data are confounded by additive Gaussian noise.

Skew-ICA. Stone et al. [83] combined spatiotemporal ICA and skew-ICA, to form
skew-stICA to analyze synthetic data and data from an event-related, left-right visual
hemifield fMRI experiment. Results [83] obtained with skew-stICA are superior to those
of PCA, sICA, tICA, stICA, and skew-sICA. Here, skew-ICA is based on the assumption
that images have skewed pdfs [88], an assumption consistent with spatially localized
regions of activity. By contrast, conventional ICA is based on the physiologically unrealistic
assumption that images have symmetric pdfs.

The skew-pdf can be described as:

p(y; a, b) ∝ exp
(

a − b
2

y − a + b
2

√
y2 + 1

)
(2)

where the constants a and b define the skewness of the distribution.
Group ICA. ICA has been successfully utilized to analyze single-subject fMRI data

sets and extended to group ICA for multi-subject analysis [15,85,86,89]. Group analysis of
fMRI is important to study specific clinical and experimental conditions within or between
groups of subjects [90].

Calhoun et al. [85] proposed a group ICA model that was a novel approach for drawing
group inferences using ICA of fMRI data. The group ICA analysis revealed task-related
components in the left and right visual cortex, a transiently task-related component in
bilateral occipital/parietal cortex, and a non-task-related component in bilateral visual
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association cortex. The group ICA approach had been implemented in the Group ICA
for fMRI data (GIFT) [91], in which PCA is used to whiten the data by performing an
orthogonal transformation and to reduce the number of principal component present in
the mixture.

Svensen et al. [86] used the extended ICA of fMRI data from single subjects to simul-
taneous analysis of data from a group of subjects. The results demonstrated that group
ICA can extract nontrivial task-related components without any a priori information about
the fMRI experiment and identify components common to the whole group in analysis of
group data.

Tensor ICA. Beckmann et al. extended the single-session probabilistic ICA [84] to
a higher dimension, called tensor PICA, to analyze multisubject or multisession fMRI
data. The tensor PICA [15] is derived from parallel factor analysis (PARAFAC) [92] and
has three-way, including temporal, spatial, and subject-dependent, variations. Real fMRI
activation data was decomposed by the approach to extract plausible activation maps,
time courses, and session/subject modes that give simple and useful representations of
multisubject or multisession fMRI data.

Cortex-based ICA. Cortex-based ICA (cbICA) assumes that cortical data are different
from non-cortical data and processes a subset of the data determined by a priori infor-
mation [93]. Formisano et al. used the mesh of the white matter/gray matter boundary,
automatically reconstructed from high-spatial-resolution anatomical MR images, to limit
the sICA decomposition of a coregistered functional time series to those voxels that are
within a specified region with respect to the cortical sheet.

Comparisons between cbICA and other methods showed that cortical surface maps
and component time courses blindly obtained with cbICA reliably reflect task-related
spatiotemporal activation patterns and that the cbICA improves the fitting of the ICA model
in the gray matter voxels, the separation of cortical components, and the estimation of
their time courses, particularly in the case of fMRI data sets with a complex spatiotemporal
statistical structure.

6. ICA/BSS Applications to Brain Signal Processing for AD Diagnosis

In this section, we will present some problems associated with ICA/BSS applications to
brain signal processing for AD diagnosis, such as why ICA/BSS is successful when applied
to the diagnosis of AD, what are useful components and noises, how many components
should be extracted, and which algorithms of ICA/BSS are most suitable. Applications of
ICA to the development of machine learning models will also be discussed.

6.1. Why Apply ICA to Diagnosis of AD

The simplest and most robust technique for analyzing MRI brain scans is region-of-
interest (ROI) analysis [94]. ROI [95,96] analysis of the brain structure is considered the
gold standard against which new techniques are compared, but it has some drawbacks
such as operator-dependency, being labor-consuming and time-intensive, and requiring a
priori choice of regions to be investigated.

To overcome these shortcomings, another automated method of measuring brain
atrophy has been developed [97–100]. The method of voxel-based morphometry (VBM)
objectively maps gray matter loss on a voxel-by-voxel basis after anatomical standard-
ization analogous to that used in functional neuroimaging. The advantage of VBM over
analyses based on ROI analysis is that VBM produces an unbiased result from exploration
of the whole brain. Testa et al. reported higher accuracy of discriminating AD and controls
than ROI-based analysis [101]. One of these popular statistical tools based on the voxel
is statistical parametric mapping (SPM) that refers to the construction and assessment of
spatially extended statistical processes used to test hypotheses about functional imaging
data (http://www.fil.ion.ucl.ac.uk/spm/, accessed on 29 March 2021). Statistical para-
metric mapping (SPM) [102], a univariate hypothesis-driven method, provides simple and
computationally efficient approaches to produce maps of task-related activations with esti-

http://www.fil.ion.ucl.ac.uk/spm/
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mates of their levels of significance based on a statistical parameter of each voxel. However,
it results in a loss of sensitivity if the fMRI experiment induces co-activation of spatially
disparate areas with slightly different temporal behaviors.

Unlike univariate methods, multivariate data-driven techniques enable an exploratory
analysis of fMRI datasets and may potentially separate meaningful activation by computing
suitable statistical models independent of nay reference paradigm [103]. Furthermore,
multivariate nature exploits the relationship between voxels and may possibly provide
useful information about co-activation in spatially different areas of the brain. In general,
multivariate analysis might have increased sensitivity compared to univariate analysis
even when the disease-related changes in cerebral blood flow (CBF) originate in clearly
circumscribed foci and spread spatially during the disease course. Multivariate analysis
can detect these subtle, but robust changes, although univariate analysis might experience
overly stringent false-positive corrections that tend to ‘correct away’ the true effects (as
evidenced by the results of our voxel-wise analysis).

Habeck et al. reported that multivariate analysis might be more sensitive than uni-
variate analysis for the early diagnosis of AD [44]. The multivariate techniques do not
necessarily rely on underlying “networks” of pathology. Asllani et al. used multivariate
approaches to evaluate correlation/covariance of CBF measurement across brain regions
rather than proceeding on a region-by-region (or voxel-by-voxel) basis [104].

Among the multivariate data-driven techniques, ICA/BSS has been shown to provide
a powerful method for the exploratory analysis of fMRI data [79,105–107]. ICA does
not require the specification of temporal signal profiles or anatomical ROIs to generate
meaningful spatiotemporal patterns of brain activity [108].

The multivariate statistical nature of ICA allows one to transform three-dimensional
fMRI data sets into brain activity patterns starting from the spatial or temporal covariance
of the measured signals and reveals multiple spatiotemporal ‘modes’ of signal variabil-
ity [11]. This transformation is achieved by imposing the general, yet neurophysiologically
plausible, constraint of removing the statistical dependence of the output modes [105].
To meet this constraint, the value distribution of the fMRI signals in space or time is to
be considered: two variants called sICA and tICA. The former refers to the statistical
distribution of signals across the sampled hemodynamic locations, while the latter refers to
the statistical distribution of source signals across the sampled time-points [82].

6.2. Comparison of ICA/BSS Algorithms

As there are a variety of ICA algorithms, it is also important to compare their perfor-
mance to better understand their strengths and limitations [108].

Correa et al. [91] had compared performances of five algorithms included in the
toolbox GIFT: Informax [64], FastICA [67], Joint Approximate Diagonalization of Eigen
Matrices (JADE) [109], Simultaneous Blind Extraction using Cumulants SIMBEC [110], and
Algorithm for Multiple Unknown Signal Extraction (AMUSE) [4]. Based on their results
of fMRI data, Informax emerged as a reliable choice for the task, followed by JADE as a
close second. FastICA performed reliably for most cases as well whereas the performance
of SMIBEC and AMUSE did not prove to be robust. SIMBEC may prove to be useful to
identify sub-Gaussian sources. The performance of AMUSE is highly dependent on the
differentiability of the spectra of the sources.

6.3. Spatial, Temporal, and Spatiotemporal ICA

ICA is a technique that attempts to separate data into maximally independent groups,
achieving maximal independence in space or time to yield three varieties of ICA meaningful
for fMRI applications: spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA.

Since the first application of ICA for fMRI analysis [105], it has been controversial
to choose spatial or temporal independency. McKeown et al. argued on the sparsely
distributed nature of the spatial pattern with sICA. The applications of temporal ICA
to fMRI data have appeared [74,82]; however, spatial ICA has by far dominated the
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functional imaging literature to date. The most important reasons for this are that the
spatial dimension is much larger than that of the temporal dimension in fMRI data [82].

Stone et al. proposed a method that attempts to maximize both spatial and temporal
independence [83]. Seifritz et al. presented an interesting combination of sICA and
tICA [111] and used an initial sICA to reduce the spatial dimensionality of the data by
locating a ROI in which they then performed tICA to study in more detail the structure of
the nontrivial temporal response in the human auditory cortex.

6.4. How Many Components Are There?

Before applying ICA/BSS to fMRI, characteristics of the independent components
must be determined.

In general, fMRI data may be composed of signals of interest and signals not of interest
(noises). Signals of interest include task-related, function-related, and transiently task-
related signals [80]. Signals not of interest include physiology-related (breathing and heart
rate), motion-related (mouth movement in the naming task), and scanner-related (scanner
drift and system noise, susceptibility, and radio frequency artifacts) signals. In addition,
there are several types of noise in an fMRI experiment, such as object variability, thermal
noise, patient movement, brain movement, and so on. In the ICA model, these noises are
often not explicitly modeled, but rather manifested as separate components [105,112].

Another problem is determining the number of components. Beckmann et al. and
Calhoun et al. used different methods to estimate the number of components in fMRI
data [87,113]. McKeown et al. [105] applied ICA to fMRI data and calculated the contribu-
tion of each component to fMRI data for extracting consistently task-related, transiently
task-related, slowly varying, quasiperiodic, movement-related, and residual noise com-
ponents. McKeown et al. also applied a combined PCA/ICA approach to estimate the
number of spatially independent components contained in fMRI data [79]. Calhoun et al.
used standard information theoretic methods for estimating the number of components
from the aggregate data set [113]. The number of sources can be estimated using Akaike’s
information criterion or the minimum description length criterion [114,115].

6.5. Application of ICA/BSS to AD Diagnosis

Many applications of ICA/BSS to brain signal processing exist, such as removal
artifact from EEG [14] and MEG [77,78], analysis of evoked magnetic fields [14,116,117],
fMRI data [90], and in clinical research, for example the diagnosis of AD [118]. In this
section, we will focus on application of ICA/BSS to the diagnosis of AD.

Chapman et al. [119] used PCA to identify and measure the ERP components. Their
scores to relevant and irrelevant stimuli were used in discriminant analyses to develop
functions that successfully classified individuals as belonging to an early-stage AD group
or a like-aged control group, with probabilities of an individual belonging to each group.
Additionally, 92% of the subjects were correctly classified into either the AD group or the
control group with a sensitivity of 1.0. Besthorn et al. [120] used PCA as a postprocessing
tool for compressing linear and nonlinear EEG features over channels. They obtained 95.9%
correct classification using age as a moderator variable in the study.

A number of EEG studies [4,121] on AD and MCI have reported several typical
findings such as a slowing and diffusing of the posterior dominant alpha activity, an
unclear alpha attenuation after eye-opening, as well as an increase of delta and theta,
and a decrease of beta and gamma activities [5]. For more details, see a review of signal
processing techniques applied for revealing pathological changes in EEG associated with
AD [5]. Cichocki et al. investigated the application of ICA/BSS methods as preprocessing
tools with possible application for AD diagnosis. They propose an approach of filtering
EEG data based on ICA/BSS that can significantly improve the sensitivity and specificity
of EEG-based diagnosis of AD at the early stage [4]. The team employed a non-ICA based
method of BSS: the algorithm for multiple unknown signals extraction (AMUSE [122]),
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on data from MCI patients who progressed to AD and age matched controls, achieving a
classification rate of 80% for MCI based on linear discriminant analysis (LDA) [4].

Vialatte et al. explored the group differences between Mild AD patients and control
subjects, finding that precleaning data with ICA using the improved weight-adjusted
second-order blind identification (IWASOBI) algorithm amplified the differences between
the groups [123]. Melissant et al. used ICA to reduce artifacts of EEG data to improve
classification results for patients in an initial stage [121]. They made a conclusion that
a more robust detection of AD-related EEG patterns may be obtained by employing
ICA as ICA-based preprocessing of EEG data can improve classification results for AD
patients in an initial stage. Jervis et al. applied ICA and cluster analysis to EEG P300 data
obtained from healthy and AD subjects [27] showed that the latencies of the back-projected
independent components (BICs) of the P300 differed between healthy participants and AD
patients. They proposed that the latencies of the BIC associated with the P3b component
may be a suitable biomarker for AD.

Escudero et al. [124] analyzed MEG background activity recordings acquired with a
148-channel whole-head magnetometer from 21 AD patients and 21 control subjects using
the algorithm for multiple unknown signals extraction (AMUSE [4]) to blindly decompose
artifact-free epochs of 20s. Their preliminary results showed that the proposed procedure
based on BSS and selection of significant components may improve the classification of
AD patients using straightforward features from MEG recordings. Fernandez et al. [125]
applied PCA to the mean frequency from the MEG signals of 22 patients with AD, 22 pa-
tients with MCI, and 21 healthy controls. Results demonstrated the mean frequency score
seem to be adequate and sensitive to detect differences between normal aging, cognitive
deterioration, and AD.

Higdon et al. [9] applied PCA to FDG-PET for the diagnosis of AD from fronto-
temporal dementia and reported slightly better results with images preprocessed with
principal least squares analysis than with PCA when using a classifier based on linear
discriminant analysis Habeck et al. [44] examined the efficacy of multivariate and univari-
ate analytic methods for the diagnosis of early AD. Using the extended PCA-approach to
the FDG-PET data from two clinical populations, they analyzed the spatially correlated
metabolism as a function of AD status and reported that the multivariate marker’s diagnos-
tic performance in the replication samples was superior to that of the univariate marker’s.
Kerrouche et al. first applied a novel voxel-based multivariate technique, such as PCA,
to a large FDG-PET data set to investigate whether it is possible to distinguish vascular
dementia from AD. They used PCA to remove PCs significantly correlated to age. Their
results show the potential of voxel-based multivariate methods to highlight independent
functional networks in dementing disease. By maximizing the separation between groups,
this method extracted a metabolic pattern that efficiently differentiated vascular dementia
and AD [126].

Chen et al. proposed a simple and automated method for the measurement of changes
in brain volume from an individual’s sequential MRIs using an iterative PCA (IPCA) [127].
The IPCA considered the voxel intensity pairs from coregistered MRIs and identified those
pairs a sufficiently large distance away from the iteratively determined PCA major axis.
Their results demonstrated IPCA’s ability to characterize whole-brain atrophy rates in
patients with AD [127,128].

Su et al. [12] presented the Hybrid wavelet-ICA to investigate the use of ICA dynamic
PET data both in the image domain and in the wavelet domain, where the data had been
transformed using Battle-Lemarie wavelets, as in the article [129].

Greicius et al. adapted ICA to derive the default-mode network [130,131] in a more
data-driven fashion (i.e., without requiring a priori specification of a seed region). Exam-
ination of the default-mode network in these groups revealed three critical findings: a
significant coactivation of the hippocampus in the default-mode network, the network is
abnormal in the mildest stages of AD compared to healthy aging, and network activity
holds potential as a non-invasive biomarker of incipient AD [131].
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By using resting-state fMRI and combining correlation and ICA, Tang [132] explored
a new method for resting-state functional connectivity [133,134] that was finally applied to
seek the abnormality of the brain functional network under the pathophysiology of AD.

Celone et al. [118] used ICA to investigate memory-related fMRI activity in 52 in-
dividuals across the continuum of normal aging, MCI, and mild AD. Memory function
is likely subserved by multiple distributed neural networks that are disrupted by the
pathophysiological processes of AD. ICA revealed specific memory-related networks that
activated or deactivated during an associative memory paradigm. Across all subjects,
hippocampal activation and parietal deactivation demonstrated a strong reciprocal relation-
ship. Less impaired MCI subjects showed paradoxical hyperactivation in the hippocampus
compared with controls, whereas more impaired MCI subjects demonstrated significant
hypoactivation, similar to the levels observed in the mild AD subjects.

Sorg et al. combined ICA and ROI-based correlation methods to investigate resting-
state networks (RSNs) in patients with MCI [90]. They analyzed fMRI and structural MRI
data from healthy elderly and patients with amnestic MCI, a syndrome of high risk for
developing AD and concluded that, in individuals at risk for AD, a specific subset of RSNs
is altered.

Rombouts et al. applied tensor PICA [15] to study fMRI signal during face encoding
in 18 AD, 28 MCI patients, and 41 healthy elderly controls [135]. The tensor PICA showed
activation in regions associated with motor, visual, and cognitive processing, and deactiva-
tion in the default mode network. They concluded that the tensor PICA is a promising tool
to identify and detect differences in (de)activated brain networks in elderly controls and
dementia patients.

6.6. ICA as a Component of Machine Learning Models

Computer aided diagnosis (CAD) is poised to be a considerable tool for identifying
cases of Alzheimer’s disease and a host of other diseases. CAD typically involves the
application of a machine learning (ML) model onto features derived from neuroimaging,
biomarkers, and others. ML can be used in tandem with expert review; in cases of MRI
and other image analysis, for example, a ML model can ascertain details and features
that are difficult for a human to identify by eye. Support vector machines, as well as
other model types such as decision trees and neural networks have been developed to
diagnose Alzheimer’s disease based on MRI, PET, and other imaging methods with high
accuracy [136–141]. Models have also been effective when trained on EEG feature data as
well [142–146].

ICA, which can be used for signal separation and feature extraction, can be imple-
mented as a component of a machine learning-based diagnostic system. ICA can be
employed to initially extract and transform features of a dataset, which can then be fed into
a machine learning model. Such systems have been shown to be more effective that direct
ML in problems such as facial recognition [147] and classification based on microarray
data [148].

Such methods can be similarly applied to applications of brain health and imaging.
Artificial neural networks and support vector machines (SVMs) working with data prepro-
cessed with ICA have been found to detect artifacts in EEGs with an accuracy/alignments
between 89.13% and 95.20% compared to expert rating [149]. The non-ICA based algorithm
AMUSE was used y Vialatte et al., to process data for input for sparse-bump modeling,
which was fed into a neural network geared towards the classification of MCI cases (that
later progressed to AD), achieving a 93% classifier rate [150], an improvement from the
aforementioned LDA with an 80% implemented by the team [4]. Data suggests that per-
haps ICA based methods are superior to some standard BSS methods for artifact removal.
Cassani et al. tested statistical artifact rejection (SAR), blind source separation based on
second order blind identification and canonical correlation analysis (BSS–SOBI–CCA), and
wavelet-enhanced independent component analysis; the removal of artifacts by experts
was also assessed as a standard. The resulting features were used to train an SVM based
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classifier. The ICA-model performed comparably to the standard in discriminating normal
and mild AD, and slightly better than the standard in discriminating mild and moderate
AD. BSS was generally inferior to ICA and SAR, possibly due to the removal of discrim-
inatory data [151]. Other specific analyses of brain development and health have been
examined with similar combined-methods [152–156].

With regard to Alzheimer’s disease, CAD systems incorporating ICA-processed into
a machine learning model have been developed with some success. Khedher et al. de-
veloped a SVM based CAD system trained with MRI data from the Alzheimer’s disease
neuroimaging initiative (ADNI) that was able to distinguish between cognitively normal
individuals and those with MCI or AD that notably featured graphical representations of
the input features that makes the basis of the system’s decision making more clear. The
system had 79% accuracy distinguishing MCI from NC, 89% accuracy distinguishing AD
from normal controls (NC), and 85% accuracy distinguishing MCI from AD cases [157].

Yang et al. applied similar methods to data from open access MRI datasets such
as the ADNI; features processed and extracted with FastICA [158] were applied to a
SVM classifier. Applying the system to grey-matter only images achieved an accuracy of
approximately 89% when distinguishing between NC and AD subjects, and 81% between
NC and MCI subjects at a 90–10 training/testing split; whole-brain image performance was
notably lower [159]. A later 2017 model by Yang et al., using two stage component number
estimation and ICA combined with clinical features used as inputs for a SVM, achieved an
accuracy of 97.7% and 87.8% in distinguishing AD and MCI from NC, respectively [160].

Qiao et al., developed a three-level hierarchical partner matching ICA method; func-
tional MRI data was first processed with spatial ICA and group-mapping of IC groups,
followed by partner matching group-map clusters and cluster-map generation, then part-
ner mapping of cluster-maps. Tracing the optimal clusters derived from the cluster-maps
backwards indicates the most stable ICs. Inputs were fed into a directed acyclic graph
neural network incorporating convolutional layers; an accuracy of 95.59% was achieved in
leave-one-out cross validation [161].

Basheera et al. used MRI grey matter images segmented with hybrid enhanced
independent component analysis applied to a convolutional neural network. Training was
done with ADNI image data and, on a sample of 21 independent MRI slices, the output of
the network was compared to the decision of a physician, and an accuracy of 90.47% was
achieved [162].

Other imaging methods beyond MRI have been used as well. Illán et al. conducted a
comparison of SVM based CAD systems based on voxels-as-features, principal component
analysis, and ICA processing on SPECT images. Models based on samples with NC and
AD patients either grouped (method 1) or split into 3 subgroups based on disease sever-
ity/characteristics (method 2) were tested. Accuracies of PCA and ICA were similar for
both method 1 (88.61% and 89.87%, respectively) and method 2 (88.61% and 91.14%, respec-
tively) and both were greater than the VAF baseline (72.15% and 74.68% for method 1 and
method 2, respectively) [136]. Toussaint et al. utilized spatial ICA of fluoro-deoxygenase
(FDG) PET images, combined with other clinical features such as cognitive test scores.
Good accuracies were noted in leave-one-out cross validation distinguishing NC from
preclinical AD, but lower when attempting to distinguish between stable and converting
MCI [163].

7. Conclusions

AD is a progressive neurodegenerative disorder and the most common cause of
dementia associated with aging. The diagnosis of AD remains largely based upon clinical
assessment, and is often made at relatively late stages of the pathophysiological process. As
disease-modifying therapies are likely to be most efficacious at much earlier stages of the
disease, it is important to develop markers for early disease detection in individuals who
are at risk for AD. Fortunately, some biomedical techniques such as EEG, CT, PET, MRI, and
fMRI, can non-invasively acquire brain signals to aid in a more objective assessment of AD
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pathology, even when AD is at an early stage. As mentioned above, we have introduced
the applications of these biomedical techniques as potential AD diagnostic tools.

The brain signals sampled from individuals using these biomedical techniques are
the mixture of many signals of interest or non-interest; collectively, AD-related signals
or noises serve different purposes for analysis. A key challenge is to acquire useful AD-
related signals and to discover biomarkers from the sampled brain signals. To address this
challenge, many novel signal processing techniques have been developed. In this paper,
we focused on reviewing applications of ICA/BSS approaches to the diagnosis of AD.

ICA/BSS is one of the data-driven, multivariate, and unsupervised methods without
any a priori information. The quite fruitful applications of ICA/BSS to brain signals have
shown that such technique is very useful and powerful. Its ability to represent the high-
dimensional data, especially MRI or fMRI data, enables it to be a powerful tool for clinical
AD neuroimaging biomarker discovery.
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