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Abstract: Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is an ad-
vanced deconvolution method, which can effectively inhibit the interference of background noise
and distinguish the fault period by calculating the multipoint kurtosis values. However, multipoint
kurtosis (MKurt) could lead to misjudgment since it is sensitive to spurious noise spikes. Considering
that L-kurtosis has good robustness with noise, this paper proposes a multipoint envelope L-kurtosis
(MELkurt) method for establishing the temporal features. Then, an enhanced image representation
method of vibration signals is proposed by employing the Gramian Angular Difference Field (GADF)
method to convert the MELkurt series into images. Furthermore, to effectively learn and extract the
features of GADF images, this paper develops a deep learning method named Conditional Super
Token Transformer (CSTT) by incorporating the Super Token Transformer block, Super Token Mixer
module, and Conditional Positional Encoding mechanism into Vision Transformer appropriately.
Transfer learning is introduced to enhance the diagnostic accuracy and generalization capability of
the designed CSTT. Consequently, a novel bearing fault diagnosis framework is established based on
the presented enhanced image representation and CSTT. The proposed method is compared with
Vision Transformer and some CNN-based models to verify the recognition effect by two experimental
datasets. The results show that MELkurt significantly improves the fault feature enhancement ability
with superior noise robustness to kurtosis, and the proposed CSTT achieves the highest diagnostic
accuracy and stability.

Keywords: multipoint envelope L-kurtosis; Vision Transformer; fault visualization; rolling bearing;
fault diagnosis

1. Introduction

The rolling bearing is one of the most crucial parts of rotating machinery, which is
widespread in industrial applications [1,2]. Due to the harsh working environment and
variable heavy loads, many types of faults are likely to occur in rolling bearings, which may
cause inestimable work accidents and financial losses. Therefore, accurate fault diagnosis
of the rolling bearings is of great significance for ensuring mechanical system security and
operational stability [3,4].

With the continuous development of artificial intelligence technology in the industrial
field, diagnosis methods based on machine learning are universally used in the intelli-
gent fault diagnosis of rotating machinery [5]. However, traditional machine learning
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methods need to manually set internal parameters, which have high requirements for
background knowledge and professional experience. Meanwhile, the traditional machine
learning methods are unable to adaptively learn the extracted signal features; thus, their
recognition ability is limited. In order to address these issues, deep learning methods
have been pioneered in fault diagnosis. Due to the powerful modeling and image feature
extraction capabilities of deep learning methods, many previous studies have converted
one-dimensional vibration signals into two-dimensional images as input for deep learn-
ing models. He et al. [6] processed the sensor data by the method of short-time Fourier
transform (STFT) to obtain a spectrum image. Tao et al. [7] applied the short-time Fourier
transform (STFT) to convert raw vibration signals into images. Shao et al. [8] generated a
visual image of the raw signal using continuous wavelet transform (CWT). Wang et al. [9] ob-
tained the 2D signal representation maps by synchro-extracting transform (SET). However,
most of these signal-to-image methods heavily rely on expert experience to set appropriate
internal parameters. According to the problem, some researchers have introduced the
Gramian Angular Field (GAF) method to convert signals into images without selecting
parameters [10]. Tang et al. [11] decomposed the vibration signals to gain the appropriate
signal components and converted them into images by GAF. Han et al. [12] compared GAF
with Markov Transition Field (MTF) and verified the superiority of GAF in information
preservation. As a type of GAF, the Gramian Angular Difference Field (GADF) obtains a
matrix by calculating the trigonometric difference between each point. It maintains the
temporal dependency and preserves abundant features with polar coordinates. Therefore,
GADF is employed to transform the vibration signals into images in this paper.

Due to the complex environment and the influence of vibration information from other
mechanical components, the bearing fault vibration signal collected by the sensor contains
background noise, which affects the accuracy of the fault diagnosis [13,14]. Bearing fault
features can be extracted by performing optimal filtering on the signal to obtain obvious
periodic impact components. Moreover, the collected bearing fault signal can be seen as the
convolution of the impact signal with the transmission path, and the fault impact signal
can be extracted by a deconvolution process [15]. Endo et al. [16] introduced the minimum
entropy deconvolution (MED) to improve the ability to diagnose gear tooth faults, and
it achieved great performance. The MED algorithm can only extract individual impulse
features and may have spurious impulse components. Moreover, the iterative method
of MED is complex, and the efficiency of finding the optimal filter is low. Considering
the drawbacks of MED, McDonald et al. [17] proposed the maximum correlated kurtosis
deconvolution (MCKD) by designing the correlated kurtosis norm as the target function of
the filtering. Wang et al. [18] denoised the vibration signal by MCKD and effectively em-
phasized periodic impulses. Jia et al. [19] incorporated MCKD and an improved spectrum
kurtosis to diagnose the early fault of bearings. Although MCKD can extract more impulse
components, it can still only extract a limited number of impulses. In addition, the setting of
MCKD internal parameters depends on prior knowledge, which means that noise reduction
is only effective when the parameters are selected appropriately. In order to address the
issues of the above two methods, Multipoint Optimal Minimum Entropy Deconvolution
Adjusted (MOMEDA) method was developed [20]. Due to the unpredictability of the bear-
ing fault period in practical engineering, MOMEDA deconvolves the signals of different
preset target periods by presetting a period range, and the multipoint kurtosis (MKurt) is
obtained by calculating the kurtosis of filtered signals. When the bearing component fails,
the multipoint kurtosis spectrum will have significant peaks at the bearing fault period, as
well as its harmonics, to reflect the fault information of the component. McDonald et al. [20]
successfully applied MOMEDA to the fault detection of the gearbox. However, due to
the kurtosis being sensitive to accidental pulses and less robust against noise, multipoint
kurtosis might lead to the wrong indication when processing signals containing accidental
pulses and heavy noise [21]. Considering that L-kurtosis is more robust to the spurious
noise spikes compared with kurtosis, this paper develops a method for establishing tempo-
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ral features of multipoint envelope L-kurtosis (MELkurt), and it is combined with GADF to
propose an enhanced image representation method of vibration signals.

Due to the powerful performance of feature learning and extracting, intelligent diag-
nosis methods based on deep learning have been applied to various engineering areas [22].
In particular, models based on convolutional neural network (CNN) have been widely re-
searched to solve the problems of bearing fault diagnosis [23,24]. Wang et al. [25] combined
the squeeze-and-excitation (SE) network and CNN to propose SE-CNN, while using sym-
metrized dot pattern (SDP) images of vibration signals as input. Wen et al. [26] designed a
new Transfer CNN (TCNN) and incorporated the architecture of TCNN with Visual Geom-
etry Group 19 (VGG-19). Yao et al. [27] introduced the butterfly-transform (BFT) module to
MobileNet V3 and proposed BFT-MobileNet V3, which achieved better diagnosis accuracy
with less computation. Chen et al. [28] proposed a fault diagnosis method by incorporating
Cyclic Spectral Coherence (CSCoh) with CNN, which effectively improved the recogni-
tion accuracy of bearing faults. CNN-based models have been successfully implemented
for variable fault diagnosis issues and have achieved great success in previous studies.
However, CNN-based models are weak at learning relationships between different pixel
regions and rely on more convolutional layers when capturing global information. If the
background noise is enhanced or the application scenario changes, the diagnostic accuracy
and stability of CNNs will be reduced due to the lack of transfer capability. Motivated by
the remarkable achievements of the transformer architecture models in natural language
processing, many researchers have introduced transformer-based models to image process-
ing. Currently, the transformer-based models have shown excellent transfer and modeling
capabilities. To extend transformer-based models to the field of bearing fault diagnosis, this
paper introduced the Vision Transformer (ViT) and enhanced its performance [29]. First,
to overcome the shortcomings of ViT in modeling links between different local areas, we
introduced the Super Token Transformer block and Super Token Mixer (STM) module [30].
Second, Conditional Positional Encoding (CPE) is incorporated into the designed model
to improve the generalization ability [31]. Therefore, we proposed a novel deep learning
method named Conditional Super Token Transformer (CSTT).

In this work, a novel intelligent diagnosis approach is established based on an en-
hanced vibration signal image representation method and CSTT. The MOMEDA is com-
bined with the designed Multipoint Envelope L-Kurtosis to enhance the fault features of
vibration signals. Then, GADF is applied to translate the enhanced signals into images
in order to obtain distinguishing feature representations of different bearing faults. The
proposed Conditional Super Token Transformer is utilized to recognize rolling bearing
diagnosis fault types by taking advantage of its feature extraction capability.

The organization of this paper is as follows. The principles of MOMEDA and GADF
are described in Section 2. In addition, the details of the designed Multipoint Envelope
L-Kurtosis are introduced in this section. Section 3 introduces the proposed CSTT and its
theoretical background. The proposed bearing fault diagnosis framework, based on the
enhanced vibration signal image representation method and CSTT, is presented in Section 4.
In Section 5, the proposed method is validated, and comparisons are carried out by using
two different datasets. Finally, main conclusions are summarized in Section 6.

2. Enhanced Vibration Signal Image Representation Method
2.1. Multipoint Envelope L-Krtosis

Rolling bearings usually operate in a complex and harsh environment, which includes
strong noise interference. Therefore, it is essential to extract the bearing fault impulses
from raw vibration signals for timely and accurate bearing fault diagnosis. MOMEDA is a
non-iterative deconvolution method for finding the optimal filter that minimizes the effect
of noise on the vibration signal, thus achieving an accurate reconstruction of the original
signal. The vibration signal x(n) collected by the sensor can be expressed as:

x(n) = h(n) ∗ y(n) + q(n) (1)
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where y(n) represents the impact signal, h(n) indicates the transfer function, and q(n)
is noise.

The deconvolution process is defined as:

y = f ∗ x =
N−L

∑
k=1

fkxk+L−1, k = 1, 2, . . . , N − L (2)

where k represents the total sampling points, and L defines the filter length.
Based on the features of periodic pulse signals in vibration signals, MOMEDA obtains

the optimal filter by computing the maximum value of the multipoint D-norm as follows:

MDN(y, t) =
1
‖t‖

tTy
‖y‖ (3)

MOMEDA(y, t) = max
f

MDN(y, t) = max
f

tTy
‖y‖ (4)

where t is the target vector that defines the positions and weights of the target impulses to
be deconvolved.

The extremum of Equation (4) is acquired by derivation of the filter:

d
df

(
tTy
‖y‖

)
=

d
df

(
t1y1

‖y‖

)
+

d
df

(
t2y2

‖y‖

)
+ · · ·+ d

df

(
tN−LyN−L
‖y‖

)
= 0 (5)

Equation (5) is transformed as follows:

d
df

(
tTy
‖y‖

)
= ‖y‖−1(t1M1 + t2M2 + · · ·+ tkMk)− ‖y‖−3tTyX0y = 0 (6)

where Mk = [xk + L−1, xk + L−2, . . . ,xk]T, then Equation (6) can be converted into the
following formulas:

d
df

(
tTy
‖y‖

)
= ‖y‖−1X0t− ‖y‖−3tTyX0y = 0 (7)

tTy

‖y‖2 X0y = X0t (8)

where y = XT
0 f. Assuming

(
X0XT

0
)−1 exists, the optimal filter and the solutions can be

expressed as:

f =
(

X0XT
0

)−1
X0t (9)

X0 =


xL xL+1 xL+2 · · · xN

xL−1 xL xL+1 · · · xN−1
xL−2 xL−1 xL · · · xN−2

...
...

...
. . .

...
x1 x2 x3 · · · xN−L+1

 (10)

y = XT
0 f (11)

To process the vibration signal by MOMEDA, the target vector t can be considered as:

tn = ω ∗
(

δround(T) + δround(2T) + · · ·+ δround(nT)

)
(12)
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where δ represents an impulse at sample n, ω denotes a window function utilized to extend
the target vector, and T specifies the fault period. To find the appropriate fault period, the
multipoint kurtosis (MKurt) is introduced in MOMEDA, which can be expressed as follows:

MKurt =

(
∑ N−L

n=1 t2
n

)2
∑ N−L

n=1 (tnyn)
4

∑ N−L
n=1 t8

n

(
∑ N−L

n=1 y2
n

)2 (13)

However, the kurtosis is sensitive to the spurious noise spikes, which could lead to
misleading indications. To accurately determine the fault period, this work proposes the
multipoint envelope L-kurtosis (MELkurt). The definition of MELkurt is given by:

MELkurt(i) = LK(ai), i = 1, 2, . . . , n (14)

where ai represents the Hilbert envelope signal of the output signal yi of MOMEDA by
using the target vector ti, LK(·) denotes the calculation operator of the L-kurtosis, which
has details that can refer to [32], and n symbolizes the number of the target vectors.

It is found that the MELkurt spectra may have a trend term in our test. Thus, a baseline
correction method proposed in [33] is applied to refine the MELkurt spectra.

A simulation signal is given as an example, which is expressed as follows.
x1(t) = 3 exp(−350t1) sin(2π fnt), t1 = mod(t, 1/ fi)

x2(t) = n(t)
x(t) = x1(t) + x2(t)

(15)

where x1(t) represents the pure periodic impact signal, as illustrated in Figure 1a, the fault
feature frequency fi of x1(t) is 100 Hz while the excited resonance frequency fn is 3000 Hz,
x2(t) denotes the gaussian white noise whose SNR is−8 dB generated by the ‘awgn’ function
of MATLAB, as presented in Figure 1b, and x(t) is the bearing fault composite signal, as
depicted in Figure 1c. Figure 2 shows the result of the simulation signals processed by
MKurt, while the result calculated by MELkurt is displayed in Figure 3. As shown in
Figures 2 and 3, the peak value of MKurt is not located at the fault period, while the
MELkurt can get the peak value at the fault period. It is noted that the multipoint envelope
L-kurtosis spectra have a trend term; thus, a baseline correction method is employed to
remove it, and Figure 4 demonstrates the result.

2.2. Gramian Angular Difference Field

Gramian Angular Difference Field (GADF) is an encoding approach to convert 1D
vibration signals into images [10]. Given a vibration signal X = {x1, x2, . . . , xk} including k
values, the signal X is scaled to [−1,1] interval, firstly, by the function below:

x̃i =
(xi −max(X)) + (xi −min(X))

max(X)−min(X)
(16)

Secondly, the rescaled value x̃i is transformed into polar coordinates. Specifically, the
angle φ is obtained by computing the value of the time series, and the radius r is acquired
by computing the time stamp, as expressed in Equation (17).{

φ = arccos(x̃i),−1 ≤ x̃i ≤ 1
r = ti

M
(17)

where ti is the time stamp, and M represents a constant factor. The method that maps the
time series to the polar coordinate system with only one result is bijective, and the polar
coordinates maintain the absolute temporal relations.
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Finally, the calculation matrix of GADF that enable the identification of the temporal
correlation between different time intervals can be gained by computing the sine value of
the trigonometric difference between each point. The GADF matrix is shown as follows:

GADF =


sin(φ1 − φ1) · · · sin(φ1 − φk)
sin(φ2 − φ1) · · · sin(φ2 − φk)

...
...

...
sin(φk − φ1) · · · sin(φk − φk)

 (18)

3. Conditional Super Token Transformer

In previous studies, transformer-based deep learning methods have achieved outstand-
ing performance in the natural language processing field. Recently, Vision Transformer (ViT)
has extended the transformer-based methods to vision tasks. The ViT model utilizes the
self-attention mechanism to capture and incorporate the feature information of the image
and outperforms the traditional convolutional neural network with fewer parameters.

3.1. Vision Transformer Framework

The basic structure of the Vision Transformer model is expressed in Figure 5. The input
image x ∈ RH ×W × C is split into N non-overlapping patches xp ∈ RN×(P2×C). The sequence
of patches is flattened into vectors and mapped to D dimensions by a trainable embedding
matrix E. After that, a learnable embedding xcls is employed to the embedded patches
before going through the transformer encoder. In addition, the position embedding Epos is
added to keep position information. The process is expressed by the formula given below:

z0 =
[

xcls; x1
pE; x2

pE; · · · ; xN
p E
]
+ Epos, E ∈ R(P2×C)×D, Epos ∈ R(N+1)×D (19)

where z0 represents the input of the following transformer encoder.
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As illustrated in Figure 6, the tokens are then fed into a transformer encoder, which is
composed of L alternating layers. Specifically, each layer is comprised of a multiheaded
self-attention (MSA) block, a multilayer perceptron (MLP) block, and a Layernorm (LN).
The output of the encoder is used as the image category representation y. The calculation
of the transformer encoder is expressed by the formulas below:

z′` = MSA(LN(z`−1)) + z`−1, ` = 1 . . . L (20)
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z` = MLP
(

LN
(
z′`
))

+ z′`, ` = 1 . . . L (21)

y = LN(z`) (22)
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The MSA block in the encoder is the core of the transformer. Firstly, the input sequence
is linearly projected to obtain queries Q, keys K, and values V . After that, the attention
weight A is acquired by Equation (23), and the result of the self-attention layer is calculated
using Equation (24).

A(K, Q) = softmax
(

QKT/
√

d
)

(23)

Attention(Q, K, V) = A(K, Q)V (24)

where
√

d represents the scaling factor.

3.2. Improvement Mechanisms

Despite the Vision Transformer method having achieved a remarkable performance
for vision tasks, it is weak in establishing links between different local areas. Firstly, we
introduce an isotropic architecture called the Super Token Transformer block and adopt
window-based self-attention. Meanwhile, a trainable super token is utilized to learn local
information in the corresponding window. Secondly, a Super Token Mixer (STM) module
is introduced to implement the global information interaction in this paper. Thirdly, a
Conditional Positional Encoding (CPE) mechanism is incorporated into the designed model
to enhance the generalization ability. CPE enables the model to process input images of
different resolutions.

The overall structure of the Super Token Transformer (STT) block is depicted in
Figure 7. As shown in Figure 7, two successive blocks constitute the Super Token Trans-
former. Firstly, the input tokens are fed into the LayerNorm (LN) module and computed
by the window-based multihead self-attention (WMSA) module. Secondly, each token is
processed with the LayerNorm (LN) module and the feed-forward network (FFN) module.
In addition, a residual connection is utilized around each of the two modules. The following
Super Token Mixer (STM) block is employed for global information interactions. Therefore,
the STT block constructs a local–global feature interactions mechanism. The calculation of
the STT block can be described as follows:

zl = [SupTkl ‖ DataTkl ] (25)

z′ = zl + diag(λl,1, · · · , λl,d)×WMSA(LN(zl)) (26)
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z′ = z′ + diag
(
λ′ l,1, · · · , λ′ l,d

)
× FFN

(
LN
(
z′
))

(27)

SupTks′ = STM
(
SupTks′

)
(28)

zl+1 = [SupTk′ ‖ DataTk′] (29)

where λl,I and λ′l,i are learnable weights whose purpose is to scale each information
channel dynamically.
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In order to perform global information interaction and reduce computational com-
plexity, Super Token Mixer (STM) applies separable convolution to interact across different
windows with the locally learnt Super tokens. In this block, the input tokens are computed
by two depth-wise convolutions firstly. The information is interchanged across tokens by
calculating each channel individually. Then, two point-wise convolutions are employed to
enable information interaction on all feature channels at each spatial location. Moreover,
two residual connections are utilized between two convolutional blocks. The STM block
can be expressed as:

xin = [SupTk1 ‖ SupTk2 ‖ · · · SupTkNs ] (30)

x′ = xin + CDW2(GELU(CDW1(LN(xin)))) (31)

xout = x′ + CPW2
(
GELU

(
CPW1

(
LN
(
x′
))))

(32)

where CDW1 and CDW2 represent the two depth-wise convolutions. CPW1 and CPW2 indicate
the two point-wise convolutions.

Due to the self-attention being permutation-invariant, which neglects the positional
information in tokens, positional encoding methods are applied widely to retain positional
information. In previous studies, the flexibility of a transformer cannot be effectively
extended by adding the absolute positional encoding (APE) to each token. Meanwhile,
the APE is unable to handle the input sequences of different lengths and ignores the
translation-invariance. Therefore, the APE significantly restricts the generalization ability
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of the model. Additionally, the relative positional encoding (RPE) is employed in some
research. Although the RPE solves the problem of translation-invariance, it brings extra
computational costs and changes the operations in the transformer. Compared with the
above methods, the conditional positional encodings (CPE) are produced dynamically
and maintain translation-invariance. The CPE can adapt to various input sizes based on
the local neighborhood of input tokens, which allows for the processing of images with
different resolutions.

3.3. Conditional Super Token Transformer

Aiming at automatically learning and extracting features from GADF images, as well
as recognizing different bearing working conditions, Conditional Super Token Transformer
(CSTT) is developed in this paper. The overall architecture of the Conditional Super Token
Transformer (CSTT) is illustrated in Figure 8. First, the input image is initially performed by
a four-layer convolutional stem. Then, the output tokens are split into a series of windows
with a size of M ×M. After that, each local window gains a learnable token, called Super
token (SupTk), to generate (M × M) + 1 tokens. Meanwhile, the conditional positional
encoding is employed to retain the positional information. The processed tokens are fed
into the super token transformer block. Finally, a two-layer class embedding encoder is
implemented to learn the representation of the image categories. The detailed parameters
of CSTT are presented in Table 1.

Entropy 2022, 24, x FOR PEER REVIEW 11 of 21 
 

 

cally and maintain translation-invariance. The CPE can adapt to various input sizes 

based on the local neighborhood of input tokens, which allows for the processing of im-

ages with different resolutions. 

3.3. Conditional Super Token Transformer 

Aiming at automatically learning and extracting features from GADF images, as 

well as recognizing different bearing working conditions, Conditional Super Token 

Transformer (CSTT) is developed in this paper. The overall architecture of the Condi-

tional Super Token Transformer (CSTT) is illustrated in Figure 8. First, the input image is 

initially performed by a four-layer convolutional stem. Then, the output tokens are split 

into a series of windows with a size of M×M. After that, each local window gains a 

learnable token, called Super token (SupTk), to generate (M×M) + 1 tokens. Meanwhile, 

the conditional positional encoding is employed to retain the positional information. The 

processed tokens are fed into the super token transformer block. Finally, a two-layer class 

embedding encoder is implemented to learn the representation of the image categories. 

The detailed parameters of CSTT are presented in Table 1. 

Table 1. Detailed parameters of CSTT. 

Layers Input Size Window Size Heads 

25 224×224 7×7 8 

 

Figure 8. Structure of Conditional Super Token Transformer. 

4. The Proposed Method 

Based on the MELkurt, GADF, and CSTT methods mentioned above, a novel bear-

ing fault diagnosis framework is established, as demonstrated, in Figure 9. The specific 

implementation steps of the designed method can be described as follows: 

Step 1: Obtain the raw vibration signal datasets with different status. 

Step 2: Extract the Multipoint Envelope L-kurtosis of the vibration signal to enhance the 

fault features. 

Step 3: Apply GADF to transform the obtained temporal signals of MELkurt into images 

and then construct datasets. 

Step 4: Divide the datasets into training datasets, validation datasets, and testing da-

tasets. 

Figure 8. Structure of Conditional Super Token Transformer.

Table 1. Detailed parameters of CSTT.

Layers Input Size Window Size Heads

25 224 × 224 7 × 7 8

4. The Proposed Method

Based on the MELkurt, GADF, and CSTT methods mentioned above, a novel bear-
ing fault diagnosis framework is established, as demonstrated, in Figure 9. The specific
implementation steps of the designed method can be described as follows:

Step 1: Obtain the raw vibration signal datasets with different status.
Step 2: Extract the Multipoint Envelope L-kurtosis of the vibration signal to enhance the
fault features.
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Step 3: Apply GADF to transform the obtained temporal signals of MELkurt into images
and then construct datasets.
Step 4: Divide the datasets into training datasets, validation datasets, and testing datasets.
Step 5: Implement the designed CSTT using the training datasets to identify bearing fault
states and obtain the trained model.
Step 6: Evaluate the diagnostic effectiveness of the proposed method on the testing datasets
by employing the trained model.
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5. Experimental Analysis and Results

The evaluation of the proposed CSTT model, in this section, is implemented on the
desktop with 3.2 GHz AMD Ryzen 5800H CPU, 16 GB RAM, and NVIDIA GeForce GTX
3070 8 GB GPU under the WIN11 operating system.

5.1. Case 1

The experimental dataset is acquired from the bearing data center of Case Western
Reserve University (CWRU) [34]. The test-bed is shown in Figure 10, which consists of
an induction motor, a torque transducer and a dynamometer. In addition, the testing
bearing is a deep groove ball bearing SKF6205. Single-point faults are artificially seeded
on the outer raceway, inner raceway and ball of the bearings respectively by electro-
discharge machining (EDM) technology. Moreover, each fault has three diameters including
0.1778 mm, 0.3556 mm and 0.5334 mm. The selected data is collected at 12 kHz with
1797 rpm motor speed for drive end bearing experiments. According to the configuration of
this open dataset, ten kinds of bearing states are selected based on different fault locations
and diameters. The details of the dataset composition are shown in Table 2.
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Table 2. The composition of the dataset.

Bearing State Data Number Fault Size (mm) Label

Normal (N) 97 - N

Inner-race fault (IF)
105 0.1778 IF1
169 0.3556 IF2
209 0.5334 IF3

Ball fault (BF)
118 0.1778 BF1
185 0.3556 BF2
222 0.5334 BF3

Outer-race fault (OF)
130 0.1778 OF1
197 0.3556 OF2
234 0.5334 OF3

Firstly, the raw vibration signals are split into sub-sequence signals of equal length,
which contain 2048 sampling points. Secondly, the sub-sequence signals are denoised by
the method of MOMEDA with MELkurt. Thirdly, the enhanced signals are converted into
grayscale images by GADF. Afterwards, GADF image datasets of 10 working conditions
are obtained and the results are shown in Figure 11. The GADF image datasets obtained by
MOMEDA with MKurt, as comparison, are presented in Figure 12. The cross-validation
method is performed to evaluate the recognition ability of the proposed model. Specifically,
the obtained images are randomly split into specific quantities, which contain 2000 training
samples, 400 validation samples, and 100 testing samples of each fault category. The same
random splitting process will be repeated ten times for cross-validation.
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Figure 12. GADF images obtained through MKurt in Case 1.

To validate the effectiveness and superiority of the MELkurt, the prepared datasets
were fed into CSTT. Meanwhile, a pre-trained weight model was introduced into CSTT for
transfer learning. The number of iterations was set to 50, and the initial learning rate was
0.001 during the training process. The validation accuracy and training loss are illustrated
in Figure 13.

Entropy 2022, 24, x FOR PEER REVIEW 14 of 21 
 

 

     

N IF 0.1778 mm BF 0.1778 mm OF 0.1778 mm IF 0.3556 mm 

     

BF 0.3556 mm OF 0.3556 mm IF 0.5334 mm BF 0.5334 mm OF 0.5334 mm 

Figure 12. GADF images obtained through MKurt. 

To validate the effectiveness and superiority of the MELkurt, the prepared datasets 

were fed into CSTT. Meanwhile, a pre-trained weight model was introduced into CSTT 

for transfer learning. The number of iterations was set to 50, and the initial learning rate 

was 0.001 during the training process. The validation accuracy and training loss are il-

lustrated in Figure 13.  

 
 

(a) (b) 

Figure 13. The training process with using MELkurt and MKurt: (a) validation accuracy curves; (b) 

training loss curves. 

It can be seen from Figure 13 that the datasets processed by MELkurt can achieve 

stable and accurate recognition after 10 epochs. Moreover, the loss curve of the datasets 

processed by MOMEDA with the proposed MELkurt method is significantly lower than 

the datasets processed by MOMEDA with MKurt. To further verify the performance of 

the designed MELkurt, the trained models of two methods were applied to the corre-

sponding testing datasets. The accuracies and classification standard deviation (Std) of 

the two methods are demonstrated in Table 3. The standard deviation can be calculated 

by the formula below: 

( )
=

−
2

1

1
Std=

N

i
i

x
N

 (33) 

where xi represents the accuracy of the i-th testing sample, μ denotes the mean accuracy 

of all testing samples, and N indicates the total number of testing samples. 
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It can be seen from Figure 13 that the datasets processed by MELkurt can achieve stable
and accurate recognition after 10 epochs. Moreover, the loss curve of the datasets processed
by MOMEDA with the proposed MELkurt method is significantly lower than the datasets
processed by MOMEDA with MKurt. To further verify the performance of the designed
MELkurt, the trained models of two methods were applied to the corresponding testing
datasets. The accuracies and classification standard deviation (Std) of the two methods are
demonstrated in Table 3. The standard deviation can be calculated by the formula below:

Std =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (33)

where xi represents the accuracy of the i-th testing sample, µ denotes the mean accuracy of
all testing samples, and N indicates the total number of testing samples.
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Table 3. The testing results using MELkurt and MKurt in Case 1 (%).

Methods Max Min Mean Std

MELkurt 100.00 100.00 100.00 0
MKurt 99.03 97.48 98.32 0.23

From Table 3, the maximum classification accuracy of the datasets processed by
MELkurt is 100%, and the mean recognition accuracy is 100%. Meanwhile, the results of the
proposed method are more stable since the standard deviation is 0. According to the above
analysis, it can be seen that the diagnosis results of the datasets processed by MELkurt are
better than another method in recognition accuracy and stability. The experimental results
indicate that the proposed method MELkurt is more suitable for applying to the bearing
fault diagnosis.

To further verify the effectiveness of the proposed model, CSTT was evaluated by
comparing with ViT and several CNN-based models, which are SE-CNN, BFT-MobileNet
V3, TCNN (VGG-19), EfficientNet, and ResNet-50. Figure 14 demonstrates the validation
accuracy and training loss of different models. It can be seen that the validation accuracy of
CSTT becomes stable around 100% after reaching 10 epochs. As seen from Figure 14b, the
training loss curve of CSTT decreases rapidly around 5 epochs, and then, it slowly drops to
a value near zero.
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Compared with different CNN-based models, the designed CSTT and ViT show
an outstanding convergence speed and tend to be stable in a small number of epochs.
Meanwhile, the recognition accuracy of CSTT is highest and the loss is minimum within
50 epochs. The results indicate that the models based on transformer structure are more
powerful than CNN-based models in this experiment.

To verify the superiority of CSTT among different models, the testing dataset was
utilized for further comparisons. The t-distributed stochastic neighbor embedding (t-SNE)
method is applied to realize the visualization of the feature learning ability and classification
effect of CSTT [35], as shown in Figure 15. As seen in Figure 15, CSTT can effectively extract
fault features and identify different fault states.

The comparison of results and the time consumed for diagnosis between CSTT and
other models are displayed in Table 4. From Table 4, the CSTT achieves 0.05% average recog-
nition accuracy improvement over ViT, 1.14% over SE-CNN, 1.15% over BFT-MobileNet V3,
1.38% over TCNN (VGG-19), 1.79% over EfficientNet, and 2.48% over ResNet-50. Mean-
while, the standard deviation of CSTT is 0, which indicates the designed method has the
best stability compared to other models. In the industrial field, real-time fault monitoring
has a high requirement for the efficiency and stability of diagnosis. Seen from Table 4, the
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designed CSTT takes 3.62 s in the testing process, which outperforms most comparative
models with higher testing accuracies. Although the testing time of EfficientNet is less
than CSTT, its classification accuracies are lower than CSTT. The experimental results show
that the CSTT method has excellent stability and achieves reliable diagnostic accuracy with
great efficiency.
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Table 4. The results of the testing dataset among different models in Case 1 (%).

Methods Max Min Mean Std Testing Time (s)

Conditional Super Token
Transformer (CSTT) 100.00 100.00 100.00 0 3.62

Vision Transformer (ViT) 100.00 99.91 99.95 0.03 5.32
SE-CNN 99.25 98.52 98.86 0.18 4.12

BFT-MobileNetV3 99.21 98.46 98.85 0.26 5.71
TCNN (VGG-19) 98.94 98.33 98.62 0.24 6.75

EfficientNet 98.79 97.54 98.21 0.43 3.28
ResNet-50 98.42 96.43 97.52 0.89 4.05

5.2. Case 2

In this case, a new dataset is adopted to further validate the robustness and the
generalization ability of the CSTT. The vibration signal acquisition platform is shown
in Figure 16, which mainly consists of a three-phase induction motor, hydraulic loading
system, normal support bearings, and faulty bearing (stiffened NTN 6205-2RS). The motor
works with a speed of 2115 rpm, corresponding to the load of 596 kg. The laser processing
technology is utilized to seed different faults in experimental bearings. In addition, the
fault types can be divided into ball fault (BF), inner race fault (IF), and outer race fault (OF),
as shown in Figure 17. Thus, bearing states mainly contain four categories in this dataset.
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Figure 17. Bearing damage pictures: (a) Inner-race fault; (b) Outer-race fault; (c) Ball fault.

The analysis process of this case is the same as in Case 1. As in Case 1, the sub-
sequence signals of equal length contain 2048 sampling points. Figure 18 displays the
GADF images of four bearing states processed by MOMEDA with MELkurt. Figure 19
shows the GADF images obtained through MOMEDA with MKurt. The cross-validation
method is also implemented in this case. The obtained images are randomly split, and each
bearing working condition has 2000 samples to form a training dataset, 400 samples to
form a validation dataset, and 100 samples to form a testing dataset.
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In this case study, two prepared datasets are fed into CSTT to verify the effectiveness
of the proposed MELkurt. Figure 20 illustrates the validation accuracy and training loss of
two methods during the training process.
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Similarly, the validation accuracy of the MELkurt method can still quickly become
stable by comparing it with the MKurt. At the same time, the loss curve of MELkurt is
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always lower than that of MKurt in 50 epochs. As is the same for Case 1, the trained models
of two methods are employed to process the corresponding testing datasets, and the results
are shown in Table 5.

Table 5. The testing results using MELkurt and MKurt in Case 2 (%).

Methods Max Min Mean Std

MELkurt 100.00 100.00 100.00 0
MKurt 98.95 97.34 98.15 0.24

From Table 5, the mean accuracy and standard deviation of the MELkurt method are
100% and 0, respectively. These results clearly demonstrate that the designed MELkurt can
effectively improve the recognition accuracy and stability of the CSTT model.

The CSTT is still compared with ViT, SE-CNN, BFT-MobileNet V3, TCNN (VGG-19),
EfficientNet, and ResNet-50. Figure 21 demonstrates the validation accuracy and train loss
of all models. Among these models, the classification of the proposed CSTT achieves the
best performance in both accuracy and stability. Table 6 shows the diagnosis results and
total time consumed for each model of the testing datasets. The visualization of the feature
extraction of CSTT is presented in Figure 22.
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(b) training loss curves.

Table 6 shows that the classification accuracies of CSTT are greater than ViT and out-
perform those of CNN-based models. Meanwhile, the proposed CSTT still has an excellent
performance in recognition efficiency. These results prove the superior generalization and
the robustness ability of the proposed CSTT.

Table 6. The results of the testing dataset among different models in Case 2 (%).

Methods Max Min Mean SD Testing Time (s)

Conditional Super Token
Transformer (CSTT) 100.00 100.00 100.00 0 3.74

Vision Transformer (ViT) 100.00 99.84 99.93 0.03 5.03
SE-CNN 98.97 98.42 98.70 0.21 4.96

BFT-MobileNetV3 98.81 98.31 98.55 0.22 5.19
TCNN (VGG-19) 98.73 97.92 98.41 0.11 6.05

EfficientNet 98.59 97.23 98.35 0.52 3.59
ResNet-50 98.68 96.59 97.81 0.92 5.37
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6. Conclusions

This work presents a novel deep learning fault diagnosis method of rolling bearing
based on MELkurt, GADF, and CSTT. Combined MELkurt with GADF, an enhanced image
representation method of vibration signals, is developed in this paper. The designed
MELkurt is superior to MKurt for fault signal feature enhancement since the MELkurt is
more robust to suppress background noise. The GADF is employed to convert the obtained
temporal signals of MELkurt into images without setting internal parameters in advance,
which avoids the drawbacks of relying heavily on prior knowledge. Besides, the GADF
images can preserve the variable features and the temporal dependency. To effectively and
automatically extract the features of the GADF images, the original Vision Transformer
(ViT) is improved by incorporating the Super Token Transformer block, Super Token Mixer
(STM) module, and Conditional Positional Encoding (CPE) mechanism appropriately, thus
proposing the Conditional Super Token Transformer (CSTT). During two experimental
datasets, the results showed that GADF image datasets of MELkurt can achieve higher
diagnostic accuracy and better stability than the datasets of MKurt. It can be validated
that the MELkurt spectra are more suitable for feature visualization. Through comparison
with the ViT and several CNN-based models, the proposed CSTT greatly outperforms
them, with an average recognition accuracy of 100% and a standard deviation of 0. The
proposed method has exhibited an outstanding performance in bearing fault diagnosis,
with excellent feature extraction and generalization ability.

In future work, the proposed model will be implemented to diagnose more bearing
states with different severity levels. Meanwhile, multimodal information fusion will be
considered to further improve the diagnosis accuracy of the proposed method.
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