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Abstract Gene expression is influenced by extrinsic noise (involving a fluctuating
environment of cellular processes) and intrinsic noise (referring to fluctuations within
a cell under constant environment). We study the standard model of gene expression
including an (in-)active gene, mRNA and protein. Gene expression is regulated in the
sense that the protein feeds back and either represses (negative feedback) or enhances
(positive feedback) its production at the stage of transcription. While it is well-known
that negative (positive) feedback reduces (increases) intrinsic noise, we give a pre-
cise result on the resulting fluctuations in protein numbers. The technique we use is
an extension of the Langevin approximation and is an application of a central limit
theorem under stochastic averaging for Markov jump processes (Kang et al. in Ann
Appl Probab 24:721–759, 2014). We find that (under our scaling and in equilibrium),
negative feedback leads to a reduction in the Fano factor of at most 2, while the noise
under positive feedback is potentially unbounded. The fit with simulations is very
good and improves on known approximations.

Keywords Intrinsic noise ·Langevin approximation ·Quasi-steady-state assumption ·
Chemical reaction network · Auto-regulated gene expression

Mathematics Subject Classification 92C40 · 60J60 · 60F05

B Peter Czuppon
czuppon@evolbio.mpg.de

1 Abteilung fur Mathematische Stochastik, University of Freiburg, Eckerstr. 1, 79104 Freiburg,
Germany

2 Present Address: Department of Evolutionary Theory,Max-Planck Institute for Evolutionary Biol-
ogy, Plön, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-018-1248-4&domain=pdf
http://orcid.org/0000-0003-1462-7237


1154 P. Czuppon, P. Pfaffelhuber

1 Introduction

It is now widely accepted that gene expression is a stochastic process. The reason is
that a single cell is a system with only one or two copies of each gene and of the
order tens for mRNA molecules (Swain et al. 2002; Elowitz et al. 2002; Raj and van
Oudenaarden 2008). Experimentally, this stochasticity can even be observed directly
by single-cell measurements such as flow cytometry and fluorescence microscopy,
which show the inherent fluctuations of protein numbers arising from cell to cell (Li
and Xie 2011).

Usually, noise in gene expression is divided into an intrinsic and an extrinsic part
(Swain et al. 2002; Raser and O’Shea 2005). While the intrinsic part leads to variation
of protein numbers from cell to cell in the same environment, the extrinsic part is
attributed to the different environmental conditions of the cell. In practice, ensemble
averages eliminate intrinsic noise, while single-cell measurements over time can be
thought of having a constant environment, thus eliminating extrinsic noise (Singh and
Soltani 2013; Singh 2014).

Stochasticity in gene expression is not only interesting per se. Today, its role in
evolution, development and cell fate decisions is under discussion (Kaern et al. 2005;
Maamar et al. 2007; Fraser and Kærn 2009; Eldar and Elowitz 2010; Balázsi et al.
2011; Silva-Rocha andLorenzo2010;Wang andZhang2011). For instance, noisy gene
expression can be detrimental for the survival of cells under harsh conditions (Mitosch
et al. 2017; Fraser and Kærn 2009). Still, many cells have to function constantly.
Therefore, mechanisms reducing and controlling the level of noise are beneficial for
most of real systems.

Under the central dogma of molecular biology, modeling stochasticity of gene
expression is straight-forward (see Paulsson 2005 for a review). A gene, which is
either turned on or off, is transcribed into mRNA, which is translated into protein.
Both, mRNA and protein are degraded at constant rates. Since the resulting chemical
reaction network is linear, the master equation can be solved and all moments can
be derived analytically. Most interestingly, the variance can be decomposed into the
effects of switching the gene on and off, noise due to the finite life-time of mRNA,
and random fluctuations in the production of protein (Paulsson 2005). It is often stated
that gene expression tends to occur in bursts, which occur due to the short life-time of
the on-state of the gene and due to the short life-time of mRNA (Kumar et al. 2015).

We are interested in the effect of self-regulation on gene expression noise. It is
known that a negative feedback loop, i.e. a protein suppressing its own transcription
(or translation) leads to a reducednoise,while positive feedback is attributed to increase
noise (Lestas et al. 2010;Hornung andBarkai 2008). Although these findings arewide-
spread, a complete mathematical analysis is lacking. At least, for negative feedback,
Thattai and Oudenaarden (2001) and in more generality Swain (2004) quantify the
effect of negative feedback using a linearization argument. The latter paper further
analyzes different feedback models differing between translational and transcriptional
autoregulation. Moreover, Dessalles et al. (2017) derive the equilibrium distribution
using a multi-scale approach under negative feedback.

Most analyses of noise in unregulated gene expression rely on the master equation
(e.g. Paulsson 2005). By the linearity of this equation, a solution can be given explicitly.
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Limits of noise for autoregulated gene expression 1155

Using the approximation that gene switching is so fast that it is effectively constantly
transcribed tomRNA, this linearity can as well be used under negative feedback (That-
tai and Oudenaarden 2001; Swain 2004). Our approach and also the one performed
in Dessalles et al. (2017) differs in two ways. First, we are using martingale methods
from stochastic analysis in order to describe the chemical system (Ethier and Kurtz
1986). Second, we can relax the assumption that the gene is transcribed effectively
constantly, and therefore derive a more general result. Consequently, we are able to
analyze noise in a truly non-linear system under a quasi-steady-state assumption.

The explicit expression we derive for the noise in the number of proteins is also the
main difference between our findings and the results obtained inDessalles et al. (2017).
Since the authors of that paper are interested in the case of not very abundant proteins
they compute a stationary distribution for the protein using martingale techniques in
the context of birth–death processes as opposed to our stochastic diffusion setting.

While the full model of regulated gene expression (or any other chemical reaction
network) is usually hard to study, considering anODEapproach instead,which approx-
imates the full model, leads to new insights. Formally, a law of large numbers—usually
referred to as a fluid limit—can be obtained connecting the stochastic and determin-
istic model (Kurtz 1970b; Darling 2002). While such a law of large numbers gives
a deterministic limit, fluctuations are studied using central limit results; see Kurtz
(1970a). The special situation for gene expression is that the gene and mRNA only
have a few copies, while the protein is often in large abundance. Such multi-scale
models are often studied under a quasi-steady-state assumption (Seegel and Slemrod
1989). Here, the species in low abundance are assumed to evolve fast, such that the
slow, abundant, species only sense their time-average. For such a stochastic averaging,
not only a law of large numbers is given e.g. by Ball et al. (2006), but also a central
limit result has recently been obtained by Kang et al. (2014).

While a multi-scale approach to stochastic gene expression is not new (see Bokes
et al. 2012; Dessalles et al. 2017), the analysis of fluctuations for such systems is not
finished yet. In the case of multi-scale diffusion systems, Pardoux and Veretennikov
(2001, 2003) derive a limit result for the slow components using a Poisson-equation.
The results by Kang et al. (2014) are similar but are based on Markov jump processes
instead of a diffusion limit framework. We apply the techniques of Kang et al. (2014)
on the chemical reaction network of (un-)regulated gene expression. As our results
show, fluctuations take into account all sources of noise and we give explicit formulas
for the reduction of noise under negative feedback and the increase in noise under
positive feedback.

2 The model

We are dealing with the standardmodel of gene expression without and with feedback;
see e.g. Dessalles et al. (2017). Using the terminology from Paulsson (2005), we write
for the model without feedback (or the neutral model)
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off
λ+
1

GGGGGA on on
λ−
1

GGGGGA off

on
λ2

GGGGGA on+R R
μ2

GGGGGA ∅

R
λ3

GGGGGA R+P P
μ3

GGGGGA ∅.

(∗neu )

Here, off and on refer to an inactive and an active gene, respectively. The mRNA is
given by R, and the protein by P . While the first line of chemical reactions models
gene switching from off to on and back, the second line encodes transcription and
degradation of mRNA, and the third line gives translation and degradation of proteins.
Exchanging the first line by

off
λ+
1

GGGGGA on on+P
λ�
1

GGGGGA off +P (∗neg )

then models a negative feedback and

off +P
λ⊕
1

GGGGGA on+P on
λ−
1

GGGGGA off (∗pos )

models a positive feedback. In all cases, we number the equations from left to right
and from top to bottom by 1–6, so K = {1, . . . , 6} is the set of chemical reactions.
The species counts are given by Xi for i ∈ S := {off, on, R, P} for inactive and active
gene,mRNAand protein, respectively. In the followingwewill scale the rates such that
the gene switching and the mRNA production happens on a fast time-scale whereas
the protein which is also present in higher abundances than the mRNA is evolving
on a slower time-scale. This time-scale separation is frequently used in quantitative
analyses of gene expression (see for instance Thattai and Oudenaarden 2001; Swain
2004; Ball et al. 2006; Bokes et al. 2012; Dessalles et al. 2017) since it allows to
employ a quasi-steady-state assumption for the species evolving on the fast time-
scale, cf. Kuehn (2015). It basically means that one first solves for the stationary
points in the fast sub-system which are then used to describe the dynamics in the slow
sub-system.

Thus, using some large constant N , we will make use of the following scaling for
the abundances of chemical species

Xoff = O(1), Xon = O(1), XR = O(1), XP = O(N ),

or Xi = O(Nαi ) for i ∈ S with

αoff = αon = αR = 0, αP = 1. (1)

123



Limits of noise for autoregulated gene expression 1157

Reactions are scaled for all models such that we indeed get a time-scale separation,
i.e. reaction constants are such that genes and mRNAs evolve much faster than protein
numbers. Note, however, that due to XP = O(N ), we need that the protein production
rate needs to scale with N . We use the scaled rates κ2, ν2, κ3, ν3 = O(1), which are
given through

λ2 = Nκ2, μ2 = Nν2, λ3 = Nκ3, μ3 = ν3.

For the neutral model, we also set (with κ+
1 , κ−

1 = O(1))

λ+
1 = Nκ+

1 , λ−
1 = Nκ−

1 , (�neu )

whereas for negative feedback (with κ+
1 , κ�

1 = O(1))

λ+
1 = Nκ+

1 , λ�
1 = κ�

1 , (�neg )

and for positive feedback (with κ⊕
1 , κ−

1 = O(1))

λ⊕
1 = κ⊕

1 , λ−
1 = Nκ−

1 . (�pos )

(Note that these scalings obey λ−
1 , λ�

1 XP , λ+
1 , λ⊕

1 XP = O(N )which is necessary for
the time-scale separation.) Setting (with αi from (1))

V N
i = N−αi Xi , i ∈ S (2)

as the scaled number of genes, mRNA molecules and proteins, respectively, V N
i (0)

the corresponding initial value and for M denoting the total copy number of genes,
we have in the neutral case

V N
on (t) = V N

on (0) + Y1

(
N
∫ t

0
κ+
1 V N

off(s)ds

)
− Y2

(
N
∫ t

0
κ−
1 V N

on (s)ds

)
,

V N
off(t) = M − V N

on (t),

V N
R (t) = V N

R (0) + Y3

(
N
∫ t

0
κ2V

N
on (s)ds

)
− Y4

(
N
∫ t

0
ν2V

N
R (s)ds

)
,

V N
P (t) = V N

P (0) + N−1Y5

(
N
∫ t

0
κ3V

N
R (s)ds

)
− N−1Y6

(
N
∫ t

0
ν3V

N
P (s)ds

)
,

(•neu )
for independent, rate 1 Poisson processes Y1, . . . ,Y6. (See (Anderson and Kurtz 2015)
for a general introductionon theoretical chemical reactionnetworks.) Thefirst equation
changes in the case of negative feedback to

V N
on (t) = V N

on (0) + Y1

(
N
∫ t

0
κ+
1 V N

off(s)ds

)
− Y2

(
N
∫ t

0
κ�
1 V N

on (s)V
N
P (s)ds

)

(•neg )
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1158 P. Czuppon, P. Pfaffelhuber

Table 1 We use N as a scaling parameter throughout. Reaction rates either come in unscaled (λ’s and μ’s)
or in scaled (κ’s and ν’s) versions

Parameter Model Meaning Scaling

N [neu], [neg ], [pos] Scaling parameter

λ+
1 , κ+

1 [neu], [neg ] Rate of switching genes on λ+
1 = κ+

1 N

λ⊕
1 , κ⊕

1 [pos] λ⊕
1 = κ⊕

1

λ−
1 , κ−

1 [neu], [pos] Rate of switching genes off λ−
1 = κ−

1 N

λ�
1 , κ�

1 [neg ] λ�
1 = κ�

1

λ2, κ2 [neu], [neg ], [pos] Rate of mRNA production λ2 = κ2N

μ2, ν2 [neu], [neg ], [pos] Rate of mRNA degradation μ2 = ν2N

λ3, κ3 [neu], [neg ], [pos] Rate of protein production λ3 = κ3N

μ3, ν3 [neu], [neg ], [pos] Rate of protein degradation μ3 = ν3

M [neu], [neg ], [pos] Total number of genes M = O(1)

and in the case of positive feedback to

V N
on (t) = V N

on (0) + Y1

(
N
∫ t

0
κ⊕
1 V N

off(s)VP (s)ds

)
− Y2

(
N
∫ t

0
κ−
1 V N

on (s)ds

)
.

(•pos )

In the sequel, we will refer to the model without, with negative and positive feedback
simply as [neu], [neg ] and [pos], respectively.Weunderstand all equations (∗neu ), (�neu ),
(•neu ) as the bases for [neu], equations (∗neg ), (�neg ), (•neg ) as the bases for [neg ] and
all equations (∗pos ), (�pos ), (•pos ) as the bases for [pos].

For a summary of the parameters and their scalings, see Table 1. We will refer to
λ’s and μ’s as the unscaled parameters and to κ’s and ν’s as the scaled parameters.

3 Results

The following results are all stated in terms of the scaled parameters (κ’s and ν’s
and V N

P ). For the corresponding formulas using unscaled parameter notation, see
Appendix E.

3.1 A limiting process for the amount of protein

The following result can be obtained using a quasi-steady-state assumption. It relies
on the method of stochastic averaging; see e.g. Ball et al. (2006). Basically, it says
that, using the law of large numbers for Poisson processes, i.e. Y (t) ≈ t for large t ,
and the scaled parameter set we find
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Limits of noise for autoregulated gene expression 1159

V N
P (t) ≈ V N

P (0) +
∫ t

0

(
κ3Eπ

[
V N
R (s)

]
− ν3V

N
P (s)

)
ds, (3)

where Eπ [·] denotes expectation with respect to the equilibrium dynamics of the fast
species V N

off, V
N
on and V N

R for a fixed amount of protein, V N
P . Note that we use ⇒ for

weak convergence of stochastic processes (Ethier and Kurtz 1986).

Theorem 1 (LawofLargeNumbers)Weconsider themodels [neu], [neg ]and [pos]and
assume that the initial condition converges in distribution, i.e. V N

P (0)
N→∞���⇒ vP (0).

Then, V N
P

N→∞���⇒ vP , where vP solves

v̇P = F(vP ),

with

F(vP ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Mκ+
1 κ2κ3

ν2
(
κ−
1 + κ+

1

) − ν3vP for [neu],
Mκ+

1 κ2κ3

ν2
(
κ�
1 vP + κ+

1

) − ν3vP for [neg ],
Mκ⊕

1 κ2κ3vP

ν2
(
κ−
1 + κ⊕

1 vP
) − ν3vP for [pos].

(4)

In particular, the equilibrium, i.e. F(v∗
P ) = 0, is given by

v∗
P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mκ+
1 κ2κ3

ν2ν3
(
κ−
1 + κ+

1

) for [neu],

κ+
1

2κ�
1

(√
1 + 4Mκ�

1 κ2κ3

κ+
1 ν2ν3

− 1

)
for [neg ],

0 ∨ Mκ⊕
1 κ2κ3 − κ−

1 ν2ν3

κ⊕
1 ν2ν3

for [pos].

(5)

Proof We apply results from Ball et al. (2006) and only sketch the proof. In order to
derive Eq. (4) we need to replace Von and VR (the fast variables) in the equation for V N

P
by their equilibria assuming that V N

P is constant. Computing these equilibria is done
using the corresponding lines in (•neu ), (•neg ) and (•pos ). The resulting distribution π

then is the equilibrium on the fast time-scale. For vP fixed they read

Eπ [Von] = M − Eπ [Voff] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mκ+
1

κ−
1 + κ+

1

for [neu],
Mκ+

1

κ�
1 vP + κ+

1

for [neg ],
Mκ⊕

1 vP

κ−
1 + κ⊕

1 vP
for [pos].
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and

Eπ [VR] = κ2

ν2
Eπ [Von] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mκ+
1 κ2

ν2
(
κ−
1 + κ+

1

) for [neu],
Mκ+

1 κ2

ν2
(
κ�
1 vP + κ+

1

) for [neg ],
Mκ⊕

1 κ2vP

ν2
(
κ−
1 + κ⊕

1 vP
) for [pos].

Plugging this equilibrium into (3) which is the limit for large N of the corresponding
equation in (•neu ), we obtain that

v̇P = κ3Eπ [VR] − ν3vP = F(vP ) (6)

with F as in (4). Computation of the equilibria is standard by solving F(vP) = 0. In
particular, we have to solve

−Mκ+
1 κ2κ3 + κ+

1 ν2ν3vP + κ�
1 ν2ν3v

2
P = 0 or v2P + κ+

1

κ�
1

vP − Mκ+
1 κ2κ3

κ�
1 ν2ν3

= 0

for the equilibrium of [neg ]. 
�

3.2 Approximate variance and Fano factor for the amount of protein

Our goal is to derive the variance in protein numbers under [neu], [neg ] and [pos].While
[neu] is solved explicitly elsewhere, e.g. in Paulsson (2005), some approximations have
to be made for [neg ] and [pos]. One idea might be to use a Langevin approximation
and write

V N
P (t) ≈ V N

P (0) +
∫ t

0

(
κ3V

N
R (s) − ν3V

N
P (s)

)
ds

+ 1√
N

∫ t

0

√
κ3V N

R (s) + ν3V N
P (s)dWs

≈ V N
P (0) +

∫ t

0
F
(
V N
P (s)

)
ds + 1√

N

∫ t

0

√
b
(
V N
P (s)

)
dWs

with

b(VP ) = κ3Eπ [VR] + ν3VP =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mκ+
1 κ2κ3

ν2
(
κ−
1 +κ+

1

) + ν3VP for [neu],
Mκ+

1 κ2κ3

ν2
(
κ�
1 VP+κ+

1

) + ν3VP for [neg ],
Mκ⊕

1 κ2κ3VP

ν2
(
κ−
1 +κ⊕

1 VP
) + ν3VP for [pos].
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Limits of noise for autoregulated gene expression 1161

Comparing V N
P and vP , where vP is the exact solution of v̇P = F(vP ) = κ3Eπ [VR]−

ν3vP with F from Theorem 1, we assume that V N
P ≈ vP + 1√

N
U for some stochastic

processU . The random processU will then account for the fluctuations which are not
captured by the deterministic approximation above. Hence,

1√
N
dU = dV N

P − dvP ≈
(
F
(
V N
P

)
− F(vP )

)
dt + 1√

N

√
b
(
V N
P

)
dW

≈ F ′(vP )
(
V N
P − vP

)
dt + 1√

N

√
b
(
V N
P

)
dW

≈ 1√
N

(
F ′(vP )Udt +

√
b
(
V N
P

)
dW

)

and therefore

dV N
P = dvP + 1√

N
dU ≈

(
F(vP ) + 1√

N
F ′(vP )U

)
dt + 1√

N

√
b
(
V N
P

)
dW. (7)

This approach builds on applying a quasi-steady-state assumption whenever possible,
i.e. when averaging over the on/off-state of genes in order to derive the deterministic
dynamics of vP using F , and the number ofmRNA,which is approximated by itsmean
in order to derive b. Consequently, fluctuations arising from these two mechanisms
cannot be accounted for in the resulting variance. As a result, fluctuations read off
from (7) will be too small.

In contrast, as an application of Kang et al. (2014) (see also Appendix A), we
derive the following central limit result, which takes into account all fluctuations in
leading order. Precisely, our next goal is to show that

√
N (V N

P − vP ) converges and
to determine the limiting process. This limit will then provide the error due to noise
between the deterministic approximation vP and the stochastic process V N

P of order√
N . In the proof, we will make use of the method developed by Kang et al. (2014).

Theorem 2 (Central Limit Theorem) Let V N
P , vP and F be as in Theorem 1 and

assume further weak convergence of the initial conditions:

√
N
(
V N
P (0) − vP (0)

)
N→∞���⇒ U (0).

Then, for the models [neu], [neg ] and [pos],√N
(
V N
P − vP

) N→∞���⇒ U, whereU solves

U (t) = U (0) +
∫ t

0

√
c(vP (s))dW (s) +

∫ t

0
F ′(vP (s))U (s)ds, (8)
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with W the one-dimensional standard Brownian motion and

c(vP ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mκ+
1 κ2κ3

ν2
(
κ−
1 + κ+

1

)
(

2κ−
1 κ2κ3

ν2
(
κ−
1 + κ+

1

)2 + 2κ3
ν2

+ 1

)
+ ν3vP for [neu],

Mκ+
1 κ2κ3

ν2
(
κ�
1 vP + κ+

1

)
(

2κ�
1 vPκ2κ3

ν2
(
κ�
1 vP + κ+

1

)2 + 2κ3
ν2

+ 1

)
+ ν3vp for [neg ],

Mκ⊕
1 κ2κ3vP

ν2
(
κ−
1 + κ⊕

1 vP
)
(

2κ−
1 κ2κ3

ν2
(
κ−
1 + κ⊕

1 vP
)2 + 2κ3

ν2
+ 1

)
+ ν3vP for [pos].

(9)

Hence, we see that, in contrast to the Langevin approach (7) above, fluctuations
arising from gene switching and RNA dynamics are also accounted for in Theorem 2;
see also Sect. 3.3 for an interpretation of the individual terms. For the difference
between the Langevin approximation and our result and its implications see also
Sect. 4.3.

The proof of the Theorem is given in Appendix B. Briefly, we apply the stochastic
averaging principle onmultiple time scales developed in Kang et al. (2014). Thewhole
approach is revisited in Appendix A. There we also state the conditions which need
to be satisfied for the theory to apply. Amongst others these include solving a certain
Poisson equation which enables a clean time-scale separation.

Remark 1 (Deriving the Fano factor in equilibrium) While (8) provides a dynamical
result along paths of XP , we can also use this approximation and study the process in
equilibrium by setting XP (0) = v∗

P N , where v∗
P is the unique solution of F(vP ) = 0

given by (5).
In order to compute the approximate variance ofV N

P , when started in the equilibrium
v∗
P , we make use of the fact that the stochastic differential equation (SDE) in (8) is

solved by an Ornstein–Uhlenbeck process. In particular, we obtain at late times, i.e.
when the process reached its equilibrium (recall that XN

P = NV N
P is the total number

of proteins)

V[XP ]
E[XP ] ≈ NV[V N

P ]
E[V N

P ] ≈ V[U ]
v∗
P

≈ − c(v∗
P )

2F ′(v∗
P )v∗

P
(10)

with F(·) from (4), v∗
P from (5) and c(·) from (9). Since no factor N appears on

the right hand side, some authors call the Fano factor dimensionless. Empirically, it
was found e.g. by Bar-Even et al. (2006), that for all classes of genes and under all
conditions, the variance in protein numbers was approximately proportional to the
mean, which is again reminiscent of the lacking N in the Fano factor above.

We note here that this approach of computing the Fano factor of XN
P in equilibrium

was achieved by an unjustified exchange of limits. Namely, for the approximate Fano
factor of XN

P in equilibrium, we would have to perform t → ∞ first, and only then
compute N → ∞, but our approach exchanged this limit.
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Limits of noise for autoregulated gene expression 1163

In order to compute the right hand side of (10), note that

F ′(vP ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ν3 for [neu],

−Mκ+
1 κ2κ3

ν2

κ�
1(

κ�
1 vP + κ+

1

)2 − ν3 for [neg ],

Mκ⊕
1 κ2κ3

ν2

κ−
1(

κ−
1 + κ⊕

1 vP
)2 − ν3 for [pos].

(11)

Plugging in the equilibrium v∗
P from (5) for [neg ] and [pos], we obtain in particular

that

v∗
P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mκ+
1 κ2κ3

ν2ν3
(
κ�
1 v∗

P + κ+
1

) for [neg ],
Mκ⊕

1 v∗
Pκ2κ3

ν2ν3
(
κ−
1 + κ⊕

1 v∗
P

) for [pos]

and therefore

F ′(v∗
P ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ν3

(
1 + κ�

1 v∗
P

κ�
1 v∗

P + κ+
1

)
for [neg ],

−ν3

(
1 − κ−

1

κ−
1 + κ⊕

1 v∗
P

)
for [pos].

(12)

In addition,

c(v∗
P ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Mκ+
1 κ2κ3

ν2
(
κ−
1 + κ+

1

)
(

κ−
1 κ2κ3

ν2
(
κ−
1 + κ+

1

)2 + κ3

ν2
+ 1

)
for [neu],

2Mκ+
1 κ2κ3

ν2
(
κ�
1 v∗

P + κ+
1

)
(

κ�
1 v∗

Pκ2κ3

ν2
(
κ�
1 v∗

P + κ+
1

)2 + κ3

ν2
+ 1

)
for [neg ],

2Mκ⊕
1 κ2κ3v

∗
P

ν2
(
κ−
1 + κ⊕

1 v∗
P

)
(

κ−
1 κ2κ3

ν2
(
κ−
1 + κ⊕

1 v∗
P

)2 + κ3

ν2
+ 1

)
for [pos].

(13)

Hence, plugging these quantities into (10) gives (with X∗
P = Nv∗

P ; see also (42) for
the Fano factor in terms of unscaled parameters)
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V[XP ]
E[XP ] ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ−
1 κ2κ3

ν2
(
κ−
1 + κ+

1

)2 + κ3

ν2
+ 1 for [neu],

(
κ�
1 v∗

Pκ2κ3

ν2(κ
−
1 v∗

P + κ+
1 )2

+ κ3

ν2
+ 1

)/(
1 + κ�

1 v∗
P

κ�
1 v∗

P + κ+
1

)
for [neg ],

(
κ−
1 κ2κ3

ν2
(
κ−
1 + κ⊕

1 v∗
P

)2 + κ3

ν2
+ 1

)/(
1 − κ−

1 ν2ν3

Mκ⊕
1 κ2κ3

)
for [pos].

(14)

3.3 Interpretation of the Fano factor

The expressions above in Eq. (14) are not only a result from strict calculations but can
also be interpreted in biological terms. For instance, for negative feedback,we find—as
in the neutral case—contributions from randomness in gene switching, translation and
transcription.Moreover, the negative feedbackpushes the amount of protein faster back
to its equilibrium value for a burst of gene expression. This results in the denominator
in

Vneg [XP ]
Eneg [XP ]

=
(

κ�
1 v∗

Pκ2κ3

ν2
(
κ�
1 v∗

P + κ+
1

)2
︸ ︷︷ ︸

effect of RNA noise, orig-

inating from switching in

gene activity

+ κ3

ν2︸︷︷︸
effect of individual

RNA noise

+ 1︸︷︷︸
protein

births

and

deaths

)/ (
1 + κ�

1 v∗
P

κ�
1 v∗

P + κ+
1

)

︸ ︷︷ ︸
fast back pushing due to neg-

ative feedback

,

(15)

which has the biggest noise-reducing effect of negative feedback which we will study
hereafter.

Adjusted explanations hold in the cases of no or positive feedback.

3.4 Comparing the noise in [neu], [neg] and [pos]

It is frequently reported that a negative feedback in gene expression results in a reduced
variance (noise) of protein levels, whereas a positive feedback enhances noise (Lestas
et al. 2010; Hornung and Barkai 2008). These observations can bemade precise by our
results from above. Here, we report some consequences on the equilibrium variance
and the Fano factor, V[XP ]/E[XP ].

For a fair comparison, we use the models [neu], [neg ] and [pos] for equal values
of v∗

P . Consider a model [neu] with parameters κ+
1 , κ−

1 , κ2, κ3, ν2, ν3 and let v∗
P be

the equilibrium from (5). In addition, consider a model [neg ] with κ�
1 := κ−

1 /v∗
P and

all other parameters as above and a model [pos] with κ⊕
1 := κ+

1 /v∗
p and all other
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(a) (b)

Fig. 1 Simulations and theoretical results with a fixed mean of proteins, a Nv∗
P = 1250, b Nv∗

P =
60. The gene association and dissociation rates are varied, i.e. in (a) κ−

1 = (0.2, 0.4, . . . , 2) and in (b)
κ−
1 = (1, 2, . . . , 7). The gene association rate κ+

1 is then chosen such that the protein mean equals 1250
or 60 in each case, respectively. Furthermore, these rates are adjusted in the cases of negative and positive
feedback according to κ�

1 := κ−
1 /v∗

P and κ⊕
1 := κ+

1 /v∗
P , respectively. The other parameters are given by

M = 1, N = 100, κ2 = 3, ν2 = 1, κ3 = 5 and ν3 = 1 in (a). For figure (b) we chose parameters as in
(Anderson and Kurtz 2015, Figure 2.1), i.e. M = 1, N = 100, κ2 = 2, ν2 = 0.25, κ3 = 0.1, ν3 = 1. The
solid, dotted, dashed lines are the theoretical predictions in the no, positive and negative feedback cases,
respectively. Each data point is derived from 1000 Monte Carlo simulations (cf. Gillespie 1977) of the full
system given by [neu], [neg ] and [pos]

parameters as above. Then, from (4), we see that all models have v∗
P as their unique

deterministic limit with the same c(v∗
P ) from (13). Setting Vneu , Vneg and Vpos as the

variance of the model without, with negative and with positive feedback, respectively,
and plugging in all quantities in (14) then gives (note that the mean cancels out; see
(43) for a version with unscaled parameters)

Vneg [XN
P ]

Vneu [XN
P ] ≈Vneg [V N

P ]
Vneu [V N

P ] ≈
(
1 + κ�

1 v∗
P

κ�
1 v∗

P + κ+
1

)−1

,

Vpos [XN
P ]

Vneu [XN
P ] ≈Vpos [V N

P ]
Vneu [V N

P ] ≈
(
1 − κ−

1

κ−
1 + κ⊕

1 v∗
P

)−1

.

(16)

In particular, we see that the variance is reduced in [neg ] and increased in [pos], as
expected; see also Fig. 1. Moreover, the graphs show that the performed simulations
fit our predictions well for both higher (a) and lower (b) values of v∗

P .
Additionally, we see from Eq. (16) that the change in noise is maximal if the gene is

offmost of the time, while still having the same amount of protein as in the unregulated
(neutral) case. This finding is reminiscent of the fact that gene expression comes in
bursts. The burstiness is most extreme if the gene is on only for a short time, producing
a large amount of mRNA, and afterwards off for a long period. Especially, we see that
for κ�

1 → ∞ the maximal reduction due to negative feedback is twofold while the
increase in noise is unbounded for κ−

1 → ∞ in case of positive auto-regulation of the
protein.
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3.5 Negative feedback in a simpler model

In the literature simpler models of gene expression are studied as well. Here, only two
molecular species are involved. Either, the gene is constitutively expressed, therefore
ignoring the state of the gene, or translation is neglected and the gene is assumed to
be transcribed leading to protein in one step (Hornos et al. 2005; Ramos et al. 2015,
2011; Shahrezaei and Swain 2008). In either case, we have the model similar to

off
λ+
1

GGGGGA on on
λ−
1

GGGGGA off

on
λ3

GGGGGA on+P P
μ3

GGGGGA ∅

for [neu], whereas for [neg ] and [pos], we take (∗neg ) and (∗pos ) instead of the first
line, respectively. We note that this model arises from the full model described in
(∗neu ), (∗neg ) and (∗pos ), when letting ν2 = κ2 → ∞. Hence, we obtain the following
approximation for the simpler model

V[XP ]
E[XP ] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

κ−
1 κ3(

κ−
1 +κ+

1

)2 + 1 for [neu],
(

κ�
1 v∗

Pκ3(
κ�
1 v∗

P+κ+
1

)2 + 1

)/(
1 + κ�

1 v∗
P

κ�
1 v∗

P+κ+
1

)
for [neg ],

(
κ−
1 κ3(

κ−
1 +κ⊕

1 v∗
P

)2 + 1

)/(
1 − κ−

1
κ−
1 +κ⊕

1 v∗
P

)
for [pos].

(17)

When comparing these equations with (15) we see that all the terms containing explicit
mRNA noise disappeared. Thus, we still have contributions from gene activation and
protein production and degradation as well as the scaling factor due to the auto-
regulation.

3.6 Refining the Fano factor

Here, we again consider the original model given by equations (∗neu ), (∗neg ) and (∗pos ),
but use a different scaling for the mRNA. We assume that not only the protein evolves
on the slow time-scale but also themRNAproduction and degradation. This is a slightly
more complex model since we cannot average the number of mRNA molecules when
analyzing the protein fluctuations. This model allows us to compare our results in a
more straightforwardwaywith results obtained previously in Thattai andOudenaarden
(2001), Swain (2004); see Sects. 4.2 and 4.3.

In order to account for the new scalingwe setμ2 = O(1) and λ3 = O(1). As scaled
variables, we introduce ν̃2 = μ2 and κ̃3 = λ3. In this model, we have XR = O(N ),
but still XP = O(N ). With these assumptions it is possible to derive a refined formula
for the Fano factor for XP in equilibrium. Precisely, we compute in Appendix D—see
Eqs. (37), (39) and (40)
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V[XP ]
E[XP ] ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

κ−
1 κ2κ̃3(

κ−
1 +κ+

1

)2
(̃ν2+ν3)

+ κ̃3
ν̃2+ν3

+ 1 for [neu],
(

αneg
ν3

ν̃2+ν3
+ α2

negκ2κ̃3

κ�
1 v∗

P (̃ν2+ν3)
+ κ̃3

ν̃2+ν3
+ 1

)/
(1 + αneg ) for [neg ],

(
−αpos

ν3
ν̃2+ν3

+ α2
posκ2κ̃3

κ−
1 (̃ν2+ν3)

+ κ̃3
ν̃2+ν3

+ 1

)/
(1 − αpos ) for [pos],

(18)

with

αneg = κ�
1 v∗

P

κ�
1 v∗

P + κ+
1

, αpos = κ−
1

κ−
1 + κ⊕

1 v∗
P

.

Note that this equation approximately gives (14) for ν̃2, κ̃3 � 1. However, adding
interpretations as in Sect. 3.3 is not straight-forward since the additional terms in
(18) stem from interactions between RNA and protein dynamics. In practice (and in
our simulations below), the life-time of proteins is much larger than the life-time of
mRNA, such that (18) does not produce a better fit than (14); see also Fig. 2 and
compare the dash-dotted and the solid line. Therefore, when not stated otherwise, we
will use (14) in the sequel.

4 Comparison to previous results

Here, we compare our results in the neutral case with those obtained in Paulsson
(2005), and in the case of negative feedback with the formulas for the Fano factor
derived in Dessalles et al. (2017), Ramos et al. (2015), Swain (2004) and Thattai and
Oudenaarden (2001).

4.1 The neutral case, Paulsson (2005)

In Paulsson (2005) the neutral model [neu] was studied without assuming any scal-
ings of the parameter λi , μi or of the number of mRNA molecules or proteins.
Setting

τ1 = 1

λ−
1 + λ+

1

, τ2 = 1

μ2
, τ3 = 1

μ3
,

as the expected life-times of a change in gene activity,mRNAand protein, respectively,
we see that the Fano factor in equilibrium obeys (see equation (4) in Paulsson (2005))
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1168 P. Czuppon, P. Pfaffelhuber

V[XP ]
E[XP ] = 1 + λ3

μ3

τ2

τ2 + τ3
+ E[XP ]λ−

1

Mλ+
1

τ1

(τ2 + τ3)(τ1 + τ3)

τ1τ2 + τ2τ3 + τ1τ3

τ1 + τ2

τ3�τ1,τ2≈ 1 + λ3

μ2
+ λ−

1 λ2λ3

μ2μ3(λ
−
1 + λ+

1 )

τ1

τ3
= 1 + λ3

μ2
+ λ−

1 λ2λ3

μ2(λ
−
1 + λ+

1 )2
.

The approximation in the last line corresponds to our scaling, which is exactly such
that τ3 � τ1, τ2 (sinceμ3 � μ1, μ2), i.e. the protein is muchmore stable than mRNA
and the state of the gene. Thus, our approximation of the Fano factor in Eq. (14) (or
rather its version in unscaled parameters in Eq. (42)) is in line with (Paulsson 2005).

4.2 Negative feedback, Thattai and Oudenaarden (2001)

In Thattai and Oudenaarden (2001), a linearization of [neg ] was studied in the case
of fast on- and off-switching of the gene. In particular, this will mean that both,
κ−
1 , κ+

1 � 1. In the following, we derive their result within our framework. Therefore,
consider as in the proof of Theorem 1 that

Eπ [Von] = Mκ+
1

κ�
1 vP + κ+

1

.

Then, averaging out the gene state, we obtain the following system (compare with
(•neg ))

V N
R (t) = V N

R (0) + Y3

(
N
∫ t

0
κ2

Mκ+
1

κ�
1 V N

P (s) + κ+
1

ds

)
− Y4

(
N
∫ t

0
ν2V

N
R (s)ds

)
,

V N
P (t) = V N

P (0) + N−1Y5

(
N
∫ t

0
κ3V

N
R (s)ds

)
− N−1Y6

(
N
∫ t

0
ν3V

N
P (s)ds

)
.

(19)

Assuming, like in Thattai and Oudenaarden (2001), that the equilibrium effective
mRNA-production is a linear function, i.e. letting

κ�
1 v∗

P � κ+
1 , (20)

such that we basically model a constitutively expressing gene, we can further approx-
imate V N

R by

V N
R (t)=V N

R (0)+Y3

(
N
∫ t

0
Mκ2

(
1− κ�

1

κ+
1

V N
P (s)

)
ds

)
−Y4

(
N
∫ t

0
ν2V

N
R (s)ds

)
.

(21)
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Now, the system (19) and (21) is exactly as on p. 3 in Thattai and Oudenaarden (2001)
with

k0 = NMκ2, k1 = Mκ�
1 κ2

κ+
1

, kP = Nκ3, γR = Nν2, γP = ν3.

Plugging these variables into equation (3) of Thattai and Oudenaarden (2001) we
obtain in equilibrium with

η = γP

γR
= ν3

Nν2
, b = kP

γR
= κ3

ν2
, φ = k1

γP
= Mκ�

1 κ2

κ+
1 ν3

that (note that η is negligible since N is large and φ is small by (8))

1

N
E[XP ] = 1

N

(
1

1 + bφ

)
k0b

γP
≈
(
1 − Mκ�

1 κ2κ3

κ+
1 ν2ν3

)
Mκ2κ3

ν2ν3

V[XP ]
E[XP ] =

(
1 − φ

1 + bφ
· b

1 + η
+ 1

)
≈ 1 + b(1 − φ)(1 − bφ)

≈ (1 + b)(1 − bφ) =
(
1 + κ3

ν2

)(
1 − M

κ2κ3

ν2ν3

κ�
1

κ+
1

)

≈
(
1 + κ3

ν2

)(
1 − κ�

1

κ+
1

v∗
P

)
. (22)

Considering our scaling assumption, and further assuming (20), Eq. (14) can be sim-
plified to

V[XP ]
E[XP ] ≈

(
κ�
1 v∗

Pκ2κ3

(κ+
1 + κ�

1 v∗
P )2ν2

+ κ3

ν2
+ 1

)(
1 + κ�

1 v∗
P

κ�
1 v∗

P + κ+
1

)−1

≈
(
1 + κ3

ν2

)(
1 − κ�

1 v∗
P

κ+
1

)

which equals the expression from (22). The results of this approximation are compared
to our result in Fig. 2.

Recalling our exact result for the Fano factor from Eq. (14), we note that due to the
linearization of themRNAexpression and thus a basically constantmRNAproduction,
the noise emerging from the random gene switches is not adequately represented in the
formula obtained in Thattai and Oudenaarden (2001). To be more precise, in contrast
to our formula in (14), the effect of mRNA noise due to gene switching (first term
in first bracket) is not taken into account at all. Additionally, the negative feedback
(last bracket in (22)) does not affect the noise in the same way as it does in the exact
formula (14). As can be seen in Fig. 2, when comparing the solid and the dashed lines,
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these effects lead to an underestimation of the actual noise which is produced by an
exact simulation of [neg ].

4.3 Negative feedback, Swain (2004)

As explained around (7), the usual Langevin approximation cannot account for all fluc-
tuations when a quasi-steady-state assumption is made. (Precisely, it cannot account
for fluctuations in the averaged variables.) In Swain (2004), a Langevin approach is
carried out in order to analyze fluctuations in autoregulatory gene expression in the
cases of transcriptional and translational feedback. The author considers the mRNA
and the protein to evolve on the same time-scale whereas the gene (or DNA) is consid-
ered to be on a faster time-scale, see also Sect. 3.6. For transcriptional feedback (which
we study here), Swain obtains in his equation (5)—see below for the transformation
of his results into our parameters (unscaled, and scaled)

V[XP ]
E[XP ] =

(
αneg

μ3

μ2 + μ3
+ λ3

μ2 + μ3
+ 1

)/
(1 + αneg )

=
(

αneg
ν3

ν̃2 + ν3
+ κ̃3

ν̃2 + ν3
+ 1

)/
(1 + αneg )

(23)

with αneg = κ�
1 v∗

P
κ�
1 v∗

P+κ+
1
. This corresponds exactly to (18)—see also Eq. (44) in

Appendix E for the unscaled version–with a missing term in the numerator, namely
α2
negκ2κ̃3

κ�
1 v∗

P (̃ν2+ν3)
. This term arises from fluctuations in gene activation, which was averaged

out in calculations done in Swain (2004). At least, (23) arises from (18) if we assume
that κ�

1 v∗
P , κ+

1 � 1, i.e. fast gene switching.
For a comparison of the two results we refer to the solid and dotted lines in Fig. 2

where we see that due to the missing term in the approximation obtained by Swain,
his result slightly underestimates the Fano factor resulting from simulations of [neg ].
However, the difference becomes smaller for a lower number of expected proteins,
see Fig. 2b. This can be explained by the difference between Eqs. (23) and (18). The
missing term in Swain’s derivation can be related to noise emerging from the gene
switching. These processes however are given by the overall parameter configuration.
Hence the larger difference between the solid and dotted lines in (a) when compared to
(b) simply emerges from the corresponding term in (a) being larger than in (b). Thus,
it therefore has a stronger effect on the overall fluctuations in protein numbers.

In order to obtain Eq. (23), reference (Swain 2004) uses d0 = ν̃2, d1 = ν3, v1 =
κ̃3, 〈M〉 = κ+

1 κ2

(κ�
1 v∗

P )̃ν2
and

εc = 2

1 +
√
1 + 4

κ�
1 κ2κ̃3

κ+
1 ν̃2ν3
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(a) (b)

Fig. 2 Simulations and theoretical results of gene expression with negative feedback. The mean given on
the x-axis is varied and plotted against the Fano factor on the y-axis. The solid line represents (14), the
dash-dotted line the result in (18), the dashed line the result from Thattai and Oudenaarden (2001) given
in (22) and the dotted line the Fano factor calculated in Swain (2004) given in (23). The parameters for
the simulations are chosen as follows: a M = 1, N = 100, λ+

1 = 250, λ�
1 = (0.2, 0.4, . . . , 4), λ2 =

300, μ2 = 100, λ3 = 500, μ3 = 1; b M = 1, N = 100, λ+
1 = 300, λ�

1 = (1, 2, . . . , 15), λ2 =
200, μ2 = 25, λ3 = 10, μ3 = 1. The bullets represent the estimated Fano factors of the full system [neg ]
obtained from 1000 Monte Carlo simulations (cf. Gillespie 1977) in (a) and 5000 in (b) for each value of
λ�
1

for the Fano factor for the auto-regulatory gene expression with negative (transcrip-
tional) feedback. Expressing terms as in Sect. 3.6, we rearrange his equation (5) (recall
(5) and note that v∗

P/Eπ [VR] = κ̃3/ν3; see (6)) with M = 1

Vneg [XP ]
Eneg [XP ] = 1 + ν3v

∗
P

(̃ν2 + ν3)Eπ [VR]

⎛
⎜⎜⎝1 −

√
1 + 4

κ�
1 κ2κ̃3

κ+
1 ν̃2ν3

− 1

2

√
1 + 4

κ�
1 κ2κ̃3

κ+
1 ν̃2ν3

(
1 + ν̃2

κ̃3

)⎞⎟⎟⎠

= 1 + κ̃3

(̃ν2 + ν3)

(
1 − κ−

1 v∗
P

2κ−
1 v∗

P + κ+
1

(
1 + ν̃2

κ̃3

))

=
(
κ−
1 v∗

P + κ+
1

) (
1 + κ̃3

ν̃2 + ν3
+ κ−

1 ν3v
∗
P

(̃ν2+ν3)
(
κ−
1 v∗

P+κ+
1

)
)
�
(
2κ−

1 v∗
P+κ+

1

)

=

(
1 + κ̃3

ν̃2 + ν3
+ κ−

1 ν3v
∗
P

(̃ν2 + ν3)
(
κ−
1 v∗

P + κ+
1

)
)
�
1 + κ−

1 v∗
P

κ−
1 v∗

P + κ+
1

,

showing (23).
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4.4 Negative feedback, Dessalles et al. (2017)

Our result for [neg ] has Theorem 2 of Dessalles et al. (2017) as a limit result. They
study a similar model (with M = 1), but with a scaling such that λ3, μ3 = O(1)
and λ�

1 = O(N ), leading to low (i.e. O(1)) abundance of protein in the system.
Assuming the same time-scale separation as in our model, i.e. gene switching and
mRNA processes evolve on a fast time-scale, the resulting birth–death process for P
has a stationary distribution which they compute explicitly. Moreover, setting

ρ = λ+
1 λ2λ3

λ�
1 μ2μ3

,

they obtain in their Corollary 4.1 that, in equilibrium,

V[XP ]
E[XP ]

ρ→∞≈ 1

2
. (24)

For large ρ, our model simplifies to v∗
P ≈ √

ρ, and then (14) gives the same limit.

4.5 Negative feedback in a simpler model, Ramos et al. (2015)

In Ramos et al. (2015), the authors derive in their equation (11) the Fano factor for the
simplified model, which we introduced in Sect. 3.5. (We note that their model slightly
differs since the protein binds to the gene and therefore cannot degrade in this state.)
Their results connect the Fano factor to the covariance of the number of active genes
and the number of proteins in equilibrium. Since they also give the limiting distribution
(in terms of a confluent hypergeometric function), they can evaluate this covariance
and also the Fano factor numerically. From their Figure 2, one can see that—if proteins
are somewhat abundant—the Fano factor stabilizes around 1/2 for various parameter
combinations; a result reminiscent of Dessalles et al. (2017) as discussed above.

4.6 Negative feedback for small amounts of protein

Theorems 1 and 2—and all subsequent calculations—only hold under the scaling
described in �∗ or in Appendix D. In these scalings, we have that XP = O(N ), i.e.
there the protein is abundant. In this case, we see from (14) that the Fano factor is
at least 1/2. In Sect. 4.4, we discussed the results by Dessalles et al. (2017), where
XP = O(1) is used, but the limiting result for ρ → ∞ implies that proteins are
abundant and leads to a Fano factor of at least 1/2.

However, the scaling of Dessalles et al. (2017) also allows for smaller values for the
Fano factor, which is called the infra-Fano regime in Ramos et al. (2015). Precisely,
consider the model from Dessalles et al. (2017), where the scaling

λ+
1 , λ�

1 , λ2, μ2 = O(N ), λ3, μ3 = O(1)
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is used. It is shown that XP converges towards a birth–death process with

death rates δn := μ3n and birth rates βn := λ3

μ2

λ2λ
+
1

λ+
1 + λ�

1 n
,

if there are n proteins. For this process, they compute the equilibrium distribution

π(n) = 1

Z

n−1∏
i=0

ρ

(i + 1)(i + λ+
1 /λ�

1 )

with ρ = λ+
1 λ2λ3/(λ

�
1 μ2μ3) and Z as a normalizing constant. In this case, one can

see that for λ�
1 � λ+

1 , π is concentrated around 1, i.e. there is a single molecule of the
protein and hence, the Fano factor becomes arbitrarily small. Since this in particular
means a Fano factor below 1/2, Ramos et al. (2015) call this the infra-Fano regime.

5 Conclusion

Quantifying noise in gene expression is essential for understanding regulatory net-
works in cells (Thattai and Oudenaarden 2001). Our results capture most of the
previously derived results. While negative feedback is known to reduce noise under
auto-regulated gene expression, we improve on the quantification of this effect, i.e.
our results account for all possible sources of noise due to gene activation, mRNA
fluctuations and the protein processes itself. We note that our results require that pro-
teins are abundant. Since the infra-Fano regime described in Sect. 4.6 relies on small
amounts of protein, our results do not recover this regime.

In addition, we provide the same quantification of noise also for positive feedback,
where noise is increased. In particular, (14) shows that the average time the gene is off
determines the reduction of noise in all cases relative to unregulated genes; see also
Grönlund et al. (2013). As we saw earlier, for both, negative and positive feedback,
noise difference between the non-regulated and the model with feedback is largest
if the gene is off most of the time. This can be interpreted by the burstiness of gene
expression. It is largest for genes which are off for long times and then turned on for
a short time in which mRNA is produced. Interestingly, previous approaches mostly
gave approximations for noise for negative feedback if switching the gene on and off
is very fast (Thattai and Oudenaarden 2001; Swain 2004) and if the gene is on most
of the time (Thattai and Oudenaarden 2001) or in a simplified model (Ramos et al.
2015). Hence, all previous papers could not have seen the effects of gene activation
switching on protein noise. As in previous results also obtained in Dessalles et al.
(2017), we find that in the limit where the gene is off most of the time, the negative
feedback reduces noise at most by a factor of two. Additionally we find that noise can
increase unboundedly for positive feedback.

Today, quasi-steady-state assumptions are frequently usedwhenanalyzing chemical
reaction networks.While the intuition suggests the correct approachwhen approximat-
ing the system by a deterministic path, studying fluctuations is apparently much less
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1174 P. Czuppon, P. Pfaffelhuber

obvious. In Kim et al. (2015), some special cases are studied when a straight-forward
approximation of the fluctuations works. In our analysis, we use a new approach by
Kang et al. (2014) and can also interpret all terms arising in (14), see Sect. 3.3.

Due to taking into account all potential sources of fluctuations the fit of simulations
and theory (see e.g. Fig. 2) is excellent and improves on previous studies. There, noise
arising from the gene switching its state has been averaged out, and only the recent
approach of Kang et al. (2014) reveals the impact of these stochastic processes on the
noise in protein numbers.

In their paper, Kang et al. (2014) gave as an example an approximation of noise
for Michaelis–Menten kinetics and a model for virus infection. Their method relies
mostly on solving a Poisson equation L2h = FN − F , where L2 is the generator of
the fast subsystem (gene and RNA in our example), FN and F describe the evolution
of the slow system (protein) including all fluctuations and in the limit using the quasi-
steady-state assumption, respectively. We stress that this approach is not only useful
for equilibrium situations, but also for understanding noise if the slow system has not
reached equilibrium yet, e.g. after a cell division.

It was argued that complexity of gene regulatory networks leads to a reduction in the
level of noise, while certain network motifs always lead to increased levels of noise
(Becskei and Serrano 2000; Cardelli et al. 2016). Experimentally, gene expression
noise can be used to understand the dynamics of gene regulation (Munsky et al. 2012).
Our analysis should provide an approach for distinguishing between different models
of gene regulation based on measurements of noise levels.
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A Recalling the approach of Kang et al. (2014)

We will consider a general system of chemical reactions with S as the set of chemical
species and K the set of reactions; see also Anderson and Kurtz (2015) for further
reference. The chemical reactions have the form

νk
λk

GGGGGA ν′
k, k ∈ K, (25)

where νk = (νks)s∈S and ν′
k = (ν′

ks)s∈S are vectors of chemical species, i.e. elements
of N

S . For the dynamics, we assume mass action kinetics, i.e. we set

Λk(x) = λk x
νk := λk

∏
s∈S

xνks
s
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for the reaction rate of reaction k ∈ K. With

ζk := ν′
k − νk,

we can then define the dynamics of the Markov process X = (Xs)s∈S through the
process Rk , which describes the number of occurrences of reaction k up to time t . We
have

Rk(t) = Yk

(∫ t

0
Λk(X (s))ds

)

for independent unit rate Poisson processes Yk, k ∈ K and therefore

X (t) = X (0) +
∑
k∈K

ζk Rk(t) = X (0) +
∑
k∈K

ζkYk

(∫ t

0
Λk(X (s))ds

)
. (26)

We will tailor the results of Kang et al. (2014) to the special case we need in our gene
expression example. This means that we can make use of several simplifications, e.g.
on the form of the infinitesimal generator of the full process.

For some scaling parameter N , assume that X = XN = (XN
s , XN

f ) is a Markov
jumpprocesswith state spaceN

ds×N
df such that forV N = (V N

s , V N
f )withV N

f = XN
f

and V N
s = XN

s /N , the system V N
s is a slow (rescaled) sub-system and V N

f is a fast
sub-system. We assume that the generator LN of XN has the form

LN = LN
1 + NLN

2 , (27)

where LN
2 describes the dynamics of V N

f , i.e. LN
2 f = 0 if f only depends on vs. Our

goal is to show convergence

V N
s

N→∞���⇒ Vs, (28)

UN := √
N
(
V N
s − Vs

)
N→∞���⇒ U (29)

for some Vs and U . Therefore, we proceed as follows.

1. We have that (with the projection πs on the slow species and FN := LNπs =
LN
1 πs)

MN
1 (t) := V N

s (t) − V N
s (0) −

∫ t

0
FN
(
V N
s (s), V N

f (s)
)
ds

is a (local) martingale. For the convergence (28), we assume that

∫ t

0
FN
(
V N
s (s), V N

f (s)
)

N→∞���⇒
∫ t

0
F (Vs(s)) ds
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1176 P. Czuppon, P. Pfaffelhuber

for some unique process Vs, which holds for

F(vs) = lim
N→∞ EρN

[
LNvs

]
, (➊)

where ρN is the equilibrium of V N
f for fixed slow species vs . Thus, the convergence

V N
s

N→∞���⇒ Vs holds with

Vs(t) = Vs(0) +
∫ t

0
F (Vs(s)) ds

and we have shown (28).
2. Note that

UN (t) −UN (0)

= √
N
(
V N
s (t) − Vs(t)

)
− √

N
(
V N
s (0) − Vs(0)

)

= √
N

(
MN

1 (t) +
∫ t

0

(
FN
(
V N
s (s), V N

f (s)
)

− F
(
V N
s (s)

))
ds

+
∫ t

0

(
F
(
V N
s

)
− F(Vs)

)
ds

)
.

Assume that we

find hN such that LN
2 h

N ≈ FN − F. (➋)

(The ‘≈’ is controlled by εN2 below. Note that this is a Poisson equation.) With

εN1 (t) := 1

N

(
hN
(
V N
s (t), V N

f (t)
)

− hN
(
V N
s (0), V N

f (0)
)

−
∫ t

0
LN
1 h

N
(
V N
s (s), V N

f (s)
)
ds

)
,

εN2 (t) := −
∫ t

0

(
LN
2 h

N
(
V N
s (s), V N

f (s)
)

−(FN
(
V N
s (s), V N

f (s)
)

− F
(
V N
s (s)

)
)
)
ds,

(30)

we obtain that

MN
2 (t) := εN1 (t) + εN2 (t) −

∫ t

0

(
FN
(
V N
s (s), V N

f (s)
)

− F
(
V N
s (s)

))
ds

is a (local) martingale. Hence

√
N
(
V N
s (t) − Vs(t)

)
− √

N
(
V N
s (0) − Vs(0)

)
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= √
N

(
MN ,1(t)−MN ,2(t)+εN1 (t)+εN2 (t) +

∫ t

0

(
F
(
V N
s

)
− F(Vs)

)
ds

)
.

We assume for εN1 , εN2 from (30) that

√
NεN1 ,

√
NεN2

N→∞���⇒ 0. (➌)

3. In order to show convergence of MN
1 − MN

2 , we use the Martingale Central Limit
Theorem; see Appendix A.1 in Kang et al. (2014). Note that since the quadratic
variationof all integrals

∫
dt vanishes,wefind that (recall the notation forChemical

Reaction Networks from (25)–(26), which we now equip with a superscript N to
account for the scaling constant), with z⊗2 = zz�

[√
N
(
MN

1 − MN
2

)]
t
= N

[
V N
s − 1

N

(
hN
(
V N
s , V N

f

))]
t

= 1

N

∑
k∈K

∫ t

0

(
ζks + hN

(
V N
s (s−), V N

f (s−)
)

−hN
(
V N
s (s−) + 1

N
ζks, V

N
f (s−) + ζkf

))⊗2

dRN
k (s),

where ζks and ζkf are the stochiometric changes of the kth reaction in the slow
and fast subsystem, respectively. Note that in all applications, we will have that
RN
k either changes slowly, or changes fast and can thus be approximated by a

deterministic curve, such that

lim
N→∞[√N (MN

1 − MN
2 )]t = lim

N→∞
1

N

∑
k∈K

∫ t

0

(
ζks+hN

(
V N
s (s), V N

f (s−)
)

−hN
(
V N
s (s)+ 1

N
ζks, V

N
f (s−)+ζkf

))⊗2

ΛN
k (s)ds.

Now, for the equilibrium ρN of the fast species for given concentration of slow
species, vs, if

1

N

∑
k∈K

EρN

[(
ζks + hN

(
vs, V

N
f

)
− hN

(
vs + 1

N
ζks, V

N
f + ζkf

))⊗2

ΛN
k (Vs)

]

N→∞���⇒ c(vs),
(➍)
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we have that

1

N

∑
k∈K

∫ t

0

(
ζks + hN

(
V N
s (s), V N

f (s−)
)

−hN
(
V N
s (s) + 1

N
ζks, V

N
f (s−) + ζkf

))⊗2
Λ

N
k

(
V N
s

)
ds

N→∞����⇒
∫ t

0
c(V (s))ds,

where the right hand side is a deterministic, absolutely continuous, R
s×s-valued

function with non-negative time-derivative. Hence we know from the martingale
central limit theorem (see Appendix A.1 in Kang et al. 2014) that

√
N (MN ,1 − MN ,2)

N→∞���⇒ M

where M satisfies

dM = √c(V (t))dW.

4. Concluding, if F ∈ C1(Rds) with

F
(
V N
s

)
− F(Vs) = 1√

N

(
∇F(Vs)U

N + o(1)
)

we find that, if UN N→∞���⇒ U , then

U (t) −U (0) =
∫ t

0
∇F(Vs(r))Urdr +

∫ t

0

√
c(V (r))dW.

This gives (29).

B Proof of Theorem 2

Proof Wewill make use of notation fromAppendix A and have to show (➊)–(➍) from
Appendix A in all cases. Note that the function F from Theorem 1 already satisfies
(➊). In all cases, the system (Von, VR, VP ) is a Markov process with a generator of
the form (27) with

LN
1 f (u, r, vP ) = κ3r N

(
f

(
u, r, vP + 1

N

)
− f (u, r, vP )

)

+ vPν3N

(
f

(
u, r, vP − 1

N

)
− f (u, r, vP )

)

= (κ3r − vpν3)
∂ f

∂vP
(u, r, vP ) + o(1)
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(and different operators LN
2 ). This already implies that for all cases

FN (r, vP ) = κ3r − ν3vP .

For [neu],
LN
2 f (u, r, vP ) = (M − u)κ+

1 ( f (u + 1, r, vP ) − f (u, r, vP ))

+ uκ−
1 ( f (u − 1, r, vP ) − f (u, r, vP ))

+ κ2u( f (u, r + 1, vP ) − f (u, r, vP ))

+ ν2r( f (u, r − 1, vP ) − f (u, r, vP )).

From (➋) and (4), we see that we need to solve

LN
2 h

N = κ3r − Mκ+
1 κ2κ3

ν2
(
κ−
1 + κ+

1

) .

Choosing the Ansatz

hN (u, r, vP ) = ug1(vP ) + rg2(vP ),

we obtain the following equation which we need to solve

(Mκ+
1 − u(κ+

1 + κ−
1 ))g1(vP ) + (κ2u − ν2r)g2(vP )

!= κ3r − Mκ+
1 κ2κ3

ν2
(
κ−
1 + κ+

1

) .

Solving for g2 and then for g1, we obtain

g2(vP ) = −κ3

ν2
, g1(vP ) = − κ2κ3

ν2
(
κ−
1 + κ+

1

) .

Then,
√
NεN1

N→∞���⇒ 0 since hN is bounded in N and εN2 = 0 by construction. Hence,
we have shown (➌). For (➍), if π is the equilibrium of the fast speciesU, R for given
value vP of the slow species as in Theorem 1, we have that

1

N

6∑
k=1

Eπ

[(
ζkP+hN (U, R, vP )−hN

(
U+ζkon, R+ζkr , vP+ 1

N
ζkP

))2

Λk(vP )

]

= 2(g1(vP ))2M
κ−
1 κ+

1

κ−
1 + κ+

1

+ (g2(vP ))2

(
Mκ+

1 κ2

κ−
1 + κ+

1

+ Mκ+
1 κ2

ν2
(
κ−
1 + κ+

1

)ν2
)

+
(

Mκ+
1 κ2κ3

ν2
(
κ−
1 + κ+

1

) + ν3vP

)

= Mκ+
1

κ−
1 + κ+

1

(
2κ−

1 κ2
2κ2

3

ν22 (κ
−
1 + κ+

2 )2
+ 2κ2κ2

3

ν22
+ κ2κ3

ν2

)
+ ν3vP .
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For [neg ], all calculations above are the same, but with κ−
1 replaced by κ�

1 vP , and for
[pos], all calculations are the same with κ+

1 replaced by κ⊕
1 vP . 
�

C The two-dimensional Ornstein–Uhlenbeck process

We recall results for the two-dimensional Ornstein–Uhlenbeck process; see e.g. Gar-
diner (2009). They are needed when refining the Fano factor in Appendix D.

Theorem 3 (Stationary variance of two-dimensional Ornstein–Uhlenbeck process)
Let X = (X1, X2) solve

dX = −AXdt + BdW,

where A, B ∈ R
2×2. Then, if all eigenvalues of A have positive real part, the stationary

solution X0 of the SDE has E[X0] = 0 and

E[X0X
�
0 ] = (A − (trA)E2)BB�(A� − (trA)E2) + (det A)BB�

2(det A)(trA)
.

Proof Using partial integration, it is easy to see that this SDE is solved by

Xt = e−At X0 +
∫ t

0
e−A(t−s)BdW.

If all eigenvalues of A have positive real part, the stationary solution of the SDE has
the distribution

X0 =
∫ 0

−∞
eAs BdWs .

In particular, E[X0] = 0 and

E[X0X
�
0 ] =

∫ 0

−∞
eAs BB�eA�sds.

In order to compute the right hand side, we note that, for any 2 × 2-matrix A =(
a b
c d

)
, we have that (for the unit matrix I2)

A2 =
(
a2 + bc ab + bd
ca + dc cb + d2

)
=
(

(a + d)a − (ad − bc) (a + d)b
(a + d)c (a + d)d − (ad − bc)

)

= (trA)A − (det A)I2.

Hence, we can write

eAs = αs + βs A, eA
�s = αs + βs A

�,
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i.e.

E[X0X
�
0 ] =

∫ 0

−∞
(αs + βs A)BB�(αs + βs A

�)ds

= αBB� + β(ABB� + BB�A�) + γ ABB�A�

= γ

(
A + β

γ

)
(BB�)

(
A� + β

γ

)
+
(

α − β2

γ

)
BB� (31)

for

α =
∫ 0

−∞
α2
s ds, β =

∫ 0

−∞
αsβsds, γ =

∫ 0

−∞
β2
s ds.

We then write

BB� =
∫ 0

−∞
d

ds
eAs BB�eA�sds = AE[X0X

�
0 ] + E[X0X

�
0 ]A�

= α(ABB� + BB�A) + 2βABB�A� + β(A2BB� + BB�(A�)2)

+ γ (A2BB�A� + ABB�(A�)2)

= (α − γ (det A))(ABB� + BB�A) + 2(β + γ (trA))ABB�A�

+ β(trA)(ABB� + BB�A�) − 2β(det A)BB�

= −2β(det A)BB� + 2(β + γ (trA))ABB�A�

+ (α + β(trA) − γ (det A))(ABB� + BB�A),

which is only possible if

1 + 2β(det A) = 0,

β + γ (trA) = 0,

α + β(trA) − γ (det A) = 0,

i.e.

α = det A + (trA)2

2(det A)(trA)
, β = − 1

2 det A
, γ = 1

2(det A)(trA)
.

Combining this with (31) then gives the result. 
�

Corollary 1 (Diagonal matrix B) Note that if

A =
(
a b
c d

)
, B =

(√
λ 0
0

√
ρ

)
,
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then

E[X0X
�
0 ] =

(
ρb2 + λ(d · tr(A) − bc) −(ρab + λcd)

−(ρab + λcd) ρ(a · tr(A) − bc) + λc2

)

2(ad − bc)(a + d)
.

Proof Indeed, A − tr(A)E2 =
(−d b

c −a

)
, so

(A − (trA)E2)BB
�(A� − (trA)E2) =

(−λd ρb
λc −ρa

)(−d c
b −a

)

=
(

ρb2 + λd2 −(ρab + λcd)

−(ρab + λcd) ρa2 + λc2

)
.


�

D Refining the Fano factor

Here, we study the case

λ3 = κ̃3, μ2 = ν̃2

which leads to XR = O(N ), such that we have the scaling αoff = αon = 0 and αR =
αP = 1; compare with (1). In particular, we use that—see (2)—VR = XR/N , VP =
XP/N . Here, Von = Xon is fast and (VR, VP ) are slow. Note that in this case, we have
that (V N

R , V N
P ) ⇒ (VR, VP ) with

d

dt
(VR, VP ) = F(VR, VP ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

Mκ+
1 κ2

κ−
1 + κ+

1

− ν̃2VR

κ̃3VR − ν3VP

⎞
⎟⎠ for[neu],

⎛
⎜⎝

Mκ+
1 κ2

κ�
1 VP + κ+

1

− ν̃2VR

κ̃3VR − ν3VP

⎞
⎟⎠ for[neg ],

⎛
⎜⎝

Mκ⊕
1 κ2VP

κ−
1 + κ⊕

1 VP
− ν̃2VR

κ̃3VR − ν3VP

⎞
⎟⎠ for[pos].

We will denote the unique solution of F(VR, VP ) = 0 by (v∗
R, v∗

P ).

Theorem 4 (Central Limit Theorem) Let V N
R , VR, V N

P , VP and F be as above and√
N ((V N

R (0), V N
P (0))− (VR(0), VP (0)))

N→∞���⇒ (UR(0),UP (0)). Then, for the mod-

els [neu], [neg ] and [pos], √
N ((V N

R , V N
P ) − (VR, VP ))

N→∞���⇒ (UR,UP ), where
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(UR,UP ) solves

UR(t) = UR(0) +
∫ t

0

√
cR(VP (s))dW (s)

−
∫ t

0
(̃ν2UR(s) + dR(VP (s))UP (s)) ds,

UP (t) = UP (0) +
∫ t

0

√
κ̃3VR(s) + ν3VP (s)dW ′(s)

+
∫ t

0
(̃κ3UR(s) − ν3VP (s)UP (s)) ds (32)

with W,W ′ independent Brownian motions,

cR(vR, vP ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mκ+
1 κ2

κ−
1 + κ+

1

(
2κ−

1 κ2(
κ−
1 + κ+

1

)2 + 1

)
+ ν̃2vR for [neu],

Mκ+
1 κ2

κ�
1 vP + κ+

1

(
2κ�

1 vPκ2(
κ�
1 vP + κ+

1

)2 + 1

)
+ ν̃2vR for [neg ],

Mκ⊕
1 vPκ2

κ−
1 + κ⊕

1 vP

(
2κ−

1 κ2(
κ−
1 + κ⊕

1 vP
)2 + 1

)
+ ν̃2vR for [pos]

(33)

and

dR(vP ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for [neu],
Mκ�

1 κ+
1 κ2(

κ�
1 vP + κ+

1

)2 for [neg ],

− Mκ−
1 κ⊕

1 κ2(
κ−
1 + κ⊕

1 vP
)2 for [pos].

(34)

Remark 2 In equilibrium, we have

cR(v∗
R, v∗

P ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2̃ν2ν3v∗
P

κ̃3

(
κ−
1 κ2(

κ−
1 + κ+

1

)2 + 1

)
for [neu],

2̃ν2ν3v∗
P

κ̃3

(
κ�
1 vPκ2(

κ�
1 vP + κ+

1

)2 + 1

)
for [neg ],

2̃ν2ν3v∗
P

κ̃3

(
κ−
1 κ2(

κ−
1 + κ⊕

1 vP
)2 + 1

)
for [pos].

(35)
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Proof First, note that

DF(vR, vP ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−ν̃2 0

κ̃3 −ν3

)
for[neu],

⎛
⎝−ν̃2 − Mκ+

1 κ�
1 κ2(

κ�
1 vP+κ+

1

)2
κ̃3 −ν3

⎞
⎠ for[neg ],

⎛
⎝−ν̃2

Mκ−
1 κ⊕

1 κ2(
κ−
1 +κ⊕

1 vP
)2

κ̃3 −ν3

⎞
⎠ for[pos].

Again, we have to show (➊)–➍) from Appendix A in all cases for F as above, which
already satisfies (➊). We focus on [neu] first. The system (Von, VR, VP ) is a Markov
process with a generator of the form (27) with

LN
1 f (u, vR, vP ) = (κ2u − vR ν̃2)

∂ f

∂vR
(u, vR, vP )

+ (̃κ3vR − vPν3)
∂ f

∂vP
(u, vR, vP ) + o(1),

LN
2 f (u, vR, vP ) = (M − u)κ+

1 ( f (u + 1, vR, vP ) − f (u, vR, vP ))

+ uκ−
1 ( f (u − 1, vR, vP ) − f (u, vR, vP )).

This implies that

FN (u, vR, vP ) =
(

κ2u − ν̃2vR
κ̃3vR − ν3vP

)
.

Hence, for (➋), we have to solve

LN
2 h

N (u, vR, vP ) =
⎛
⎝κ2u − Mκ+

1 κ2

κ−
1 + κ+

1
0

⎞
⎠ ,

which is

hN (u, vR, vP ) =
⎛
⎝−u

κ2

κ−
1 + κ+

1
0

⎞
⎠ .

For the quadratic variation in (➍), we find that with z⊗2 = zz�

N

[
(VR, VP )� − 1

N
hN (Von, VR, VP )

]
t

= 1

N

∑
k∈K

∫ t

0

(
(ζkR, ζkP )� + hN (Von(s−), VR(s−), VP (s−))
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−hN
(
Von(s−) + ζkon, VR(s−) + 1

N
ζkR, VP (s−) + 1

N
ζkP

))⊗2

ΛN
k (Von(s), VR(s), VP (s))ds

=
∫ t

0

[( κ2
κ−
1 +κ+

1

0

)⊗2

κ+
1 (M − Von(s)) +

(− κ2
κ−
1 +κ+

1

0

)⊗2

κ−
1 Von(s)

+
(
1
0

)⊗2

κ2Von(s) +
(−1

0

)⊗2

ν̃2VR(s) +
(
0
1

)⊗2

κ̃3VR(s)

+
(

0
−1

)⊗2

ν3VP (s)

]
ds

=
∫ t

0

[⎛
⎝ κ22(

κ−
1 +κ+

1

)2 0

0 0

⎞
⎠ (κ+

1 (M − Von(s)) + κ−
1 Von(s))

+
(
1 0
0 0

)
(κ2Von(s) + ν̃2VR(s))

+
(
0 0
0 1

)
(̃κ3VR(s) + ν3VP (s))

]
ds

≈
∫ t

0

⎛
⎝ 2Mκ−

1 κ+
1 κ22(

κ−
1 +κ+

1

)3 + Mκ+
1 κ2

κ+
1 +κ−

1
+ ν̃2VR(s) 0

0 κ̃3VR(s) + ν3VP (s)

⎞
⎠ ds.

This shows the assertion for [neu]. The cases [neg ] and [pos] are similar, if we change
κ−
1 by κ�

1 vP for [neu] and κ+
1 by κ⊕

1 vP for [pos]. 
�

D.1 Equilibrium Fano factor. . .

Let us start in equilibrium, i.e. VR(0) = v∗
R, VP (0) = v∗

P . Then, we will plug in
cR from (35), and obtain Ornstein–Uhlenbeck processes in all cases. Since they
are two-dimensional, their equilibrium (normal) distribution can be computed (see
Appendix C).

. . .for [neu]

We obtain

d

(
UR

UP

)
= −

(
ν̃2 0

−κ̃3 ν3

)(
UR

UP

)
dt

+
√
2v∗

P ν̃2ν3

κ̃3

⎛
⎜⎝
√

κ−
1 κ2(

κ−
1 +κ+

1

)2 + 1 0

0
√

κ̃3
ν̃2

⎞
⎟⎠
(
dW
dW ′

)
.
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Hence, with U = (UR,UP )�, in equilibrium, from Corollary 1,

Eneu [UU�] = v∗
P

(̃ν2 + ν3)κ3

×

⎛
⎜⎜⎝
(
1 + κ−

1 κ2(
κ−
1 +κ+

1

)2
)

ν3 (̃ν2 + ν3)

(
1 + κ−

1 κ2(
κ−
1 +κ+

1

)2
)

κ̃3ν3(
1 + κ−

1 κ2(
κ−
1 +κ+

1

)2
)

κ̃3ν3 κ̃3 (̃ν2 + ν3) + κ̃2
3

(
1 + κ−

1 κ2(
κ−
1 +κ+

1

)2
)
⎞
⎟⎟⎠ .

(36)

Therefore,

NVneu [VP ]
v∗
P

≈ 1 + κ̃3

ν̃2 + ν3
+ κ−

1 κ2κ̃3(
κ−
1 + κ+

1

)2
(̃ν2 + ν3)

. (37)

. . .for [neg ]

Here, we obtain

d

(
UR

UP

)
= −

(
ν̃2

κ�
1 v∗

P ν̃2ν3(
κ�
1 v∗

P+κ+
1

)̃
κ3

−κ̃3 ν3

)(
UR

UP

)
dt

+
√
2v∗

P ν̃2ν3

κ̃3

⎛
⎜⎝
√

κ�
1 v∗

Pκ2

(κ�
1 v∗

P+κ+
1 )2

+ 1 0

0
√

κ̃3
ν̃2

⎞
⎟⎠
(
dW
dW ′

)
.

Hence, in equilibrium, and if · · · denote the quantities from (36), and for b =
κ�
1 v∗

P ν̃2ν3(
κ�
1 v∗

P+κ+
1

)̃
κ3
,

Eneg [UU�] = v∗
P ν̃2ν3

(̃ν2ν3 + κ̃3b)(̃ν2 + ν3)̃κ3⎛
⎝···+ κ̃3

ν̃2
b2+

(
κ
�
1 v∗

P κ2

(κ
�
1 v∗

P+κ
+
1 )2

+1

)
κ̃3b ···−

(
κ
�
1 v∗

P κ2

(κ
�
1 v∗

P+κ
+
1 )2

+1

)
κ̃3b

···−κ̃3b ···+ κ̃23
ν̃2

b

⎞
⎠ . (38)

So,

NVneg [VP ]
v∗
P

≈
(
1 + κ�

1 v∗
P

κ�
1 v∗

P + κ+
1

)−1

×
⎛
⎜⎝1 + κ̃3

ν̃2 + ν3
+ κ�

1 v∗
Pκ2κ̃3(

κ�
1 v∗

P + κ+
1

)2
(̃ν2 + ν3)

+ κ�
1 v∗

Pν3(
κ�
1 v∗

P + κ+
1

)
(̃ν2 + ν3)

⎞
⎟⎠ .

(39)
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. . .for [pos]

We obtain

d

(
UR

UP

)
= −

(
ν̃2 − κ−

1 ν̃2ν3(
κ−
1 +κ⊕

1 v∗
P

)̃
κ3

−κ̃3 ν3

)(
UR

UP

)
dt

+
√
2v∗

P ν̃2ν3

κ̃3

⎛
⎜⎝
√

κ−
1 κ2(

κ−
1 +κ⊕

1 v∗
P

)2 + 1 0

0
√

κ̃3
ν̃2

⎞
⎟⎠
(
dW
dW ′

)
.

In equilibrium, we now have exactly (38) but with b = − κ−
1 ν̃2ν3(

κ−
1 +κ⊕

1 v∗
P

)̃
κ3
. Hence,

NVpos [VP ]
v∗
P

≈
(
1 − κ−

1

κ−
1 + κ⊕

1 v∗
P

)−1

⎛
⎜⎝1 + κ̃3

ν̃2 + ν3
+ κ−

1 κ2κ̃3(
κ−
1 + κ⊕

1 v∗
P

)2
(̃ν2 + ν3)

− κ−
1 ν3(

κ−
1 + κ⊕

1 v∗
P

)
(̃ν2 + ν3)

⎞
⎟⎠ .

(40)

E Results in unscaled parameter notation

In this section we state the formulas from Sect. 3 in terms of the unscaled parame-
ters, i.e. λ’s and μ’s. The deterministic approximation or law of large numbers for
the number of protein is given in the following remark (compare with Theorem 1).
Throughout, we have XP ≈ NVP .

Remark 3 (Law of large numbers in unscaled parameters) Given the assumptions of
Theorem 1 we find that approximately (see (4))

Ẋ P ≈ NF (XP/N ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mλ+
1 λ2λ3

μ2
(
λ−
1 + λ+

1

) − μ3XP for [neu],
Mλ+

1 λ2λ3

μ2
(
λ�
1 XP + λ+

1

) − μ3XP for [neg ],
Mλ⊕

1 λ2λ3XP

μ2
(
λ−
1 + λ⊕

1 XP
) − μ3XP for [pos]
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with equilibria (see (5))

X∗
P ≈ Nv∗

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mλ+
1 λ2λ3

μ2μ3
(
λ−
1 + λ+

1

) for [neu],

λ+
1

2λ�
1

(√
1 + 4Mλ�

1 λ2λ3

λ+
1 μ2μ3

− 1

)
for [neg ],

0 ∨ Mλ⊕
1 λ2λ3 − λ−

1 μ2μ3

λ⊕
1 μ2μ3

for [pos].

Next, we give the unscaled version of the central limit theorem derived in the main
text (see also Theorem 2).

Remark 4 (Central limit theorem in unscaled parameters) Assuming the same setting
as in Theorem 2 and writing down the resulting formula (7) in unscaled parameters
we find

dXP = NdvP + √
NdU ≈

(
NF(vP ) + √

NF ′(vP )U
)
dt +

√
b̃(XP )dW (41)

with

b̃(XP ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Mλ+
1 λ2λ3

μ2
(
λ−
1 +λ+

1

)
(

2λ−
1 λ2λ3

μ2
(
λ−
1 +λ+

1

)2 + 2λ3
μ2

+ 1

)
+ μ3XP for [neu],

Mλ+
1 λ2λ3

μ2
(
λ�
1 XP+λ+

1

)
(

2λ�
1 XPλ2λ3

μ2
(
λ�
1 XP+λ+

1

)2 + 2λ3
μ2

+ 1

)
+ μ3XP for [neg ],

Mλ⊕
1 λ2λ3XP

μ2
(
λ−
1 +λ⊕

1 XP
)
(

2λ−
1 λ2λ3

μ2
(
λ−
1 +λ⊕

1 XP
)2 + 2λ3

μ2
+ 1

)
+ μ3XP for [pos].

Using Theorem 2 we can now write down the Fano factor obtained in equilibrium:

Remark 5 (Fano factor in unscaled parameters) From (41), we find that, with
XP (0) = X∗

P , in equilibrium (see (14))

V[XP ]
E[XP ] ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ−
1 λ2λ3

μ2
(
λ−
1 + λ+

1

)2 + λ3

μ2
+ 1 for [neu],

(
1 + λ�

1 X∗
P

λ�
1 X∗

P + λ+
1

)−1 (
λ�
1 X∗

Pλ2λ3

μ2
(
λ−
1 X

∗
P + λ+

1

)2 + λ3

μ2
+ 1

)
for [neg ],

(
1 − λ−

1 μ2μ3

Mλ⊕
1 λ2λ3

)−1 (
λ−
1 λ2λ3

μ2
(
λ−
1 + λ⊕

1 X∗
P

)2 + λ3

μ2
+ 1

)
for [pos].

(42)
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The comparison of the fluctuations in neutral version negative and positive feedback
reads for unscaled parameters (see (16))

Vneg [XN
P ]

Vneu [XN
P ] ≈

(
1 + λ�

1 X∗
P

λ�
1 X∗

P + λ+
1

)−1

,

Vpos [XN
P ]

Vneu [XN
P ] ≈

(
1 − λ−

1

λ−
1 + λ+

1 X
∗
P

)−1

.

(43)

For completeness, we also give the unscaled version of the refined Fano factor derived
in Sect. 3.6 and Appendix D. From (18),

V[XP ]
E[XP ] ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ−
1 λ2λ3

(λ−
1 +λ+

1 )2(μ2+μ3)
+ λ3

μ2+μ3
+ 1 for [neu],(

αneg
μ3

μ2+μ3
+ α2

negλ2λ3

λ�
1 Nv∗

P (μ2+μ3)
+ λ3

μ2+μ3
+ 1

)/
(1 + αneg ) for [neg ],

(
−αpos

μ3
μ2+μ3

+ α2
posλ2λ3

λ−
1 (μ2+μ3)

+ λ3
μ2+μ3

+ 1

)/
(1 − αpos ) for [pos],

(44)

with

αneg = λ�
1 Nv∗

P

λ�
1 Nv∗

P + λ+
1

, αpos = λ−
1

λ−
1 + λ⊕

1 Nv∗
P

.

References

Anderson D, Kurtz TG (2015) Stochastic analysis of biochemical systems. Springer, Berlin
Balázsi G, van Oudenaarden A, Collins J (2011) Cellular decision making and biological noise: from

microbes to mammals. Cell 144(6):910–925
Ball K, Kurtz TG, Popovic L, Rempala G (2006) Asymptotic analysis of multiscale approximations to

reaction networks. Ann Appl Probab 16(4):1925–1961
Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, Pilpel Y, Barkai N (2006) Noise in protein

expression scales with natural protein abundance. Nat Genet 38(6):636–643
Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature

405(6786):590–593
Bokes P, King JR, Wood A, Loose M (2012) Multiscale stochastic modelling of gene expression. J Math

Biol 65(3):493–520
Cardelli L, Csikász-Nagy A, Dalchau N, TribastoneM, TschaikowskiM (2016) Noise reduction in complex

biological switches. Sci Rep 6:20214
Darling RWR (2002) Fluid limits of pure jump Markov processes: a practical guide, 1–16. arxiv preprint

arXiv:math/0210109
Dessalles R, Fromion V, Robert P (2017) A stochastic analysis of autoregulation of gene expression. J Math

Biol 75:1253–1283
Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467(7312):167–173
Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science

297(5584):1183–1186
Ethier SN,KurtzTG (1986)Markov processes: characterization and convergence.Wiley series in probability

and mathematical statistics. Wiley, New York

123

http://arxiv.org/abs/math/0210109


1190 P. Czuppon, P. Pfaffelhuber

Fraser D, Kærn M (2009) A chance at survival: gene expression noise and phenotypic diversification
strategies. Mol Microbiol 71(6):1333–1340

Gardiner C (2009) Stochastic methods. A handbook for the natural and social sciences. Springer, Berlin
Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361
Grönlund A, Lötstedt P, Elf J (2013) Transcription factor binding kinetics constrain noise suppression via

negative feedback. Nat Commun 4:1864
Hornos JEM, Schultz D, Innocentini G, Wang J, Walczak A, Onuchic J, Wolynes PG (2005) Self-regulating

gene: an exact solution. Phys Rev E 72(5 Pt 1):051907
Hornung G, Barkai N (2008) Noise propagation and signaling sensitivity in biological networks: a role for

positive feedback. PLoS Comput Biol 4(1):e8
Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phe-

notypes. Nat Rev Genet 6(6):451–464
Kang HW, Kurtz T, Popovic L (2014) Central limit theorems and diffusion approximations for multiscale

Markov chain models. Ann Appl Probab 24:721–759
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