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Abstract: The aim of this study was to investigate in vitro and model the effect of temperature (T) and
water activity (aw) conditions on growth and toxin production by some toxigenic fungi signaled in
cheese. Aspergillus versicolor, Penicillium camemberti, P. citrinum, P. crustosum, P. nalgiovense, P. nordicum,
P. roqueforti, P. verrucosum were considered they were grown under different T (0–40 ◦C) and aw

(0.78–0.99) regimes. The highest relative growth occurred around 25 ◦C; all the fungi were very
susceptible to aw and 0.99 was optimal for almost all species (except for A. versicolor, awopt = 0.96).
The highest toxin production occurred between 15 and 25 ◦C and 0.96–0.99 aw. Therefore, during
grana cheese ripening, managed between 15 and 22 ◦C, ochratoxin A (OTA), penitrem A (PA),
roquefortine-C (ROQ-C) and mycophenolic acid (MPA) are apparently at the highest production
risk. Bete and logistic function described fungal growth under different T and aw regimes well,
respectively. Bete function described also STC, PA, ROQ-C and OTA production as well as function
of T. These models would be very useful as starting point to develop a mechanistic model to predict
fungal growth and toxin production during cheese ripening and to help advising the most proper
setting of environmental factors to minimize the contamination risk.
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1. Introduction

Several microorganisms contribute to the features of the final product during cheese-making [1].
The starter microbiota, usually artificially inoculated, is mainly composed of lactic acid bacteria such
as Lactococcus lactis [2], which starts the cheese-making process by producing lactic acid and allowing
the syneresis of the curd. Moreover, the starter culture degrades the proteins and may produce CO2

in some processes [3]. The secondary microbiota, mainly coming from the environment, or added
as for blue cheese [4], becomes dominant after changes in the substrate, i.e., loss of water from the
curd, increased salt and pH [5]. Several types of organisms, like salt-tolerant bacteria, yeasts and
filamentous fungi [6–8] contribute to create the sensorial and nutritional characteristics of the final
product with their proteolytic and lipolytic activities [4,7]. Some fungi, like Penicillium camemberti and
P. roqueforti, are well known as ripening agents in appreciated cheeses [9–11]. Unfortunately, other
fungi, e.g., P. nordicum, can act as spoiling agents and/or mycotoxin producers on products of animal
origin [12–14], cheese included (Table 1).

Fungal activity is modulated by abiotic and biotic factors [15]; however, knowledge of the
ecological needs of fungal mycoflora associated with cheese is poor [16]. Some studies have considered
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the role of temperature (T) on mycotoxin production by cheese-related molds, but generally only
a few temperatures and few mycotoxins were considered [17]. Some data are available, regarding
citrinin (CIT; [18]), cyclopiazonic acid (CPA; [19,20]), Penitrem A (PA; [21,22]), PR-Toxin [17,23–25] and
roquefortine C (ROQ-C; [20,23,24]) under defined T regimes. The role of water activity (aw) and pH
has been poorly studied [16]; ochratoxin A (OTA) production by P. verrucosum on YES medium under
different pH and aw regimes, reported by Schmidt-Heydt, et al. [26], is the only research available.

Therefore, the aim of this study was to investigate and model the ecological needs of some fungi
frequently reported as cheese contaminants [27] or commonly used as cheese ripening agents, focusing
both on growth and mycotoxin production under different T and aw regimes. Penicillium camemberti,
P. citrinum, P. crustosum, P. nalgiovense, P. nordicum, P. roqueforti, P. verrucosum and Aspergillus versicolor
were considered. In a preliminary study, aimed at describing the fungal population associated with
cheese during ripening, most of these species were found on the rind of grana type cheeses, sampled
during the long aging period.

This is a preliminary study and will contribute to the development of a mechanistic model for the
prediction of mycotoxin contamination in ripening cheese.

Table 1. Spoiling agents reported in cheese, mycotoxin produced and their toxic effect.

Fungi Mycotoxin Toxic Effect Reported By

Aspergillus spp. Sterigmatocystin (STC) Carcinogenic, mutagenic [28] [29–32]
P. brevicompactum Mycophenolic acid (MPA) Mutagenic, possible acute toxicity [33] [34]

P. camemberti Cyclopiazonic acid Neurotoxic, possible acute toxicity [28] [19,35]
P. citrinum Citrinin (CIT) Nephrotoxic, teratogenic [36,37] [18,38]

P. crustosum Penitrem A (PA) Neurotoxic [28] [21]

P. expansum Patulin Carcinogenic, mutagenic, teratogenic, harmful to liver,
possible acute toxicity [28] [39,40]

P. roqueforti, P. crustosum Roquefortine C (ROQ-C) Neurotoxic [28] [40,41]
P. roqueforti PR Toxin Mutagenic, Carcinogenic [42] [39,43]

P. verrucosum, P. nordicum Ochratoxin A (OTA) Nephrotoxic, carcinogenic, hepatotoxic [28] [44]

2. Results

2.1. Role of Temperature, Water Activity and Incubation Time on Fungal Growth

2.1.1. Temperature

The effect of T on fungal growth, at different incubation times (0–14 days), is shown in Figure 1
using surface response curves of relative growth; maximum diameter of fungal colony after 1 day
incubation is also reported in Table 2.

Fungal growth occurred from 5 to 30 ◦C for P. nordicum and P. verrucosum, from 5 to 35 ◦C for
P. citrinum, P. crustosum, P. nalgiovense and P. roqueforti, from 10 to 30 ◦C and from 5 to 25 ◦C, for
A. versicolor and P. camemberti, respectively. The highest relative growth occurred with T = 25 ◦C for
the majority of fungi, with the exceptions of P. citrinum (T = 30 ◦C), P. verrucosum and P. nordicum
(T = 20 ◦C). In Table 2, maximum colony growth values after 10-day of incubation are reported for all
the selected fungi. This incubation time was considered because one of the fungi (P. roqueforti) reached
the maximum possible diameter of 5.5 cm.
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Figure 1. Surface response curves of fungal relative growths (expressed as percentage on the maximum
growth, numbers on the isoplethes) at different incubation times (3, 7, 10, 14 days) under different T
regimes (0–40 ◦C, step 5 ◦C; aw = 0.99). (A) A. versicolor; (B) P. camemberti; (C) P. citrinum; (D) P. crustosum;
(E) P. nalgiovense; (F) P. nordicum; (G) P. roqueforti; (H) P. verrucosum.

Table 2. Fungal maximum colony diameter (cm) reached after 10 days of incubation at the reported
temperature or water activity (aw), in Experiment 1 and 2, respectively.

Species
Experiment 1. Temperature * Experiment 2. Water Activity **

Diameter Max (cm) Temperature (◦C) Diameter Max (cm) aw

A. versicolor 3.1 25 3.1 0.96
P. camemberti 4.3 25 4.0 0.99

P. citrinum 4.2 30 3.1 0.99
P. crustosum 5.1 25 5.0 0.99

P. nalgiovense 4.8 25 4.1 0.99
P. nordicum 3.7 20 3.3 0.99
P. roqueforti 5.5 25 5.5 0.99

P. verrucosum 4.0 20 4.0 0.99

* In experiment 1.Temperature ranged between 0 ◦C and 40 ◦C, 5 ± 1 ◦C step and media aw = 0.99;
** In experiment 2. Water activity ranged between 0.87 and 0.99, step 0.03 aw and T = 20 ± 1 ◦C
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2.1.2. Water Activity

Fungal growth increased with the rise of aw, within the range considered (0.87–0.99 aw),
as a general trend for all the species (Figure 2); A. versicolor and P. roqueforti grew from 0.87 aw,
while aw = 0.90 was the minimum for all the others except P. camemberti and P. crustosum. Maximum
growth was observed at 0.99 aw for all the species except A. versicolor, with 0.96 aw as optimal. At the
optimal aw, all the fungal colonies reached maximum diameter between 7 and 14 days; the maximum
colony diameters after 10 days of incubation is reported in Table 2.

Incubation times of up to 56 day, applied for aw = 0.87 and aw = 0.90, showed P. camemberti,
P. crustosum and P. nordicum growth only at aw = 0.90, while a relevant growth was observed for all the
other species at both aw considered.
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Figure 2. Surface response curves of fungal relative growth (expressed as percentage on the maximum
growth, numbers on the isoplethes) at different incubation times (3, 7, 10, 14 days) under different
aw regimes (0.87–0.99; step 0.03; T = 20 ◦C). (A) A. versicolor; (B) P. camemberti; (C) P. citrinum;
(D) P. crustosum; (E) P. nalgiovense; (F) P. nordicum; (G) P. roqueforti; (H) P. verrucosum.

2.2. Modeling the Influence of Temperature and Water Activity on Mycelial Growth

Fungal relative growth for each fungus, in different T regimes, showed a comparable trend at
each incubation time (examples in Figure 3). Therefore, 36 mean relative growth values were used
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for T model fitting (9 T regimes and 4 incubation times, mean of 3 replicates). Regarding aw, fungal
growth decreased under sub-optimal values and 3 day incubation time was not included in data
analysis. Instead of 32 mean relative growth values for aw (8 aw regimes and 4 incubation time, mean
of 3 replicates), were therefore used 15 mean values (5 aw regimes and 3 incubation time, mean of
3 replicates) for aw model fitting.
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Figure 3. Dynamic of relative growth of (A) P. nalgiovense and (B) P. verrucosum, after 3, 7, 10 and
14 days of incubation, at different temperature regimes (0–40 ◦C). Data were fitted (dotted line) by
a Bete function (see Table 3 for equation parameters).

2.2.1. Temperature

The best fitting of fungal growth data as function of T was obtained, for all fungi considered, by
the Bete equation [45] in the form:

y =
(

a ∗ (Teq)b ∗ (1 − Teq)
)c

(1)

where y is the relative growth of the colonies, a, b and c are the equations parameters and Teq is the
equivalent T calculated as follows:

Teq = (T − Tmin)/(Tmax − Tmin) (2)

where T is the temperature regime and Tmin and Tmax are minimum and maximum temperature,
respectively, at which the fungus is able to grow. Parameters, Tmin/Tmax and R2 values are reported in
Table 3. The goodness of fit, measured with R2, was always good, ranging from 0.798 to 0.96. Fungal
growth increased from 5 ◦C (0 ◦C for P. nordicum) to 20 ◦C (P. camemberti, and P. verrucosum) or 25 ◦C
(A. versicolor, P. crustosum, P. citrinum, P. nalgiovense, P. roqueforti), and then quickly decreased (Figure 4).
P. camemberti and P. nordicum showed a very similar behavior, with a fast relative growth up to 25 ◦C,
followed by a rapid decrease (Figure 4).



Toxins 2017, 9, 4 6 of 17

Table 3. Parameters of the equations developed to calculate relative growth and mycotoxin production
for the selected fungi. The Bete and the logistic equations were used to describe fungal growth
respectively as function of temperature (T) and water activity (aw). The Bete equation was also used to
describe relative mycotoxin production as function of T.

Fungi Variable Tmin/Tmax

Estimated Parameters (Standard Error)

a b c R2

Relative Growth

A. versicolor
T 5/35 6.85 (0.353) * 2.09 (0.122) 0.63 (0.122) 0.964
aw −32.719 (3.478) −36.351 (3.958) 0.953 (0.039) 0.956

P. camemberti
T 5/40 3.22 (0.150) 0.72 (0.049) 4.10 (0.779) 0.823
aw 29.12 (156.829) −24.07 (11.615) 198.77 (32,649.12) 0.925

P. citinum
T 5/40 8.03 (0.387) 2.33 (0.114) 1.12 (0.132) 0.961
aw 55.72 (8.565) −59.74 (9.294) 1.04 (0.053) 0.966

P. crustosum
T 5/40 3.95 (0.379) 1.01 (0.115) 1.24 (0.274) 0.798
aw 32.69 (8.161) −34.57 (9.079) 1.22 (0.233) 0.927

P. nalgiovense T 5/40 4.70 (0.245) 1.25 (0.074) 1.56 (0.209) 0.899
aw 59.29 (9.254) −64.24 (10.1) 1.01 (0.044) 0.970

P. nordicum
T 0/35 5.15 (0.200) 1.50 (0.063) 1.41 (0.14) 0.900
aw 32.72 (3.478) −36.35 (3.958) 0.94 (0.039) 0.956

P. roqueforti T 5/40 4.26 (0.262) 1.08 (0.083) 2.45 (0.498) 0.902
aw 73.08 (44.606) −75.11 (47.168) 1.28 (0.601) 0.967

P. verrucosum
T 5/35 5.01 (0.573) 1.80 (0.250) 0.44 (0.043) 0.936
aw 58.61 (8.441) −63.15 (9.176) 1.03 (0.043) 0.979

Relative Mycotoxin Production

A. versicolor STC T 5/35 6.31 (1.842) 1.95 (0.659) 0.57 (0.386) 0.727
P. crustosum PA T 5/35 4.78 (0.457) 1.31 (0.145) 2.19 (0.607) 0.942

P. crustosum ROQ-C T 5/35 5.14 (0.330) 1.43 (0.103) 1.53 (0.258) 0.981
P. nordicum OTA T 5/35 3.65 (0.138) 0.87 (0.042) 1.79 (0.185) 0.991

P. roqueforti ROQ-C T 5/35 5.19 (0.440) 1.48 (0.139) 0.79 (0.161) 0.986
P. verrucosum OTA T 5/35 6.30 (0.224) 1.72 (0.066) 0.87 (0.074) 0.998

* Standard error of parameters were reported in parenthesis.
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Figure 4. Dynamic of relative growth of the studied fungi, at different temperature regimes
(0–40 ◦C). Data were fitted by a Bete function (see Table 3 for equation parameters). (A) A. versicolor;
(B) P. camemberti; (C) P. citrinum; (D) P. crustosum; (E) P. nalgiovense; (F) P. nordicum; (G) P. roqueforti;
(H) P. verrucosum.

2.2.2. Water Activity

The influence of different aw regimes on fungal growth was well described using a Logistic
equation, in the following form:

y = c/
(

1 + exp(a + b∗aw)
)

(3)
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in which y is the fungal relative growth, a, b, and c are equation parameters, reported in Table 3.
All fungi showed an S-shaped growth, except P. camemberti and P. roqueforti, with a J-shaped trend [46],
without the upper plateau (Figure 5). The functions developed showed a very good fitting to growth
data with R2 ranging between 0.925 and 0.979.
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Figure 5. Logistic equations (lines, refer to Table 3 for equation parameters) defining the dynamics of
fungal growth at different aw regimes (0.78–0.99). (A) P. versicolor; (B) P. camemberti; (C) P. citrinum;
(D) P. crustosum; (E) P. nalgiovense; (F) P. nordicum; (G) P. roqueforti; (H) P. verrucosum. (for Figure 5A
suitable aw start from 0.78 but the same range of other fungi was used).

2.3. Modeling the Combined Effect of Temperature and Water Activity on Mycelial Growth

The combined effect of T and aw was also considered, merging the functions previously developed,
as follows:

y = aT × TeqbT × (1 − Teq)cT × caw /
(

1 + exp(aaw + baw∗aw)
)

(4)

in which y is the relative growth, computed referring to the maximum growth observed.
The output was plotted in a single chart (Figure 6), where the curves represent the combination of

conditions that allow to reach 50% relative growth, for each fungus, as function of T and aw.
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Figure 6. Boundaries, derived from Equation (4), summarizing the combination of T and aw conditions
to reach relative growth =0.5 for each fungus considered in the study.

Focusing attention on T values, the number of fungal species able to grow increased from 10 ◦C
up to 20 ◦C, then decreased starting from 27 ◦C. P. nordicum started growth from 10 ◦C, immediately
followed by P. nalgiovense, P. verrucosum, P. crustosum, P. camemberti, A. versicolor, P. roqueforti (from
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14 ◦C), and P. citrinum (from 19 ◦C). All fungi were able to grow between 20 and 27 ◦C. Then, moving
to higher temperatures, P. camemberti was the first to reduce the relative growth below 50% (T limit
around 27 ◦C), followed by P. nordicum (29 ◦C), P. nalgiovense (31 ◦C), P. roqueforti (32 ◦C), A. versicolor
and P. crustosum (34 ◦C), P. citrinum and P. verrucosum (37–39 ◦C).

Considering aw, the number of species with growth >50% gradually decreased as aw values moved
from 0.99 to 0.87. P. roqueforti showed a relative growth below 50% at 0.97 aw, followed by P. camemberti
and P. crustosum (0.96 and 0.94 aw respectively), P. citrinum, P. nalgiovense, P. nordicum, and P. verrucosum
(around 0.93 aw) and A. versicolor (0.90 aw).

2.4. Influence of Temperature and Water Activity on Mycotoxin Production

All the mycotoxins investigated were detected (µg/L > LOD) and reported in ng/mm2 (Table 4),
except CPA, PR and CIT in P. citrinum, P. roqueforti and P. verrucosum, respectively. Significant
differences in the produced amount of toxins, depending on the fungus and ecological conditions
tested, were noticed, except for CIT produced by P. camemberti. In particular, the optimum temperature
for mycotoxin production was commonly between 20 and 25 ◦C, and the optimum aw was 0.99, except
for MPA optimally produced by P. roqueforti at the combination 20 ◦C and 0.96 aw. No mycotoxin was
detected in fungal colonies grown with aw < 0.93 after the 14-day incubation.

2.5. Modeling the Effect of Temperature and Water Activity on Toxin Production

2.5.1. Temperature

The best fitting of toxin production data as function of T was obtained by the Bete equation
(Equation (1); [45]). Good results are reported for STC produced by A. versicolor, OTA produced by
P. nordicum and P. verrucosum, PA produced by P. crustosum and ROQ-C produced by P. crustosum and
P. roqueforti (Table 3, Figure 7), with R2 ≥ 0.94 for all fungi except A. versicolor (R2 = 0.727).

Regarding the other fungi/toxins, toxin production was possible only for a few temperature
regimes (i.e., ROQ-C and MPA produced by P. roqueforti). Therefore, no data modeling was performed.

2.5.2. Water Activity

The range of aw that allowed toxin production was limited to 0.93–0.99, with only 3 points
available. Therefore, no modeling was applied to this dataset.
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Figure 7. Dynamic of mycotoxins production rate for: (A) STC—A. versicolor; (B) PA—P. crustosum;
(C) ROQ-C—P. crustosum; (D) OTA—P. nordicum; (E) ROQ-C—P. roqueforti; (F) OTA—P. verrucosum,
at different temperature regimes (5–35 ◦C). Data were fitted by a Beta function (see Table 3 for details).
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Table 4. Mycotoxin production under different regimes of temperature (T) and water activity (aw) after 14 days of incubation. Data are reported as mean ng of toxin
produced per mm2 of fungal colony area (ng/mm2; three replicates).

A. versicolor P. camemberti P. citrinum P. crustosum P. nordicum P. roqueforti P. verrucosum

T (◦C) aw STC CIT CPA CIT PA ROQ OTA MPA ROQ PR CIT OTA

Temperature

5 0.99 <LOD # a † 1.1 <LOD a 0.9 a 7.4 b 6.7 a <LOD a <LOD a <LOD a <LOD <LOD <LOD a
10 0.99 7.4 bc 1.0 0.5 a 66.8 b 31.7 c 237.4 b 0.2 a 0.9 c 112.3 b <LOD <LOD <LOD a
15 0.99 16.9 c 0.7 0.4 a 63.8 b 150.9 e 630.8 bc 4.0 b 1.7 d 246.9 c <LOD <LOD 0.8 b

20 * 0.99 81 d 3.8 7.6 b 1187.8 c 152.7 e 679.5 c 9.0 b 0.4 b 324.9 d <LOD <LOD 4.6 d
25 0.99 91.4 d 0.5 20.3 c 1147.5 c 197.2 e 824.3 c 3.7 b <LOD a 282.0 d <LOD <LOD 12.6 e
30 0.99 284 e <LOD <LOD a 1728.9 c 81.8 d 615.6 bc 0.1 a <LOD a 248.0 c <LOD <LOD 2.5 c
35 0.99 6.6 b <LOD <LOD a 2918.1 c <LOD a <LOD a <LOD a <LOD a 0.1 a <LOD <LOD <LOD a

Water activity

20 0.93 <LOD <LOD <LOD 733 25. 6 149.0 <LOD <LOD 68.2 <LOD <LOD <LOD
20 0.96 4.4 1.0 0.3 100.2 59.6 644.9 0.8 21.1 335.5 <LOD <LOD <LOD

* data collected at 20 ◦C and 0.99 aw are common for the trial at different T and different aw regimes. # LOD is specific for each mycotoxin. See materials and methods for details.
† Different letters define significant difference according to Tukey test (p ≤ 0.01).
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3. Discussion

The ripening of hard cheese is carried out commonly in a temperature range from 10 to 20 ◦C,
as defined in the guidelines of many products Protected for Denomination of Origin, e.g., Fontina,
Fiore Sardo and Emmentaler. For Italian grana type cheeses, the environmental conditions during
aging are between 15 ◦C and 22 ◦C, as reported in the “Parmigiano Reggiano” and “Grana Padano”
cheese production guidelines (www.politicheagricole.it). Grana cheeses are long—ripened high quality
products; according to preliminary unpublished data, starting from 9 month storage, the aw varies
between 0.92 and 0.85 in the crust and between 0.94 and 0.87 if a wider layer is considered, while the
relative humidity of storehouses ranges between 72% and 88%.

Most of the fungi studied grew optimally around 25 ◦C, but for P. citrinum the relative growth
was higher at 30 ◦C, and for P. verrucosum and P. nordicum at 20 ◦C. The susceptibility to aw regimes
was considerable; aw = 0.99 was optimal for all species except the more xerophilic A. versicolor, which
grew best with aw = 0.96. A. versicolor, P citrinum, P. nalgiovense, P. roqueforti and P. verrucosum grew
down to 0.87 aw; aw = 0.90 was the limit for P. nordicum and P. camemberti and aw = 0.94 for P. crustosum,
even at the longest incubation times considered in this study (56 days).

Therefore, all fungi studied can grow in the range of T common for the storage of hard, long
maturing grana type cheeses. Recently Marin, et al. [47] reported Penicillium spp. as the dominant
species on hard cheese; Penicillium and Aspergillus spp. were highly tolerant to water restriction,
making them more competitive with other fungi during cheese ripening. This is confirmed in this
study, where the lower aw limit for growth was 0.87 for several Penicillium species and for A. versicolor.

Fungal growth in artificial media with modified aw, as managed in this study, possibly suffered
from the high amount of salt supplemented in the lowest aw regimes. It is well know that compounds
added to modify aw (glycerol or NaCl), interfere with fungal metabolism, the former enhancing
fungal growth, being a carbon source, and the latter becoming toxic for fungi at high dosages [47–49].
Toxicity more than aw could have limited the fungal activity of some Penicillium species; therefore,
further trials on cheese will be required to define cardinal aw regimes.

No toxin production is reported in literature for P. nalgiovense; this fungus was not considered for
mycotoxin analysis, but only to check its potential competition with other fungi. It was noticed that it
was more xerophilic than other Penicillia studied and showed more than 50% relative growth up to
aw = 0.93 after 14 days of incubation. Penicillium nalgiovense and P. crustosum were the fastest growing
fungi at 10 ◦C, P. citrinum and P. nordicum at 5 ◦C. Growth speed is important because it favors fungi
competiveness. Therefore, these data suggest that P. nalgiovense could effectively compete with other
fungi present in cheese, depending on the abiotic conditions of exposure.

As well-known from literature, the range of abiotic conditions that allows toxin production is
commonly narrow than that allowing growth and this is confirmed in the present study. CPA and
MPA production started at 10 ◦C, while P. camemberti and P. roqueforti grew from 5 ◦C. OTA production
started at 10 and 15 ◦C, respectively for P. nordicum and P. verrucosum, while growth was observed
from 5 ◦C. MPA was detected up to 20 ◦C, while growth continued up to 30 ◦C.

Water activity resulted as the most limiting factor for toxin production; in fact, growth was
observed down to 0.87–0.90 aw, depending on the fungal species, while toxin production stopped at
0.93 aw for CIT, PR and ROQ-C, 0.99 aw for OTA by P. verrucosum and 0.96 aw for all the other fungi.

Even though toxic metabolites have been reported in P. camemberti and P. roqueforti, they are used
as ripening agents, and CIT, CPA, MPA and ROQ-C were effectively detected in fungal cultures in
the range of conditions considered in this study. Therefore, strains included in starter inocula should
be preliminarily checked for toxigenicity. This can be inferred also from Dall’Asta, de Dea Lindner,
Galaverna, Dossena, Neviani and Marchelli [44], who found OTA contamination increased duiring
storage of blue cheeses.

CIT is the toxin detected in the highest amount in this study, around 3000 ng/mm2 of fungal
colony, in P. citrinum grown at 35 ◦C and 0.99 aw. CIT was produced at all the temperature conditions

www.politicheagricole.it
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considered, in agreement with Bailly, Querin, Le Bars-Bailly, Benard and Guerre [18], while it rapidly
decreased from 1200 to 100 ng/mm2 when aw moved from 0.99 to 0.96 (T = 20 ◦C).

CIT production by P. camemberti is a matter of concern because it was detected at 5 ◦C, T typically
applied for home storage by consumers. Fortunately, according to Manabe [50], few P. camemberti
strains were able to produce CIT. No CIT was produced in the present study by P. verrucosum, even if
previously reported [27,51]. This could be due to its susceptibility to salt concentration. According to
Schmidt-Heydt, et al. [26], when salt concentration is equal to or above 20 g/L, P. verrucosum shifts
from producing CIT to OTA. As the amount of NaCl used to modify the aw in our study was about
70 g/L minimum, lacking of CIT production at different aw regimes is not surprising.

PA, typically produced by P. crustosum, was detected in all the considered conditions except at
35 ◦C, with the optimum at 25 ◦C, in agreement with Larsen, et al. [52] and Kokkonen, et al. [53].

ROQ-C and MPA are typically P. roqueforti extrolites [23,24,27], but ROQ-C is also produced by
P. crustosum [54,55]. ROQ-C was produced by P. roqueforti at all the considered conditions. Several
authors agree on the very high incidence of toxigenic strains in P. roqueforti populations [23,24,56,57].
Significant reduction in ROQ-C was observed with T lower than 12 ◦C, NaCl concentrations 8% and
modified atmosphere (1%–5% O2 and 20%–40% CO2; [48]). A substantial support in describing the
role of abiotic factors will come from the genome of P. roqueforti recently published [58].

STC, a very stable compound [59], has so far only beendetected on the rind of hard cheeses [31].
In this study, STC was produced by A. versicolor over the T range 10–35 ◦C and with aw ≥ 0.96, but
STC production with lower aw cannot be excluded in cheese.

CPA was supposed to be produced by P. citrinum and by P. camemberti, but it was only detected in
the latter colonies, incubated between 10 and 25 ◦C and with aw ≥ 0.96. The amount of CPA measured
increased with temperature and aw increase, in agreement with Le Bars [19] who also confirmed the
high incidence of toxigenic strains in P. camemberti populations.

Penicillium nordicum and P. verrucosum are OTA producers and in this study, as expected,
P. nordicum was more efficient at slightly lower T and higher aw, 0.96–0.99, compared to P. verrucosum.
The latter resulted toxigenic also at very low aw, 0.87–0.93, with a long incubation time, in agreement
with Schmidt-Heydt et al. [60] and Schmidt-Heydt, et al. [26]. They also underlined the efficacy of salt
addition in limiting OTA production by P. nordicum. Since the ambient T and the cheese rind aw during
cheese ripening are favorable, possible contaminations by P. nordicum and P. verrucosum must not be
underrated, even if OTA is sometimes undetectable [56].

Growth and toxin production rates by the studied fungi was well described by Bete function
and by logistic regression in different T and aw regimes, respectively. The Bete equation is in
agreement with good modelling results obtained by Rossi, et al. [61] for fungi involved in Fusarium
head blight complex and deoxynivalenol and zearalenon production, by Nazari, et al. [62] for
Fusarium langsethiae/F. sporotrichioides and T-2/HT-2 toxins production, by Battilani, et al. [63] to
model A. flavus growth on maize and recently for A. carbonarius growth on grapes [64]. Other modeling
approaches are described in literature to predict fungal growth as T function [65,66], but the use of
Bete equation is more advisable when functions are developed to be used for mechanistic model
development [67]. Furthermore, Bete equation was used to model other key steps of fungal infection
cycle as function of T, like A. flavus sporulation [68] and A. carbonarius germination. However, further
tests of growth on cheese will be necessary to develop a good model.

4. Conclusions

The highest risk of toxin production in cheese should occur between 15 and 25 ◦C, where 4 out of
8 of the species considered in this study had their optimal toxigenic activity. In particular, between 15
and 22 ◦C, 3 fungi, P. crustosum, P. nordicum and P. roqueforti, are expected to cause major problems,
with OTA, PA, ROQ-C and MPA as expected toxins. STC and CIT should also be monitored, even
if their production is optimized with higher T regimes. Regarding aw, if the cheese rind has an aw

below 0.93, mycotoxin production should not be at very high risk, at least within the first 2 weeks
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of development of a spoiling mold. Nevertheless, some contamination data reported in literature
after long ripening periods are in contrast with this statement. This study underlines two important
factors regarding mycotoxin-producting fungi in cheese: (i) they can grow in conditions comparable
with those used for cheese ripening and (ii) a multi-mycotoxin contamination of cheese is possible.
Therefore, the models developed in this study should be validated/adjusted with data obtained on
cheese. This will be a good starting point to develop a model to predict contamination by different
mycotoxins. In the meantime, monitoring ripened cheese for toxin contamination is strongly suggested,
especially when their presence will be predicted on the basis of abiotic and biotic data.

5. Materials and Methods

5.1. Fungal Strains

The fungi included in this study are all toxigenic, except for P. nalgiovense, which is however
considered because of its prevalence in ripened pork meat and signaled in cheese, and as a possible
competitor of toxigenic species. Characterized strains were purchased from CBS-NAW fungal collection
(http://www.cbs.knaw.nl/; Table 5).

Table 5. Fungal strains and related mycotoxins considered in this study.

Species Code Mycotoxin (Abbreviation)

A. versicolor CBS 108959 Sterigmatocystin (STC)
P. camemberti CBS 122399 Citrinin (CIT), Cyclopyazonic Acid (CPA)

P. citrinum CBS 122396 CIT, CPA
P. crustosum CBS 115503 Penitrem A (PA), Roquefortine C (ROQ-C)
P. nalgiovense CBS 109609 #
P. nordicum CBS 112573 Ochratoxin A (OTA)
P. roqueforti CBS 221.30 Mycophenolic Acid (MPA), ROQ-C, PR Toxin (PR-TOXIN)

P. verrucosum CBS 325.92 CIT, OTA

# No toxins are reported for this fungus.

5.2. Culture Media

Ingredients for media were purchased from Himedia Laboratories (Mumbai, India).
Czapek Yeast Agar (CYA, [69]), supplemented with sodium chloride (NaCl) (Carlo Erba, Milan,

Italy) to modify the original aw = 0.99, was used to perform the ecological trials (Table 6).

Table 6. Amounts of sodium chloride (NaCl) added to Ckzapek Yeast Agar (CYA) to modify medium
water activity (aw; [70]).

NaCl (g/100 mL) aw

7.01 0.96
11.98 0.93
16.56 0.90
19.40 0.87
23.55 0.84
30.10 0.81
39.90 0.78

5.3. Inoculum Preparation, Inoculation and Incubation

A conidia suspension was prepared using 7-day old colonies grown on Malt Extract Agar,
(MEA, [71]). The spores were collected using 20 mL of sterile bi-distilled water added to each Petri
dish, gently agitating the culture to remove conidia. The suspension was adjusted to a concentration
of 106 spores/mL using an haemocytometer, in agreement with fungal CFU/g detected in naturally

http://www.cbs.knaw.nl/
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contaminated cheese. Then, 10 µL of conidial suspension of each strain was centrally inoculated in
60 mm Ø Petri plates and incubated in the proper conditions; the trial was managed in triplicate.

Two experiments were performed to assess the role of: (i) T and (ii) aw on fungal growth and
mycotoxin production.

Regarding T, CYA inoculated plates, all prepared without any aw modification, were incubated at
temperatures ranging between 0 ◦C and 40 ◦C, 5 ± 1 ◦C step, for 14 days.

Regarding aw, the CYA medium was adjusted to aw values from 0.87 to 0.99 step 0.03 aw, and
incubated at 20 ± 1 ◦C for 14 days. Longer incubation times, up to 56 days, were considered for the
aw regimes ≤0.90.

5.4. Fungal Growth Measurement

The inoculated Petri dishes were observed after 3, 7, 10 and 14 days, and two perpendicular
colony diameters were measured; a weekly schedule was applied for longer incubation times (from 14
to 56 days). After 14 days of incubation (56 days for aw ≤ 0.90), the plates were sealed in plastic bags
and stored at −20 ◦C before mycotoxin analysis.

5.5. Mycotoxin Analysis

Ochratoxin A, CPA, PR-toxin, MPA, ROQ-C, PA and CIT were considered as produced by the
proper fungi (reported in Table 5); they were measured at the end of the incubation time (14 day
old cultures).

5.5.1. Reagents and Standards

The chemicals and solvents used for the extraction and clean-up solutions were ACS grade or
equivalent (Carlo Erba, Milan, Italy). All the water used was de-ionized and, for HPLC, purified
through a Milli-Q treatment system (Millipore, London, UK). For HPLC analysis, methanol and
acetonitrile were HPLC grade (Merck, Darmstadt, Germany). Mycotoxin standards were obtained
from Sigma-Aldrich (St. Louis, MO, USA) and Biopure (Tulln, Austria). Working standard solutions
were prepared by dilution with acetonitrile and kept at −20 ◦C.

5.5.2. Toxin Extraction

Toxin extraction was performed by putting the fungal colony and agar media in a flask containing
40 mL of acetonitrile. Then, the mix was vigorously shaken using a rotary-shaking stirrer for 1 h
in order to smash the agar medium into little pieces, filtered (folded filter paper 595 1⁄2, Whatman,
Sigma-Aldrich, St. Louis, MO, USA) and diluted using the HPLC mobile phase before being analyzed.

5.5.3. HPLC-MS/MS Analysis

The mycotoxins (STC, CPA, CIT, ROQ, MPA, OTA, PR toxin, PA), were analyzed using
an HPLC-MS/MS system, consisting of a LC 1.4 Surveyor pump, a Quantum Discovery Max
triple-quadrupole mass spectrometer (Thermo-Fisher Scientific, San Jose, CA, USA) and a PAL 1.3.1
sampling system (CTC Analitycs AG, Zwingen, Switzerland); the system was controlled by Xcalibur
1.4 software (Thermo-Fisher). The mycotoxins were separated on a Betasil RP-18 column (5 µm particle
size, 150 × 2.1 mm, Thermo-Fisher); except for PA, a mobile-phase gradient water-acetonitrile (both
acidified with 0.2% formic acid) from 65:35 to 25:75 in 6 min, then isocratic for 5 min was used; for PA,
the mobile-phase gradient water-acetonitrile (both acidified with 0.2% formic acid) was from 40:60 to
10:90 in 5 min, then isocratic for 3 min. The flow rate was always 0.2 mL/min and the injection volume
20 µL. The ionization was carried out with an ESI interface (Thermo-Fisher) in positive mode as follows:
spray capillary voltage 4200 kV, sheath and auxiliary gas 35 and 10 psi, respectively, temperature of
the heated capillary 270 ◦C. The selected fragment ions and the parent ion [M]+ were: 310, 281 and
253 m/z for STC ([M]+ 325 m/z); 196, 182 and 140 m/z for CPA ([M]+ 337 m/z); 233, 205 and 191 m/z
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for CIT ([M]+ 251 m/z); 334, 322 and 193 m/z for ROQ-C ([M]+ 390 m/z); 303, 275 and 207 m/z for
MPA ([M]+ 321 m/z); 358, 341 and 239 m/z for OTA ([M]+ 404 m/z); 279, 173, 161 and 145 m/z for PR
toxin ([M]+ 321 m/z); 616, 558 and 332 m/z for PA ([M]+ 634). The collision energy was different for
each mycotoxin (ranging from 15 to 33 V) and the argon collision pressure was 1.5 mTorr. Quantitative
determination was performed using LC-Quan 2.0 software (Thermo-Fisher Scientific); LODs were
30 µg/L for MPA, CPA, PR-toxin, PA and STC, 20 µg/L for ROQ-C, 10 µg/L for CIT and OTA.

5.6. Data Analyses

Statistical analyses were performed using SPSS v.23 (SPSS Inc., Armonk, NY, USA, 2012).
Mycotoxin production data were statistically compared by using a OneWay-ANOVA Test transforming
all values by y = ln before analysis to homogenize the variance. Tukey test was applied to highlight
significant differences between means.

Data on fungal growth, intended as the fungal culture diameter, at different T or aw regimes,
were considered separately for each incubation time. They were standardized (rated on the maximum
value observed), to obtain relative growth in a 0–1 scale, with 0 = no growth, and 1 = maximum
growth. Relative growth of each fungus, at all incubation times, were jointly analyzed. Thirty six mean
values were used for T (9 T regimes and 4 incubation times, mean of 3 replicates) and 20 values for aw

(5 aw regimes and 4 incubation times, mean of 3 replicates). The same approach was applied to obtain
relative mycotoxin production. Different nonlinear regression models were fitted to the rate data
in order to describe fungal growth and mycotoxin production as function of T and aw; the equation
parameters were estimated applying the non-linear regression procedure of the statistical package
PASW SPSS statistics v.23 (SPSS Inc., Armonk, NY, USA, 2012) which minimizes the residual sum
squares using the Levenberg-Marquardt algorithm. The best model was chosen based on the adjusted
R2 and on the number of iterations required by the algorithm to converge on parameter estimates,
as indicators of goodness of fit.

Minitab 17 (Minitab Inc., State College, PA, USA) was used to develop the surface response contour
plots of data, in relation to the combinations T × time of incubation and aw × time of incubation, for
each considered fungus. For each combination T × time or aw × time, relative growth, computed as
previously described, was used as input for data plotting (relative growth values were transformed
from 0–1 scale to 0–100 scale to satisfy the type of data input requested by Minitab). Two-dimension
surface response contour plots were drawn, with five quoted lines (contour levels): 0%, 25%, 50%, 75%
and 100% of the relative growth. This kind of data presentation is considered useful when many data
are collected in the study and it is not easy to report all data and to compare and comment results.

In order to represent the combined effect of T and aw, the equations developed to describe fungal
growth as function of these two variables were combined and the 50% relative growth values obtained
for each fungus were plotted.
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