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Parkinson’s Disease: Is It a Consequence of Human Brain Evolution?

Nico J. Diederich, MD," D. James Surmeier, PhD,? Toshiki Uchihara, MD,%® Sten Grillner, PhD®
and Christopher G. Goetz, MD’

'Department of Neurosciences, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
2Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, lllinois, USA
SNeurology Clinic with Neuromorphomics Laboratory, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
“Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
SStructural Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
8Department of Neuroscience, Karolinska Institut, Stockholm, Sweden
"Department of Neurological Sciences, Rush University, Chicago, lllinois, USA

PD Is an Exclusively Human Disease

Although experimental lesions to the dopaminergic
system lead to Parkinson’s disease (PD)-like motor
symptoms in vertebrates extending from lamprey to
primates,’ parkinsonism does not occur naturally in
any species other than man. Aged nonhuman primates
may show impaired fine motor control and reduced
home cage activity, but these deficits are not sensitive to
levodopa administration and are not accompanied by
Lewy body (LB) burden.? But why should PD be an
exclusively human disease? One possibility is that the
dramatic expansion of the telencephalon, particularly
the neocortex, in humans creates a significant burden
on subcortical circuits with which the telencephalon
interacts, leading to increased vulnerability to aging,
genetic mutations associated with PD, and environmen-
tal toxins.

Humans and Telencephalization

The human brain is approximately 3 times larger
than that expected from a plot of brain weight against
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body size for nonhuman primates (Fig. 1A).*> This
expansion concerns largely telencephalic structures.’
Expansion of the prefrontal cortex has been examined
in detail, but there is ongoing debate on mechanistic
aspects. In comparison to other primates, molecular
and cellular reorganization of neural circuitries in
humans may be crucial.® The relative growth of the
human cerebral cortex may have been attributed to
relaxed genetic control and the shift in the human diet
from exclusively plants to a mixture of plants and
nutritionally dense animal tissue, which allowed the
metabolic demands of the cerebral cortex to be met
without expanding the digestive tract.”*®
Telencephalization has had obvious advantages for
humans. Triggering neurodegeneration has been pro-
posed as a downside’ to this growth. Could this telen-
cephalic expansion be particularly detrimental for
subcortical structures that interact with the cortex but
have not grown commensurately? The basal ganglia
(BG) blueprint arose nearly 500 million years ago and
has been preserved throughout vertebrate phylogeny
(Fig. 1B).'"® This network helps make goal-directed
behavior and habits rapid and “automatic.” When the
BG is impaired, control becomes slower and less effi-
cient; moreover, the ability to generate rapid, stimulus-
driven, habitual motor sequences is largely lost.'! The
largest of the BG nuclei is the striatum; it integrates
information from other telencephalic structures—
principally the cerebral cortex—about motor plans,
internal motivational and affective states, and the exter-
nal environment. Striatal activity regulates the BG inter-
face nuclei, which then modulate other brain regions
controlling movement and thought.'* The SNc is a key
part of the BG circuit. The widely arborizing axons of
these neurons innervate all parts of the BG, but have a
particularly dense innervation of the striatum.'® Striatal
processing of cortical signals depends upon this dopa-
minergic innervation, because it provides critical
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information about the outcome of actions and ongoing
movement.'*

Although ontogenetically the striatum is part of the
telencephalon, in the course of human evolution, neo-
cortical growth has been 5 times that of striatum.'® In
fact, human striatal volume is significantly below pre-
dicted values from anthropoids (Fig. 1C). One way in
which the striatum may have dealt with this “involu-
tion” is by “exaptation,” where ancestral circuits take
on new jobs (Fig. 1E). Another part of the BG that has
not kept pace with the cerebral cortex is the SNc. In
humans, the number of SNc¢ dopaminergic neurons per
unit striatal volume is roughly one tenth that in a
rodent.'® This means an individual SNc dopaminergic
neuron innervates a much greater volume in humans.
In humans, it is estimated that a single SNc axon may
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form 1 to 2 million synapses in the striatum—an order
of magnitude greater than the number in a rodent.'®
This extraordinary growth may be crucial to pathogen-
esis, given that the axon is widely thought to be the
most vulnerable part of the human SNc¢ dopaminergic
neuron, beginning to degenerate in the earliest stages
of PD.

Other vulnerable parts of the brain also appear to
have been “left behind.” This concerns the evolution-
arily oldest parts of the amygdala such as the basal,
accessory basal, and central amygdaloid nuclei; the
human central amygdaloid nucleus is estimated to be
one third the size expected of a hominoid.'” In contrast,
the evolutionarily younger lateral amygdaloid nucleus
is almost 40% larger than expected. Of note: The cells
of the older amygdalar nuclei are densely branched
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FIG. 1. Evolutionary aspects of BG components in humans. (A) Human brain mass larger by scaling plot based on primates®® [with permission].
(B) Clade of the BG: all parts already present in lampreys*' [with permission]. (C) Negative deviations from regression line for striatum and amygdaloid
nuclei in humans'” [with permission]. (D) Human LC (vertical axis) shows fewer neurons than expected by comparison to neocortex volume (horizontal
axis); TH = tyrosine hydroxylase'® [with permission]. (E) Diagram showing the evolutionarily conserved functional module of the motor loop and subse-
quent “copy paste” of this module for other functions by the exaptation principle. Blue = GABAergic projections; red = glutamatergic projections;
DP = dorsal pallidum; Enk = enkephalin; EP = entopeduncular nucleus; GP = globus pallidus; Gpe = external segment of the globus pallidus; Hb = habe-
nula; ntp = nucleus tuberculi posterior; SP = substance P; Th = thalamus*' [with permission].
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FIG. 1. (Continued)

spiny neurons similar to the striatum, whereas the
younger amygdalar nuclei contain pyramidal-like neu-
rons similar to the cerebral cortex.!® When compared
to the cerebral cortex, the total number of locus coeru-
leus (LC) neurons is substantially lower than expected
in humans (Fig. 1D)." The olfactory bulb is approxi-
mately 30% as large as it should be for a primate
brain.”® Many of the other neurons at-risk in PD—
basal forebrain cholinergic neurons, pedunculopontine
cholinergic neurons, intralaminar thalamic glutamater-
gic neurons, raphe serotonergic neurons, and lateral
hypothalamic orexin neurons—also have long, highly
branched axons that innervate the cerebral cortex or
regions that have been affected by the relative growth
of the telencephalon.?!

Mitochondrial Determinants
of Vulnerability

How might a highly branched, unmyelinated axon
with millions of transmitter release sites increase a neu-
ron’s risk in PD? Most of the thinking around this
point has focused on the bioenergetic demands associ-
ated with sustaining the electrochemical gradients nec-
essary for spike propagation and the machinery
necessary for neurotransmission. The proposition that
mitochondrial oxidant stress is a driver of pathogenesis
in PD is consistent with three other key pieces of evi-
dence. First, genetic mutations that increase mitochon-
drial oxidant stress or impair mitochondrial quality
control lead to early-onset forms of PD. Second,
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environmental toxins that impair mitochondrial func-
tion increase the risk of PD. Third, mitochondrial func-
tion declines with age—the biggest risk factor for PD.**
However, there are counterexamples where other neu-
rons with extensive axonal arbors, such as the neurons
of the internal globus pallidus (GPi) and the cholinergic
medium spiny interneurons—ones as large as those of
SNc¢ dopaminergic neurons—that do not succumb in
PD.>Are there other distinguishing features of at-risk
neurons that might advance the “tipping point”? The
best-studied example is the SNc¢ dopaminergic neuron.
At-risk ventral tier SN¢ dopaminergic neurons are slow,
autonomous pacemakers with broad action potentials
and large oscillations in cytosolic Ca** concentration.”*
Although Ca®* oscillations contribute to pacemaking
per se, their primary function appears to be bioener-
getic. With each cycle of pacemaking, plasma mem-
brane Cav1 (L-type) Ca** channels open and trigger the
release of Ca”* from intracellular stores. This release
loads juxtaposed mitochondria with Ca?*, driving oxi-
dative phosphorylation and adenosine triphosphate
(ATP) production. This “anticipatory” or feed-forward
bioenergetic control mechanism appears to be a phylo-
genetically old mechanism that diminishes the chances
that bouts of unpredictable, sustained activity result in
ATP depletion that shuts a neuron down.'> For SNc
dopaminergic neurons, terminal or somatodendritic
ATP depletion and the failure to sustain dopamine
release during periods of fight or flight would be dan-
gerous, even disasterous, given that it would slow
movement at precisely the time when survival is threat-
ened. Why is the direct dopaminergic innervation of the
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cerebral cortex by the ventral tegmental area (VTA) not
affected by the same process? The answer is likely to be
many-faceted given that VTA dopamine (DA) neurons
have a quite different phenotype; for example, their
axons are less branched with fewer release sites, they
have lower mitochondrial oxidant stress, and they
buffer calcium more robustly.’

However, this kind of control mechanism generates
superoxide. Superoxide and derivative reactive oxygen
species can damage protein, lipid, and DNA. Over time,
this stress could irreversibly compromise mitochondrial
function. Indeed, loss of mitochondrial complex I func-
tion and mitochondrial DNA deletions are hallmarks of
the SNc of PD patients.>> Mitochondrial oxidant stress
in human (but not mouse) DA neurons also increases
oxidation of DA, which compromises lysosomal
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function.”® Many PD-prone neurons have a similar
physiological phenotype, including basal mitochondrial
oxidant stress. So, the combination of three factors—
telencephalization (unequal brain growth), a particular
anatomical phenotype, and a physiological phenotype
that stresses mitochondria and aging—creates the con-
ditions necessary for genetic mutations and environ-
mental toxins to cause PD specifically in humans.

Reconciling the Clinical Picture
With Theories of Pathogenesis
The proposition that PD is a consequence of telence-

phalization and the pathological stress it places on vul-
nerable subcortical neuromodulatory networks has
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hyperbranching. Their autonomous cell activity provides long-range neuromodulation and relies on feed-forward bioenergetics control, with calcium-
dependent and energy-expensive cellular metabolism, endangering mitochondria, especially at the a-synuclein-rich synapses. Once a certain threshold
is reached, here schematized as a horizontal bar, synaptic and axonal dysfunction occurs, giving rise to first vague and later more concise clinical
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clear implications for how symptoms should evolve in
PD patients. Our model stands in sharp contrast to the
widely held view that PD is a prion disorder.?”>*® In its
simplest form, the prion hypothesis posits that aSYN
pathology and symptoms are dictated by synaptic prox-
imity to a peripheral seeding site (in the gut or olfactory
bulb); thus, there is a centripetal spread of aSYN

pathology through anatomically coupled networks.”
This model implies that symptoms should follow a ste-
reotyped sequence, with the earliest symptoms being
peripheral. In contrast, the “telencephalization hypothe-

is” predicts symptoms should manifest themselves in
parallel,*® with local or patient-specific factors govern-
ing the precise sequence of symptoms (Fig. 2A,B). In this
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context, our hypothesis is closer to the cortical patho-
genic theory of PD proposing that corticostriatal activi-
ties figure as “stressors” in parallel to the SNc¢ and
other vulnerable structures.®'

The prion hypothesis is also difficult to reconcile with
the variable spatiotemporal distribution pattern of
pathology and symptoms observed in PD patients.?
This variability in pattern of pathology also prohibits
the clear delineation of the sequence and range of PD
symptoms (motor and nonmotor). Apathy, fatigue,
alexithymia, bradyphrenia, and depression have all
been linked to prodromal PD*? and are likely to be
dependent upon dysfunction in evolutionary old struc-
tures coupled to the telencephalon.®? At the motor stage
of the disease, dysfunction of other evolutionarily old
circuitries becomes evident. An example is blindsight, a
subconscious form of visual perception considered to
be means of detecting rapidly approaching predators. It
is impaired in PD patients, because they show deficits in
grasping saccades, motion perception, and immediate
emotional face perception.>® The superior colliculi,
which are critical to blindsight, are evolutionarily old
structures that are richly connected to the forebrain. PD
patients also have deficits in gait automatization. The
underlying circuitry in the medulla and spinal cord is
evolutionarily old and controlled by telencephalic net-
works.?* Finally, dysregulation of neuromotor systems
in sleep may trigger REM sleep behavior disorder,
given that in phylogenetic evolution body movements
during sleep (active sleep) are primarily a natural
phenomenon.

Not all nominally prodromal PD symptoms fall so
nicely into our model. Both olfactory and gastrointesti-
nal (GI) dysfunction have been posited to be symptoms
of impending PD. Both are thought to be peripheral
sites for aSYN pathology. Although these are evolution-
arily old systems, the nature of the pathology in these
regions, its relationship to nonmotor symptoms, and its
relationship to PD more broadly are unresolved. For
example, deficits in olfactory discrimination could be a
consequence of dysfunction in olfactory cortex, not of
lamina propria involvement in the olfactory bulb.?”
Similarly, the assumption that pathology spreads from
the gut to the brain is unproven; it could be that patho-
physiology in medullary autonomic control centers are
driving GI pathology, or at least that there is a “vicious
circle of injury.”38

Future Directions

Our thesis is that PD is a uniquely human disease
because of telencephalization and consequent bioener-
getic and proteostatic burdens on subcortical struc-
tures’” that have been “left behind” by human

evolution. This stress makes these subcortical structures

particularly vulnerable to aging. Our model provides a
compelling account of the range and synchronicity of
motor and nonmotor symptoms in PD. It provides a
ready explanation for the correlation between aSYN
pathology and PD. Whereas it does not exclude the
possibility that aSYN pathology propagates through
synaptically coupled networks in the brain, it argues
that this is not a primary driver of pathogenesis in
PD. Last, the “telencephalization hypothesis” suggests
that disease-modifying therapies for PD are most likely
to come from a better understanding of the unique fea-
tures of the human brain that drive pathogenesis, like
axonal biology, synaptic function in neuromodulatory
networks, and neuronal bioenergetics. It is tempting to
speculate that there is also evolutionary grounding of
other, uniquely human, neurodegenerative processes.
Thus, Alzheimer’s disease has been seen as the “down-
side” of the evolution of the human parietal lobe,
including the precuneus.” By antagonistic pleiotropy,
genetic, molecular, and cellular mechanisms may be
contributive as well.*” @
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