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ct

ial distancing regulations introduced to slow down the spread of COVID-19 virus directly affect a basic fo
verbal communication, and there may be longer term impacts on human behavior and culture that remain
yzed in proxemics studies. To obtain quantitative results for such studies, large media and/or personal pho
ons must be analyzed. Several social distance monitoring methods have been proposed for safety purpos

are not directly applicable to general photo collections with large variations in the imaging setup. In su
the interest shifts from safety to analyzing subtle differences in social distances. Currently, there is no suitab
ark for developing such algorithms. Collecting images with measured ground-truth pair-wise distances usi
t camera settings is cumbersome. Moreover, performance evaluation for these algorithms is not straightfo
nd there is no widely accepted evaluation protocol. In this paper, we provide an image dataset with measur
se social distances under different camera positions and settings. We suggest a performance evaluation protoc
vide a benchmark to easily evaluate such algorithms. We also propose an automatic social distance estim
thod that can be applied on general photo collections. Our method is a hybrid method that combines de
-based object detection and human pose estimation with projective geometry. The method can be applied

rated single images with known focal length and sensor size. The results on our benchmark are encouragi
% human detection rate and only 38.24% average relative distance estimation error among the detected peop

ds: Social Distance Estimation, Person Detection, Human Pose Estimation, Performance Evaluation, Test
ark, Proxemics

oduction

l distances are a part of non-verbal human com-
tions and, naturally, there are personal and cul-
fferences in how people feel about their personal
nd interpret the interpersonal distance in differ-
ations. The research field under social studies
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concerning these phenomena related to space is know
as proxemics (Hall et al., 1968). Despite the long histo
of studies in the field (Hall, 1966; Cook, 1970; Har
gan, 2005), it remains difficult to carry out quantitati
analysis on the actual social distances in the natural s
uations outside of monitored test conditions, e.g., wh
people are spending their free time with their famili
One way to approach this problem is visual social d
tancing (VSD), where the interpersonal distances a
automatically measured from the images or videos.
comprehensive overview of the VSD problem, inclu
ing the main challenges and connections to social stu
ies, is provided in (Cristani et al., 2020).

Social distancing has received a lot of attention
recent years due to the outbreak of SARS-CoV-2, al
known as COVID-19, virus that was declared as a glob
pandemic by the World Health Organization (WHO)

submitted to Machine Learning with Applications October 13, 20
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2020. Social distancing played an important role
ing down the spread of the virus and WHO rec-
ded to stay at least one meter apart from other
in order to reduce the risk of infection. Auto-
ly monitoring the social distances during pan-
estrictions is important for safety reasons, but it
interesting to analyze how the restrictions glob-
nged basic human behavior (Zhang et al., 2021;

rado et al., 2020; Eden et al., 2020). After the
ic, there are many interesting research ques-
proxemics and other fields to look into: how

ial distancing affected every-day life, what kind
ificant differences were there between different
es, can the differences be linked to the spreading

ill there be any long-term changes that will stay
e pandemic.
e there are methods and sensors available for au-
monitoring of social distances (Nguyen et al.,

the analysis of deeper and longer term social
ltural impacts of the social distancing regula-
quires looking into different source data, such
nal photo collections and pictures published in

pers and magazines. For monitoring purposes,
ssible to use fixed camera setup and location,
eos or simultaneous images from multiple view-
and use additional sensors such as depth or ther-

eras. All these can make the social distance
es more accurate but are not available for typi-
onal and media photos that are not taken with a
tup, but have varying parameters such as focal
sensor size, lighting conditions, and pitch angle.
mple of an image that could be found in a per-
r media photo collection, but not in a monitoring
eillance setup is shown in Fig. 1. At the same

social and proxemics studies the focus shifts
onitoring whether people are obeying the regu-
to more subtle differences in the social distances

they are represented in the media.
ng the pandemic, most effort has been under-
ly on the monitoring side, and currently there
itable benchmark for developing and testing al-
s for accurate social distance analysis from sin-
ges having varying camera parameters. This
due to the laboriousness of gathering varying
with measured pair-wise distances between hu-
At the same time, there is no clear protocol for
ing the algorithm performance in this task. To
these lacks, we provide a social distance evalu-
st benchmark including a protocol for mapping
ected pair-wise distances into the correspond-
und truth distances, a suggested overall perfor-
metric, and 300 test images taken with vary-

Figure 1. An example of an image that represents a sty
which is common in personal and media photography, but n
in monitoring. The image is included in our test set.

ing setups: indoors-outdoors, sitting-standing, varyi
camera angles using 2 different cameras and 7 differe
focal lengths. The photos were taken by a profession
photojournalist to follow the typical media photograp
style. We publish also easy-to-use codes for evaluati
novel methods and make it easy to integrate addition
test photos.

We also propose a social distance estimation alg
rithm that can be applied on any uncalibrated single i
age taken by a regular camera as long as focal leng
and sensor size are known. It is a hybrid method th
combines deep learning-based object detection and h
man pose estimation with projective geometry using i
age parameters (focal length, sensor size) and pixel
cations. While the results are promising, we also po
out some of the main remaining challenges for futu
development.

The rest of the paper is organized as follows. Se
tion 2 introduces related work on social distancing a
automatic distance evaluation. Section 3 describes t
provided test benchmark and the proposed evaluati
protocol. Our method for automatic social distance e
timation is described in Section 4. Section 5 provid
our experimental setup and results and, finally, Section
concludes the paper.

2. Related Work

Effectiveness of social distancing on slowing dow
the spread of the COVID-19 virus has been widely stu
ied (Vokó and Pitter, 2020; Sun and Zhai, 2020; Pre
et al., 2020; Courtemanche et al., 2020; Abouk and He
dari, 2021; Balasa, 2020), and these studies confi
that social distancing measures are successful in redu
ing the growth rate of the virus. Therefore, monitori

2
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ulating the social distancing behaviour between
has played a crucial part in dampening the ef-
the virus. In addition to directly effecting the

read, social distancing has globally changed hu-
havior and interactions leading to different side-
, e.g., on mental health (Ford, 2020; Jacob et al.,
physical activity (Di Corrado et al., 2020; Jacob
020), mood and memory (Zhang et al., 2021),
dia consumption (Eden et al., 2020). Such im-
d their cross-cultural (Al-Hasan et al., 2020a,b;
et al., 2020) and cross-sectional (Jacob et al.,

ee et al., 2021) differences continue to draw at-
from researchers in many fields.
l distance monitoring for safety reasons can be
y automatic social distance estimation from im-
d videos. A comprehensive survey in (Nguyen
020) explores the wide array of current technolo-
t can be used to monitor and encourage social

ing. A commercial pedestrian tracking system
ed in (Pouw et al., 2020) to detect passengers
ded environments and estimate the distances be-
hem by using a graph based approach. A study

ed et al., 2021) proposed using a deep learn-
ed model with YOLOv3 (Redmon and Farhadi,
s its backbone to monitor social distancing vi-
from overhead view cameras. In (Punn et al.,

the authors used YOLOv3 and DeepSort (Wojke
017; Wojke and Bewley, 2018) to detect bound-
es of people in RGB images and by utilizing

ounding boxes, they detected the cases of social
e violations.
rk in (Aghaei et al., 2021) proposed to use skele-
points generated from human body pose estima-
orithms (Cao et al., 2019) to estimate the dis-
etween people from uncalibrated images. The
used manual tuning to estimate the homogra-

trix (Young, 1982) of an image plane and then
, arm, and torso lengths of the people alongside
homography matrix to draw a safe space circle

ath every detected person. Then, any collision
n the estimated safe space circles was reported
cial distance violation. Similarly, the work in
et al., 2020) takes advantage of manual homog-
atrix calibration to estimate social distances for
meras. Separating the work from (Aghaei et al.,
bounding boxes obtained from the object detec-
del (Zhou et al., 2019) and the height of these
re used as reference points to estimate the loca-
the people. Moreover, a small CNN is used to

e the feet locations even when they are not visi-
e output of this CNN is used to correct the height
ounding boxes in cases of occlusions. Another

similar study in (Yang et al., 2020) also used boun
ing boxes obtained from object detectors (Bochkovsk
et al., 2020; Ren et al., 2016) to estimate locations of t
people from surveillance camera footage by using t
homography matrix that is calculated from the know
extrinsics.

The work in (Bertoni et al., 2021) used a feed fo
ward neural network that was trained on the intrin
parameters of the camera and the keypoints obtain
from a pose estimation model. The model outputs t
predicted 3D locations as well as the orientations
the detected people. While detecting safe distance
olations, not only the proximity but also the orien
tion of the people with respect to one another is co
sidered. Finally, the study in (Morerio et al., 2021) pr
posed a neural network architecture that takes a pair
2D body keypoints as input and outputs the estimat
pair-wise distance. The two sets of body keypoints a
converted into feature vectors by an encoder block. T
vectors are then concatenated and given as input to
regressor block, followed by a fully connected lay
that was trained on the public datasets Epfl-Mpv-VS
(Fleuret et al., 2008), Epfl-Wildtrack-VSD (Chavdaro
et al., 2018), OxTown-VSD (Benfold and Reid, 201
and Kitti (Geiger et al., 2012) to estimate pair-wise d
tances. The output of the regressor block is also us
as input to another branch with a gradient reversal lay
(Ganin et al., 2016) to estimate the camera’s tilt ang
and height from the ground plane in order to make t
estimations more robust to variations in camera vie
points. The method works on any single uncalibrat
image.

Most of the introduced works approach automatic s
cial distance estimation as a monitoring or surveillan
task, where the goal is to prevent social distance regu
tion violations. To this end, they apply additional se
sors, use predefined camera settings, and/or manua
define a homography matrix for a certain environme
While such approaches can improve the social distan
estimation accuracy, they are not feasible when the pu
pose is to analyze the impacts of social distances fro
personal or media photo collections.

Moreover, the above-mentioned studies approach t
automatic social distance estimation problem as a
nary classification problem where they aim to class
the pair-wise distances between people either as sa
or unsafe, depending on a given threshold. Classifyi
distances in a binary manner has a high tolerance f
distance estimation errors. For example, if the thres
old for safe distance is set to 2 meters, the actual d
tance between a pair of people is 1.9 meters, and
method estimates that distance as 0.1 meters, the p

3
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distance estimation error would be 94.7%, but a
lassification approach would still correctly label

ation as a social distance violation. Furthermore,
ry approach does not provide any additional in-

on on the severity of the violations in different
ns which may be relevant information for subse-
nalysis.
mmon pattern observed in most of the machine

based social distance estimation methods (with
eption of at least (Aghaei et al., 2021; Morerio
021; Bertoni et al., 2021) that use keypoints of
an body) is that they rely on the bounding boxes
y object detectors to detect social distance vio-
Although the current object detectors are accu-
etecting objects, the bounding boxes are gener-
sely drawn around these objects. Thus, it is not
to use only the bounding box information for

ing exact distances between people as it is not
e to infer accurate 3D location estimates from
nding boxes alone. Therefore, we aim to es-
exact 3D locations of all the people in uncali-

GB images with respect to the camera by using
rmation extracted from the human body skeleton
d by body estimation algorithms. Moreover, we
orporate an object detection model for people
n. However, the purpose of the people detection
pproach is to only detect the false positives in

n keypoints, when they are drawn on non-human
.
method in (Aghaei et al., 2021) is the most
to our method as it also uses body poses. In
i et al., 2021), manual input is used to estimate
ography matrix of the image plane to the ground
he method is evaluated on surveillance camera
and the task is approached as a binary classifica-
blem. It is feasible to manually set the homog-
atrix of surveillance cameras as these cameras

erally non-moving and stable. Contrary to this,
t our method to be fully automatic as we aim to
e distances in images taken in different locations
fferent cameras. Instead of requiring manual in-
stimate the homography as the study in (Aghaei
021), we assume that we can find keypoint pairs
parallel to camera’s sensor plane and we use the
arameters, i.e., focal length and sensor size in

ance estimation.
he developing and testing social distance estima-
thods, it is important to have image datasets that
uitable setup and ground-truth for the task. The
s works have used datasets such as Epfl-Mpv-
pfl-Wildtrack-VSD and OxTown-VSD. These
include videos taken by surveillance cameras

with fixed extrinsic and intrinsics and they do not
clude manually measured ground truth locations a
distances. Instead, the locations of the people are es
mated by making use of the annotation boxes that we
drawn on the people. The pixel locations of these a
notation boxes are used as a reference point to estima
the subjects’ locations by taking the extrinsic param
ters into account. This means that these locations a
not exactly ground truth, but estimations based on t
known extrinsics and the pixel locations of the manua
annotated person bounding boxes. Furthermore, sin
exact body parts are not annotated and the annotatio
are only in bounding box format, it is not feasible n
possible to accurately match the detected people w
the given ground truth people when there are multip
overlapping boxes. Moreover, only the people that a
passing on a certain region of interest are annotated.

Due to the aforementioned reasons, the existi
datasets are not suitable for evaluating methods th
aim at estimating distances in general photo collectio
and are not manually tuned for a specific camera a
environments. Furthermore, the approximate pers
annotations and location estimates do not allow acc
rately measuring the distance estimation performan
but are only suitable for detecting coarse violations
social distancing recommendations. While this m
be sufficient for surveillance purposes in fixed enviro
ments, more accurate ground-truth and annotations a
needed for evaluating methods aiming at detecting su
tle changes in long-term social distancing behavior
varying environments. In the following section, we
troduce our novel dataset that addresses the mention
drawbacks of the existing datasets.

3. KORTE SOCIAL DISTANCE ESTIMATIO
BENCHMARK

We provide a test benchmark for facilitating resear
in automatic social distance evaluation. We propose
performance evaluation protocol and provide 300 t
images with ground-truth pair-wise distances. While t
number of images is too low for training fully learnin
based systems, it provides a varied test setup. All t
evaluation codes along with the test photos are pu
licly available at https://doi.org/10.23729/b2ea87e
b845-46b8-abf3-cdbe299ce8b0. It is also easy to co
plement the benchmark with additional images by f
lowing the proposed annotation format and using t
provided evaluation protocol.

4
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. Birdseye view of the first photo shoot (outdoor). The ground truth locations of the people and cameras are given in b
dots, respectively.

st Photo Collection

collected test photos in four separate photo
The first and third photo shoots were organized
s at Tampere University campus in December
d August 2021, respectively. Every person was

g. The second and fourth photo shoots were or-
indoors at Tampere University campus in Jan-

21 and August 2021 with people sitting around
nd sofas. We had 6 volunteer test subjects in the

second photo shoots and 7 volunteer test sub-
the third and fourth photo shoots. We followed
VID-19 restrictions at the time: everyone was

a mask and we were less than 10 people gath-
As an additional safety measure, we placed to
distances from each other only people who meet
y anyway because they share working space or
ether. Every test subject signed an agreement al-
to use their images for research purposes. Any
rs in the images were censored out to respect
ivacy and because their exact positions were un-
The photos were taken by a professional photo-

ist.
ng the photo shoots, test subjects stayed on the
own positions, while the photographer changed

ition and used multiple cameras and lenses at
ot. Fig. 2 shows as an example the birdseye
the first photo shoot (outdoor). P0, P1, P2, P3,

are the locations of the 6 test subjects and C0,

C1, C2 are the camera locations. For the first pho
shoot, P0, P1, P2, P3, P4, P5, C0 and C1 were all
the same ground plane, while C2 was at a balcony w
a height of 230 cm relative to the ground plane that
of the other locations were at. Similar birdseye vie
of the other photo shoots are included in the Append
(A.12-A.14). The unit of the x and z axis labels is ce
timeters. The ground truth locations of the cameras a
the test subjects were measured and maintained explo
ing tiles on the ground/floor that were equal in si
While test subjects’ locations were fixed during ea
photo shoot, they were asked to vary their orientati
and pose. The ground truth locations of all the camer
and test subjects for all the photo shoots are provid
with the dataset.

We do not report the exact pitch angles, and they we
not fixed in the photo shoots. Due to the camera po
tions, pitch angles are close to zero in most of the i
ages except for the 54 photos taken from camera p
sition C2 in the first and third photo shoot, where t
camera was at an elevated position. We believe that o
dataset represents a typical media or personal photo c
lection with respect to the pitch angles, but it should
noted that methods performing well on our dataset (e
pecially if they rely on the zero pitch angle assumptio
may not perform equally well on extreme pitch angl
such as overhead images.

The used camera models were Canon EOS 5D Ma

5
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3. Example photos from the test dataset. The upper row has photos from the first photo shoot (outdoor) taken from
positions C0 (left) to C2 (right) and the lower row has photos from the second photo shoot (indoor) taken from all cam
s C0 (left) to C3 (right).

anon EOS 6D Mark II. The used focal lengths
, 24, 35, 50, 105, 200, and 300 mm. The cam-
re stabilized on a tripod. Fig. 3 shows example
from the first and second photo shoots, one photo
ch camera position.

cal Camera Model Shooting Setting
gth Canon Indoor Outdoor
6 EOS 5D Mark II - 6
6 EOS 6D Mark II 12 10
4 EOS 5D Mark II 5 8
4 EOS 6D Mark II 25 8
5 EOS 5D Mark II - -
5 EOS 6D Mark II 24 24
0 EOS 5D Mark II - 31
0 EOS 6D Mark II 23 30
5 EOS 5D Mark II 15 -
5 EOS 6D Mark II 22 32
0 EOS 5D Mark II - 7
0 EOS 6D Mark II - -
0 EOS 5D Mark II - 8
0 EOS 6D Mark II - 10
ll 126 174

. Numbers of photos in the test dataset for different
gths (mm), camera models, and shooting settings (in-
door).

st Data Description

overall dataset contains 300 images including
door images and 126 indoor images. All of the

images are in JPG format. The resolutions of the i
ages are 2400x1600, 4080x2720 and 4160x2768 w
139, 80 and 81 images in each resolution, respective
Two different camera models were used and the sens
size for both of these cameras is 36 mm in width and
mm in height. The distribution of the pictures in term
of focal lengths, camera models, and shooting settin
is given in Table 1.

Along with the images, we also provide different a
notation data provided in three separate .csv files illu
trated in Fig. 4. The first file (Fig. 4a) contains the pix
locations of four different body parts. These annotat
body parts are the center of the eyes, the center of t
shoulders, the center of the torso, and the center of t
head. If a body part is not visible in the image, it is n
annotated. The people in the images are labeled as P
P1, P2, P3, P4, P5, P6, P7, and P8 in the annotation fi
These person tags are consistent through all of the i
ages. This means that a person tag always refers to t
same person in all of the images that we provide. T
second file (Fig. 4b) contains the 3D locations of pe
ple and different camera positions in all photo shoo
Photo shoot IDs 0, 1, 2, and 3 refer to the first (o
door), second (indoor), third (outdoor), and fourth (
door) photo shoots, respectively. The third file (Fig. 4
links the image filenames with the corresponding pho
shoot and camera location. The cameras’ exterior o
entation parameters are not included in the metadata
the images.

New images can be added to the dataset simply
following the described structure of the annotation da
shown in Fig. 4. This does not require any changes

6
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(a) Body part pixel locations

(b) Ground truth relative 3D location (c) Photo shoot identifiers and camera locations

Figure 4. Annotation file formats

vided evaluation codes. New photo shoots, i.e.,
tings of people, must be identified with a unique
identifier. For any photo shoot, the real world lo-
of the people should stay the same in all the pho-
ere may be pictures taken from different camera
s. The person and camera tags should start with

P and C, respectively, followed by a unique iden-
teger. The person and camera location tags must
istent within a given photo shoot, however, re-
tags in different photo shoots are allowed. This
that two different people or camera tags can be
e as long as they belong to a different photo
At least 1 of 4 body parts (center of the eyes,
rs, torso, head) of the people in the images must
tated in terms of pixel locations. They should be
”Eyes”, ”Shoulder”, ”Torso”, and ”Head” in the
rt column of the body part pixel location file in

consistent with the annotations in the provided
ges, the annotation can be done as follows. Us-
keypoint numbering in Fig. 6, the center of the

eyes refers to the middle point of the keypoint pair 1
16, the center of the shoulders refers to the middle po
of the keypoint pair 2-5, the center of the torso refe
to the middle point of the keypoint pair 1-8, and t
head should be annotated as middle point of the he
regardless of the head’s angle with respect to the ca
era. If a head is sideways and only one of the eyes
visible, the visible eye can be annotated as the center
the eyes. If no eyes are visible, the center of the ey
should not be annotated. The center of the eyes shou
also not be annotated if at least one of the eyes is o
of the picture due to the head being on the edge of t
picture. The other body parts can be annotated as lo
as they are either completely visible in the picture or a
partially occluded by another person or object. In t
cases where they are partially occluded, the pixel loc
tion should be estimated as if the occluding person
object was not present in the picture. The center of t
shoulders, torso, and head should not be annotated on
in the cases where these body parts are either partia
or completely out of the picture due to the person b

7
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the edge of the picture. If a person is sideways
y one of the shoulders, i.e., keypoints 2 and 5, is
this point can be annotated as the center of the
rs.

aluation Protocol

distance estimation method to be tested using
chmark should give as output at least 1 of the
ated pixel body locations along with either the
ed 3D location of the persons or the estimated
es between the people. The body part can be dif-
or each person, or a method may choose to give
single body part, such as the head, for all the
. The test benchmark uses the pixel locations
matically match each detected person with one
round truth locations and then computes aver-

centual pair-wise estimation errors between the
ed and ground truth distances.
rovide all the necessary functionalities for test-
long as the required output for each image is
Internally, the matching is carried out by com-
the automatically detected body pixel locations

points annotated in the files. The automatically
d body parts are compared to all of the respec-
otated body parts. As an example, a detected

oint is compared to all of the annotated torso
or that image. For all of the detected body parts
rson, the closest respective annotated point in
f pixel-wise distance is found. In case there are
an one detected persons matched with the same
truth person, the matching is done in a greedy
by selecting only the closest match and the rest
etected persons for that ground truth person are
d as false positives.

matching the detections with the persons la-
the photos, we calculate the distances between

rson pair by using their estimated 3D locations.
he estimated pair-wise distances are compared
orresponding ground truth pair-wise distances to
a percentual distance estimation error for each
he performance is evaluated by taking the aver-
all of the pair-wise percentual distance estima-
ors for each image and then averaging over im-
n addition to the pair-wise percentual distance
ion error, we evaluate also the person detection
., the ratio of correctly detected person averaged
l the images, and the false discovery rate aver-
er all the images. It should be noted here that
ot use any threshold for matching the detections
actual people. As long as the number of detec-
lower or equal to the actual number of people

in an image, all the detections are matched. Thus, d
tections can be considered false positives only if the
are more detections than actual people for an imag
Therefore, a method producing many false positive d
tections is expected to get a high detection rate, but n
urally the distance estimations would likely be poor a
the false discovery rate would be higher. On the oth
hand, a method missing most the people could have
low pair-wise percentual distance estimation error f
the detected people, but still not be suitable for soc
distancing analysis. Therefore, it is important to co
sider all these metrics together, when evaluating a soc
distance estimation algorithm.

The pair-wise percentual distance estimation error
for the eth single image is given by the following fo
mula, where n is the number of detected people in t
image, Ei is the estimated 3D location of the ith pers
and Gi is the ground truth 3D location of the ith perso

De =

∑n−1
k=1
∑n

i=k+1

∣∣∣||Ek−Ei ||−||Gk−Gi ||
∣∣∣

||Gk−Gi || ∗ 100
(

n
2

) . (

Here, the distances may be also directly given instead
the 3D locations.

In order to obtain an overall distance estimation err
metric for a set of images, De of all of the images in t
image set are averaged. The distance estimation err
for a set of images DE is given by the following formu
where N is the number of images in the set:

DE =

∑N
e=1 De

N
. (

The test benchmark gives DE , the person detecti
rate, and the false discovery rate as an output for a giv
set of images as long as the input and annotated da
are provided in the proper format. Currently, the t
benchmark uses our provided test photos, but if new i
ages are added to the dataset as explained in Section 3
these will be automatically considered in the evaluatio

4. Proposed Method for Social Distance Estimatio

Our proposed method to estimate social distanc
takes advantage of deep learning-based object dete
tion and human pose estimation methods. Firstly, t
input image is given to YOLOv4 (Bochkovskiy et a
2020) object detection model to obtain bounding box
for people. After bounding boxes are obtained, overla
ping boxes are grouped together. Then, these group
boxes are cropped from the full image and they are
dividually given to OpenPose (Cao et al., 2019) hum

8
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timation model. After the skeleton keypoints are
d from OpenPose, the pixel locations of these
ts are used in our distance estimation algorithm

in 3D location estimates for each person in the

n YOLOv4 and OpenPose models are used to-
they eliminate each other’s false positives. The
ge in Fig. 5 shows a case where a backpack is
recognized as a human by OpenPose. However,
4 does not recognize it as a human. Therefore,
kpack would not be cropped and given to the
se model. The right image in Fig. 5 shows a
ere a bicycle is falsely recognized as a human

YOLOv4 model. The bicycle is then cropped
e full image and given to the OpenPose model.
er, the OpenPose model does not detect any hu-
eleton in the cropped bicycle image. Therefore,
of these false positive cases is further processed
istance estimation algorithm.
the cropped images from YOLOv4 are pro-

by the OpenPose model, the skeleton keypoints
cted human bodies are extracted. We use the
oint output version of OpenPose illustrated in
Out of the extracted keypoints, we select pairs

mutual distance is independent of the person’s
hose average distance is available in the litera-
ose angle towards the lens is as constant as pos-

nd which are visible in most of the photos. With
iteria, we select three key point pairs for our al-
: 15-16 for pupillary distance, 2-5 for shoulder
nd 1-8 for torso length. In typical media or per-

hotos, the torso has the most constant angle to-
he lens, but the eyes and shoulders are visible
the close-up and portrait photos, where the torso
een. We assume average adult body proportions
three keypoint pairs: 389 mm for shoulder width
, 2018), 63 mm for pupillary distance (Evans,

and 444 mm for torso length (White Mountain
cks, 2021). The extracted keypoint pairs are then

Figure 6. 25 skeleton keypoint output of OpenPose.

processed by our distance estimation algorithm that e
timates 3D positions with respect to the camera for ea
person.

We use the pinhole camera model (Sturm, 201
shown in Fig. 7 for our calculations. We also ma
an assumption that every keypoint pair is parallel to t
camera’s sensor plane. We make these assumptions b
cause the subjects’ poses and camera’s exterior orien
tion parameters (Zhang, 2014) are not known. Estim
ing the exterior orientation parameters (Zhang, 2014)

9
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Figure 7. Pinhole camera model.

8. Birdseye view of orientation angle toward the lens.

era from single images is an ill-posed problem
ikhin et al., 2008), but in most cases the angle
n a person’s torso and the camera’s sensor plane
gible for our calculations.

enote 3D locations of the keypoints on the image
ate system as

(xa, ya, f ), (3)

f is the focal length, and 3D location estimates
eypoints on the world coordinate system as

En = (Xa,Ya,−d), (4)

is the distance to the camera. The distance be-
pair of keypoints on the image coordinate sys-

Di =

√
(x0 − x1)2 + (y0 − y1)2 + ( f − f )2 (5)

distance between the keypoints on the world co-

ordinate system is

Dw =
√

(X0 − X1)2 + (Y0 − Y1)2 + (d − d)2. (

Since the camera sensor’s plane size is known, xa a
ya in Eq. (3) can be derived from the x and y pixel
cations of the keypoints in the image. The last coor
nate, f , in Eq. (3) is obtained from the camera param
ters. Thus, all the keypoints’ 3D positions on the ima
coordinate system in Eq. (3) are known and Di can
solved. By using triangle similarity, the following equ
tions give 3D positions of the keypoints on the wo
coordinate system. Eq. (7), where Dw is one of the a
erage body proportions, is used to derive d in Eq. (
After d is derived, Xa and Ya are obtained from Eqs. (
and (9):

Di

f
=

Dw

d
(

Xa = −d
f

xa (

Ya = −d
f

ya (

After the 3D coordinates of the keypoints on t
world coordinate system in Eq. (4) are estimated, t
middle points of each detected keypoint pair are us
to represent a 3D location for the person. Thus, w
have at most 3 different estimated 3D locations for a p
son, one for each keypoint pair (shoulder, pupil, tors
While we assume that the keypoint pairs are parallel
the camera’s sensor plane, this assumption may not
valid, and the accuracy of the estimated locations is

10



Journal Pre-proof

Figure 9 he
used foc

fected b
the bird
ward th
pupil ke
plane a
are pro
upright
are una
puted u
also a t
ther bec
the cam
image,
while to
sumptio
plane is
leads to
son, we
est dist
sonal p
means
ever it
pictures
pictures
ing foc
exampl
mations
distanc

Final
all the
puts. T
given t
they are
social d
ies. Th
tance es

m-
Jr,
v4
u-
of

set
ze
e

O
ed
ot

set
ot
l.,
a-
ng
ial
by
5).
li-
fi-
ng
s-

al-
ne
est
nd

ir-
er-
to

e
Jo
ur

na
l P

re
-p

ro
of. Examples of pictures from the dataset belonging to the first photo shoot, all of them taken from camera location C1. T

al lengths for the pictures are 16mm, 105mm and 300mm from left to right.

y the severity of the violations. Fig. 8 shows
seye view of a person’s orientation angle θ to-
e lens. If the angle is non-zero, the shoulder and
ypoint pairs are no longer parallel to the sensor

nd the estimates based on these keypoint pairs
ne to error. However, in a typical situation of
torsos the estimates made from the torso length
ffected by θ, because θ does not affect Di com-
sing Eq. (5) for the torso. On the other hand,
orso may not be parallel to the sensor plane ei-
ause the person is in a bent position or because
era’s pitch angle is non-zero. For an overhead
shoulders might be parallel to the sensor plane,
rsos would be perpendicular. Whenever the as-
n on a keypoint pair being parallel to the sensor
violated, Di in Eq. (5) decreases. A smaller Di

a larger estimate for d from Eq. (7). For this rea-
select the 3D location estimate with the small-

ance to the camera. For typical media or per-
hotos, where the pitch angle is small, this usually
using the estimate derived from the torso when-
is available. However, for close-up and portrait
, the torso is often not visible. Fig. 9 shows three
taken from the same location but with increas-

al lengths. The rightmost image in Fig. 9 is an
e of a close-up picture where the distance esti-

have to be made from the shoulder and pupil
es since there are no visible torsos.

ly, our method computes the distances between
pairs of detected people and gives them as out-
he pixel locations for the detected persons are

o be able to evaluate on our benchmark, while
not needed if the method is used for analysing

istancing in novel images for photographic stud-
e overall flowchart of the proposed social dis-
timation method is illustrated in Fig. 10.

5. Experimental Results

5.1. Experimental Setup
All of the code was developed in Python progra

ming language version 3.8 (Van Rossum and Drake
1995). OpenPose (Cao et al., 2019) and YOLO
(Bochkovskiy et al., 2020) models were used for h
man detection and pose estimation. The input size
YOLOv4 was set to 704x704. Input size was not
for OpenPose as OpenPose is able to adapt its input si
for each image. The version of the OpenPose model w
were using was originally trained by using the COC
keypoint challenge dataset (Lin et al., 2014), combin
with OpenPose authors’ own annotated dataset for fo
keypoint estimation which consists of a small sub
of the COCO dataset where the authors labelled fo
keypoints. YOLOv4 uses CSPDarknet53 (Wang et a
2019) as its backbone which was trained on the Im
geNet dataset (Deng et al., 2009). The deep learni
models were downloaded from their respective offic
source code pages 1 2 and they were loaded and used
TensorFlow library version 2.3.1 (Abadi et al., 201
For image processing purposes, OpenCV imaging
brary was used (Bradski, 2000). In addition to our
nal method that generates 3D position estimates usi
torso, shoulders, and eyes and selects the estimate clo
est to the camera as explained in Section 4, we also ev
uate variants of the proposed method, where only o
of these body parts is used at the time. We use our t
benchmark to compute the results for all the images a
for each photo shoot separately.

5.2. Results
Table 2 shows the person detection rates and pa

wise percentual distance estimation errors for the ov
all dataset. Table 3 gives the results for the first pho

1https://github.com/CMU-Perceptual-Computing-Lab/openpos
2https://github.com/AlexeyAB/darknet
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ocal
ngth
m)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

16 28 0.75 333.42 0.55 39.79 0.82 36.30 0.89 28.80
24 46 0.81 346.05 0.55 39.52 0.91 33.22 0.94 24.68
35 48 0.81 450.49 0.58 65.63 0.91 48.52 0.92 34.68
50 84 0.80 306.56 0.44 72.37 0.91 39.29 0.94 35.03
05 69 0.72 332.72 0.57 110.50 0.79 73.29 0.89 52.50
00 7 0.69 105.28 0.73 52.28 0.69 93.53 0.78 53.66
00 18 0.70 1244.59 0.60 52.88 0.61 148.94 0.78 52.51
ll 300 0.78 385.22 0.54 68.56 0.84 51.01 0.91 38.24

Person detection rates and pair-wise percentual distance errors for each of the methods for all of the images (indoor a
combined.

ocal
ngth
m)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

16 7 0.85 120.60 0.71 26.44 0.85 18.33 0.85 18.48
24 8 0.83 190.70 0.64 76.24 0.91 16.99 0.91 21.49
35 11 0.90 174.68 0.84 57.78 0.96 20.17 0.96 21.09
50 11 0.87 190.12 0.77 72.35 0.89 24.34 0.91 26.40
05 11 1.00 127.57 1.00 48.99 1.00 41.63 1.00 33.08
00 7 0.69 105.28 0.73 52.28 0.69 93.53 0.78 53.66
00 8 0.70 288.13 0.88 34.48 0.18 - 0.89 34.48
ll 63 0.85 165.27 0.78 54.43 0.90 28.76 0.91 28.97

Person detection rates and pair-wise percentual distance errors for each of the methods for the first photo shoot (outdo
ery person is standing up.
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Figure 10. Flowchart of the method.

Number
of

Pictures

Combined
Method

Person
Detection

Rate

Pair-wise
Percent

Distance
Error

53 0.85 37.59

Table 4. Person detection rates and pair-wise percentual d
tance errors for the combined method for the photos tak
from camera location C2, for which the zero pitch angle
sumption is not valid.

shoot separately. For the other photo shoots, the se
arate results are provided in the Appendix (B.6-B.
Since YOLOv4 is used in addition to OpenPose a
they cancel each other’s false positives, we have
cases with more detections than actual people in an i
age. This leads to almost zero false discovery ra
as explained in Section 3.3. Therefore, false discove
rates are not reported in the tables.

It can be observed from Table 2 that the most reliab
body part to estimate locations is the torso. Howev
estimations made from the torso alone fail for close-
pictures where the torso detection rate is low. When
three body parts (shoulder, pupil, and torso) are used
gether for the estimations, the obtained results shown
the last column are better than the results obtained fro
any single body part. The combined method mostly us
the torso whenever it is visible (overall shots) and us
the shoulder and pupil distances when the torso is n
visible (close-up shots).

Looking at Tables 3, B.6, B.7 and B.8 it can be se
that there are no significant differences in terms of p
son detection rates when it comes to indoor and o
door pictures. However, it should be noted that the pa
wise distance estimation errors for the indoor pictur
are slightly higher than the outdoor pictures. This
primarily caused by the fact that many body parts
the people in the indoor pictures are obstructed by t
chairs and sofas. There are also more cases of peop
facing away from the camera, people standing in fro
of other people, and people in poses where their tors
were non-upright in the indoor photo shoots.

5.3. Additional Results and Analysis

We separately show the results for the images th
were taken from camera location C2 for the first a
third photo shoot (outdoor) on Table 4. C2 location w
at a height of 360 cm on the first and 220 cm on the th
photo shoot relative to the ground plane where the su
jects were standing on. Thus, the camera was pitch

13
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Figure 11. Pair-wise distance estimation errors for each of the ground truth pair-wise distances.

o include the subjects within the field of view.
other camera locations, the pitch angle was close
and people were mainly standing or sitting with
rsos upright. Therefore, the torsos are usually
parallel to the camera’s sensor plane and, thus,
good distance estimates whenever they are vis-

or camera location C2, this may no longer be
e. However, the results show that the relative
se distance estimation errors for C2 locations are
lower than on the average despite the violation
ero pitch angle assumption. We can conclude

s level of pitch angle does not cause significant
s.

lso take a closer look on how errors vary for dif-
airs of people. Fig. 11 shows all the percent dis-
rrors as a function of the corresponding ground-
ir wise distance, i.e., each column of points cor-
s to the different estimations for a specific pair
le. The variations for a specific pair may follow
fferent factors, such as the camera distance and
ocal length, occlusions, and pose differences. It
observed from this figure that the pair-wise dis-
stimations errors and error variations are on av-
wer for higher ground truth distances. This is
ble as for the closest distances smaller absolute
ead to higher percent errors and, therefore, the
ns in the poses can also cause considerable per-
or.

ermore, we also provide additional results by
ting the social distance estimation problem as

Safe Distance (m) F1-Score
1 0.46

1.5 0.62
2 0.75
3 0.83
4 0.90

Table 5. F1-scores of our proposed method for different s
distance thresholds

a binary classification task similar to previous wor
We set five different social distance thresholds as sa
distances. If the distance between a pair is smal
than the threshold, we consider the distance to be u
safe and safe otherwise. We consider the unsafe ca
as the positive class. The standard evaluation m
rics for binary classification problems are Precisio
Recall, and F1-Score. The formulas for these m
rics are Precision = TruePositives

TruePositives+FalsePositives , Recall
TruePositives

TruePositives+FalseNegatives , F1−score = 2∗( Precision∗Recal
Precision+Reca

F1-score is an overall measure of the binary classific
tion performance and is always within the range of 0
with 1 indicating perfect performance. The F1-score
sults of our proposed method are given in Table 5.

As can be seen in Table 5, the choice of safe distan
threshold changes the F1-scores drastically. For exa
ple, the low performance for 1m threshold follows fro
many ground-truth distances being just slightly abo
the threshold. As our methods tends to slightly undere
timate the distances especially when the torsos are n

14



Journal Pre-proof

visible
false po
ing the
nary cla
the perf
greatly
the true
tion per
protoco
distanc
method

6. Con

To ad
social d
and cul
introdu
posed a
tance e
an evalu
social d
istic ph
setup,
tings. F
estimat
uses the
tances b
mate so
need fo
calibrat
to the g
sensor s
enables
images
person
tance er

Main
the ass
(eyes, s
camera
sumed
If these
propose
are not
to dista
truth. W
pitch an
in uprig
In parti
make th
point pa

lts
he
ut
up
e.
ti-
s’
of
ns
te.
of
of
dy
on
es
he
se
ed
ze
gh

in-
or
ed
rs
as
es
n-
re

di-
of

re-
is-
es
ot
ut

us,
re-
er-
nt
ed

rk
it

he
er-
at

gh
to
nt
es
rk
Jo

ur
na

l P
re

-p
ro

of

as explained in Section 4, these cases lead to
sitives. This supports our claim that formulat-
problem of social distance estimation as a bi-
ssification task is not an optimal way to evaluate
ormance of the methods. As the results depend
on the threshold value, F1-scores do not reflect
capacity and accuracy of the distance estima-

formance of a method. Our proposed evaluation
l, which gives the average pair-wise percentual
e estimation error offers greater insight on the
’s performance.

clusion

dress the need for more accurate estimation of
istances from general images to analyze social

tural impacts of the social distancing regulations
ced due to the COVID-19 pandemic, we pro-

new test benchmark for automatic social dis-
stimation algorithms. The benchmark includes
ation protocol for methods producing pair-wise
istances. The images follow a typical journal-
otographing style instead of a fixed monitoring
and they were taken with varying camera set-
urthermore, we proposed a robust method that

es 3D locations of persons in images and then
se estimated locations to calculate the social dis-
etween the people. Our method is able to esti-
cial distances in any single image without the
r knowing the extrinsic parameters or manually
ing the homography matrix of the image plane
round plane, provided that the focal length and
ize information of the camera are known, which
our method to be used flexibly on all kinds of

. The proposed method was able to obtain 91%
detection rate along with 38.24% pair-wise dis-
ror on the proposed test benchmark.
limitations of our proposed method follow from

umptions made: at least one of keypoint pairs
houlders, torso) is assumed to be parallel to the
’s sensor plane and the keypoint distances are as-
to follow average adult human body proportions.

assumptions are violated, the accuracy of the
d method will be affected. If the keypoint pairs
parallel to the camera’s sensor plane, this leads
nce estimates that are longer than the ground-
hile in typical journalistic photos the camera’s

gle is close to zero and the peoples’ torsos are
ht positions, the torsos are not always visible.
cular, in close-up shots it is often necessary to
e estimations using either eye or shoulder key-
ir, which are more commonly not following the

parallelity assumption. Indeed, our experimental resu
showed satisfactory results for overall shots where t
torsos of the people can be detected by OpenPose, b
the accuracy of the estimations got weaker for close-
shots where the torsos were not visible in the imag
Thus, our method could be further improved by es
mating automatically also the pitch angle and person
angles with respect to the camera. Due to the use
average adult human body proportions, the estimatio
made for children in the images would be less accura
This problem could be tackled by taking advantage
other methods that can estimate the gender and ages
the subjects and adaptively changing the assumed bo
dimensions for each individual subject depending
their gender and age. Furthermore, our method requir
the focal length and sensor plane size information of t
camera and cannot be applied on photos where the
information are lacking. For our method to be appli
on images where the focal length and sensor plane si
are not known, they would have to be estimated throu
other methods.

It should be remembered that our approach is not
tended for online monitoring of social distances. F
such purposes, there are multiple approaches propos
in the literature taking advantage of additional senso
and/or fixed monitoring setup. Instead, our work w
motivated by the need to analyze long term chang
in average social distances caused by COVID-19 pa
demic using personal or media photo collections, whe
the imaging setup can vary significantly and no ad
tional sensor information can be obtained. This kind
analysis will require comparing tens of thousands p
pandemic and post-pandemic photos to draw any stat
tically significant conclusions, while individual imag
and distances are not relevant. Furthermore, it is n
meaningful to define exact average social distances, b
rather look into approximate percentual change. Th
if we can assume that similar errors occur for both p
pandemic and post-pandemic photos, potentially int
esting conclusions can be made already with the curre
accuracy of the approach despite the above-mention
limitations.

In our future research, we will use our benchma
to further enhance the proposed method and then use
in an interdisciplinary study, where we will analyze t
impacts of the COVID-19 regulations on social int
actions. To this end, it will be important to verify th
the pre-pandemic and post-pandemic are large enou
and similar enough so that errors can be assumed
occur at similar rates and some statistically significa
conclusions can be drawn. While the COVID-19 mak
the social distance analysis very topical, the benchma
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developed methods are naturally not restricted
ID-19 related analysis, but they can be benefi-
ther image-based proxemics studies focusing on
t historical, cultural, or journalistic phenomena.
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ix A. Birdseye Views of Photo Shoots 2-4

.12. Birdseye view of the second photo shoot (indoor). The ground truth locations of the people and cameras are given
red dots, respectively.

.13. Birdseye view of the third photo shoot (outdoor). The ground truth locations of the people and cameras are given
red dots, respectively.
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.14. Birdseye view of the fourth photo shoot (indoor). The ground truth locations of the people and cameras are given
red dots, respectively.
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ix B. Results for Photo Shoots 2-4

ocal
ngth
m)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

16 4 0.83 178.58 0.62 29.70 0.62 22.92 1.00 23.98
24 4 0.83 354.18 0.54 24.94 0.70 19.29 0.95 23.40
35 4 0.66 49.27 0.54 19.61 0.95 25.79 0.95 20.40
50 7 0.76 189.61 0.51 29.79 0.76 29.57 0.89 27.26
05 14 0.68 102.84 0.62 55.40 0.56 27.42 0.90 35.07
ll 33 0.74 163.61 0.57 37.76 0.70 26.03 0.93 28.88

.6. Person detection rates and pair-wise percentual distance errors for each of the methods for the second photo sho
where every person is sitting down.

ocal
ngth
m)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

16 9 0.62 760.07 0.42 51.13 0.81 18.66 0.84 28.78
24 8 0.84 778.06 0.33 33.50 0.91 17.06 0.93 22.37
35 13 0.78 880.81 0.40 68.43 0.84 16.50 0.86 19.09
50 50 0.83 333.23 0.33 82.12 0.96 25.18 0.97 32.54
05 21 0.70 771.80 0.37 149.17 0.84 36.14 0.88 67.45
00 10 0.70 1669.68 0.41 117.25 0.63 148.94 0.73 66.52
ll 111 0.78 658.29 0.34 81.44 0.88 34.21 0.91 39.35

.7. Person detection rates and pair-wise percentual distance errors for each of the methods for the third photo sho
) where every person is standing up.
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ocal
ngth
m)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

16 8 0.78 117.07 0.54 42.86 0.9 82.69 0.92 40.27
24 26 0.79 259.67 0.60 31.07 0.95 45.33 0.96 26.57
35 20 0.82 402.73 0.61 76.93 0.94 89.47 0.94 55.15
50 16 0.74 429.24 0.52 74.61 0.8 98.24 0.86 54.40
05 23 0.68 102.05 0.57 155.77 0.80 137.55 0.85 57.06
ll 93 0.76 266.61 0.58 79.10 0.89 90.03 0.91 46.22

.8. Person detection rates and pair-wise percentual distance errors for each of the methods for the fourth photo sho
where some people are sitting down and some are standing up.
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Highlights:

 Our work focuses on social distance evaluation in media and personal photo collections.
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We propose an evaluation protocol and provide an extendable benchmark dataset.

We propose a social distance evaluation method for uncalibrated single images.

Our method combines object detection and pose estimation with projective geometry.
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