
Dellicour et al. Int J Health Geogr           (2021) 20:29  
https://doi.org/10.1186/s12942-021-00281-1

RESEARCH

Investigating the drivers 
of the spatio‑temporal heterogeneity 
in COVID‑19 hospital incidence—Belgium 
as a study case
Simon Dellicour1,2*  , Catherine Linard3,4, Nina Van Goethem5, Daniele Da Re6, Jean Artois1, Jérémie Bihin3, 
Pierre Schaus7, François Massonnet6, Herman Van Oyen5,8, Sophie O. Vanwambeke6, Niko Speybroeck9 and 
Marius Gilbert1 

Abstract 

Background:  The COVID-19 pandemic is affecting nations globally, but with an impact exhibiting significant spatial 
and temporal variation at the sub-national level. Identifying and disentangling the drivers of resulting hospitalisation 
incidence at the local scale is key to predict, mitigate and manage epidemic surges, but also to develop targeted 
measures. However, this type of analysis is often not possible because of the lack of spatially-explicit health data and 
spatial uncertainties associated with infection.

Methods:  To overcome these limitations, we propose an analytical framework to investigate potential drivers of the 
spatio–temporal heterogeneity in COVID-19 hospitalisation incidence when data are only available at the hospital 
level. Specifically, the approach is based on the delimitation of hospital catchment areas, which allows analysing 
associations between hospitalisation incidence and spatial or temporal covariates. We illustrate and apply our analyti-
cal framework to Belgium, a country heavily impacted by two COVID-19 epidemic waves in 2020, both in terms of 
mortality and hospitalisation incidence.

Results:  Our spatial analyses reveal an association between the hospitalisation incidence and the local density of 
nursing home residents, which confirms the important impact of COVID-19 in elderly communities of Belgium. Our 
temporal analyses further indicate a pronounced seasonality in hospitalisation incidence associated with the season-
ality of weather variables. Taking advantage of these associations, we discuss the feasibility of predictive models based 
on machine learning to predict future hospitalisation incidence.

Conclusion:  Our reproducible analytical workflow allows performing spatially-explicit analyses of data aggregated at 
the hospital level and can be used to explore potential drivers and dynamic of COVID-19 hospitalisation incidence at 
regional or national scales.

Keywords:  COVID-19, Hospitalisation incidence, Spatial covariates, Temporal covariates, Boosted regression trees, 
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Background
COVID-19 (coronavirus disease 2019), caused by a 
new coronavirus (severe acute respiratory syndrome 
coronavirus 2; SARS-CoV-2), was first reported in early 
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December 2019 in the province of Hubei in China [1] and 
followed by a fast and extensive spread throughout the 
world [2]. On March 12, 2020, the World Health Organi-
sation (WHO) declared COVID-19 a pandemic. The 
COVID-19 pandemic has resulted in considerable public 
health, social and economic disruptions [3, 4]. Moreover, 
the pandemic has threatened the saturation or actually 
led to the saturation of national hospitalisation systems. 
In order to mitigate and manage epidemic surges, it is of 
strategic importance to disentangle the spatio-temporal 
dynamic and potential drivers of COVID-19 hospitali-
sation incidence. In this context, one practical limita-
tion can be the lack of access to spatially-explicit health 
data like, for instance, the geographic origin of hospi-
talised patients. To circumvent this issue, we here pro-
pose an analytical framework based on the definition 
of hospital catchment areas (HCAs), a concept that has 
previously been used to study the geographic access to 
healthcares in the context of the COVID-19 epidemic 
in Brazil [5]. The overall objective of our study is to pre-
sent and describe an analytical framework based on the 
delimitation of such HCA units and that allows to ana-
lyse the dynamic of potential drivers of COVID-19 hos-
pitalisation incidence in a spatially-explicit context. As a 
study case, we illustrate our approach on the study of the 
COVID-19 epidemic during the year 2020 in Belgium, 
for which we precisely had access to hospitalisation inci-
dence data at the hospital level.

In Belgium, the first COVID-19 case was officially 
reported on February 4, 2020, in an asymptomatic Bel-
gian citizen repatriated from Wuhan [6]. Symptomatic 
cases increased from March onwards, initially related 
to the return of holidaymakers, mainly from Italy [7]. 
This was soon followed by local transmission and exten-
sive spread in the country [8]. The Federal Government 
implemented social-distancing measures and eventually 
a full lockdown during March–May 2020, which led to 
the end of the first wave. The summer months showed a 
lower incidence of positive cases and hospitalisations, in 
Belgium as in other European countries. However, Sep-
tember 2020 saw a slow but steady growth of the regis-
tered cases and new hospitalisations, which resulted 
in the start of the second wave at the end of September 
and brought the Federal Government to tighten up the 
social distancing measures at the end of October. With 
now more than 20,000 confirmed COVID-19 deaths, 
Belgium has been highly impacted by the two epidemic 
waves occurring during spring and fall 2020, with a 
mortality rate among the highest in the world. While 
explanatory factors like population density, connectiv-
ity, age pyramid or the critical circulation of the virus 
in nursing homes [9] have been discussed, the exact 
causes of one the highest COVID-19 mortality in the 

world (172 deaths/10,000 people, https://​coron​avirus.​
jhu.​edu/​data/​morta​lity) has still to be more thoroughly 
understood, which could require analytical comparisons 
between countries. As illustrated by the New York Times 
in an article [10] highlighting excess mortality likely due 
to underreporting COVID-19 deaths, such a compari-
son will however be complicated by differences among 
countries in terms of reporting of COVID-19 mortality. 
In Belgium, the COVID-19-induced mortality has been 
monitored relatively well, as reflected by the high correla-
tion between excess mortality statistics for 2020 and the 
COVID-19 recorded deaths [11]. Besides a high mortal-
ity, with more than 50,000 hospital admissions, Belgium 
also experienced an important hospital incidence dur-
ing the two first waves of the COVID-19 epidemic, with 
marked variations from one hospital to another. During 
the peak surge, the intensive care unit (ICU) thresholds 
were locally exceeded, causing the need to supplement 
ICU beds in emergency. On many occasions, these over-
flows adversely impacted the fate of critically-ill COVID-
19 patients [12]. With several weeks of hindsight and 
the availability of quality-controlled data, we can now 
investigate the potential drivers of the spatial–temporal 
heterogeneity in COVID-19 hospitalisation incidence in 
Belgium.

In the present study, we specifically aim at (i) com-
paring the spatial patterns of hospitalisation incidence 
between the two epidemic waves; (ii) understanding if 
spatial variations in hospitalisation incidence is related 
to population, economic, or environmental covariates 
(population density, number of nearby nursing home 
residents, median age, percentage of workers working in 
the primary/secondary/tertiary sectors, median declared 
income, ratio of urban areas, local concentration of fine 
particles); and (iii) exploring if temporal variations in 
hospitalisation incidence might be related to some tem-
poral covariates such as human mobility, climatic factors 
(temperature, humidity, and solar radiation), or environ-
mental factor (air quality).

Methods
Definition and delimitation of hospital catchment areas
The Belgian national public health research institute 
(Sciensano) collected and aggregated COVID-19 hospi-
talisation data according to an established hospital sur-
veillance protocol [13]. Although some data are available 
at the municipality level, other important data sets were 
only collected per hospital (n = 103). This forced us to 
work at the level of HCAs. The hypothesis underlying the 
concept of HCA is that patients normally choose the hos-
pital closest to their home. While the simplest approxi-
mation of spatial accessibility is Euclidean distance, a 
more realistic way to generate accessibility maps is to 

https://coronavirus.jhu.edu/data/mortality
https://coronavirus.jhu.edu/data/mortality
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estimate travel times between populations and hospi-
tals. In practice, we used the friction surface developed 
by Weiss et al. [14] to derive maps of travel time between 
any 1 km2 pixel in Belgium and each of the 103 hospitals. 
Each pixel was assigned the hospital that minimised such 
travel time, and the set of pixels attributed to a given hos-
pital was defined as its catchment area. In areas where 
multiple hospitals could be found within the same pixel 
of the friction surface, catchment areas and associated 
epidemiological data were aggregated (n = 2). The result-
ing HCAs were used as working units in all subsequent 
analyses based on three different time periods: a time 
period corresponding to the first (01/03–31/05/2020) 
and second (01/09–30/11/2020) epidemic waves, as well 
as a time period covering the entire Belgian epidemic 
until the end of November 2020 (01/03–30/11/2020). 
Specifically, we worked with a measure of hospitalisa-
tion incidence (HI) computed as the cumulative number 
of new hospitalisations per 100,000 inhabitants for each 
HCA and time period.

Investigating the drivers of the spatial heterogeneity 
in COVID‑19 hospitalisation incidence
We investigated the extent to which the HI heterogene-
ity among HCAs could be explained by spatial covari-
ates using three different categories of analyses: (i) 
visual explorations based on principal component anal-
yses (PCAs), (ii) univariate correlation analyses sum-
marised with a correlogram and estimated through 
univariate linear regression (ULR) analyses, and (iii) 
multivariate analyses conducted with multivariate linear 
regression (MLR) and machine learning approaches. The 
machine learning approach consisted in using a boosted 
regression tree (BRT) algorithm [15] allowing the estima-
tion of non-linear relationships between response (HI) 
and predictive variables (spatial covariates) by generat-
ing a collection of sequentially fitted regression trees to 
optimise the predictions. The PCA was performed with 
the dudi.pca function of the ade4 R package, and the 
correlogram visualisation was generated with the heat-
map.2 function of the R package gplots. We also per-
formed spatial autocorrelation tests using the Moran.I 
function of the R package ape. Regarding BRT analyses, 
they were carried out using the R package dismo. To 
select the optimal number of trees in the BRT models, we 
used a cross-validation procedure based on 5 separated 
folds. All BRT analyses were run and averaged over 10 
cross-validated replicates, with a tree complexity set at 
5, an initial number of trees set at 10, a learning rate of 
0.005, and a step size of 5.

We analysed eleven distinct spatial covariates as drivers 
of the spatial heterogeneity of HI (Fig. 1): human popu-
lation density computed from the human population 

raster made available by the WorldPop project (https://​
www.​world​pop.​org), the median age and the propor-
tion of people older than 65  years, the median income, 
the percentages of workers in the primary, secondary or 
tertiary sector, all provided by the Belgian Federal Pub-
lic Service Economy (SPF Economie), the ratio nursing 
home (NH) beds/population computed from the number 
of NH beds provided at municipal level by the Belgian 
Federal social care agencies (https://​www.​zorg-​en-​gezon​
dheid.​be for Flanders, http://​sante.​wallo​nie.​be for Wal-
lonia, and http://​www.​irisc​are.​bruss​els for Brussels), 
the concentration of particulate matters ≤ 2.5 or 10  μm 
(PM2.5 and PM10) provided by the Belgian Interregional 
Environment Agency, and the proportion of urban areas 
computed from the European land use raster provided 
by the Corine Land Cover database (https://​land.​coper​
nicus.​eu). Median age, proportion of people  > 65  years 
old, median income, percentage of workers in the pri-
mary, secondary, or tertiary sectors, and the number of 
NH beds were initially provided at the municipality level. 
We transposed these values to the HCA level by weight-
ing the contribution of each municipality according to 
the number of people living in areas overlapped by both 
a given municipality and given HCA polygon. In practice, 
the value vHCA assigned to a given HCA was computed as 
follows: 

where vmunicipality,i is the covariate value available for the 
municipality i, poverlap,i is the number of people living in 
the area overlapped by the HCA and municipality i, and 
pHCA is the total number of people living in the HCA 
under consideration. Estimates of PM2.5 and PM10 con-
centrations were provided in the form of geo-referenced 
grids averaged over the entire year 2017. We used the 
function exact_extract from the R package exac-
textractr to extract and assign PM concentration val-
ues to assign to each HCA.

Investigating the drivers of the temporal variability 
in COVID‑19 hospitalisation incidence
We subsequently investigated the extent to which HCA 
specific daily hospitalisation ratios (DHRs) could be 
related to temporal covariates. DHR values were com-
puted on a time window of 7  days. For a given HCA, a 
DHR was defined by the ratio of total number of per-
sons hospitalised at day d divided by the total num-
ber of persons hospitalised at day d-7, and are thus by 
essence temporally autocorrelated (Additional file  1: 
Fig. S1). We analysed five distinct temporal covariates 
(Additional file  1: Fig. S1): an index of human mobility, 

(1)vHCA =

∑

i

(

vmunicipality,i ×

(

poverlap,i

pHCA

))

https://www.worldpop.org
https://www.worldpop.org
https://www.zorg-en-gezondheid.be
https://www.zorg-en-gezondheid.be
http://sante.wallonie.be
http://www.iriscare.brussels
https://land.copernicus.eu
https://land.copernicus.eu
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PM2.5 concentration, and three climatic variables (tem-
perature, relative humidity, and solar radiation). Index 
values of human mobility were based on anonymised 
mobile phone data provided by Proximus, the largest 
mobile telecommunications company in Belgium. Proxi-
mus provided a mobility index per day and municipal-
ity computed as the ratio between the number of trips 
“in” or “out” the municipality, divided by the number of 
subscriptions for the municipality. The number of trips 
“in” and “out” were here defined as the number of jour-
neys inside and outside the considered municipality, 
respectively. Specifically, the number of trips “in” meas-
ures the number of mobile phone SIM cards “living” in 
the considered municipality, and the number of trips 
“out” measures the number of mobile phone SIM cards 
not “living” in but “visiting” that municipality. The num-
ber of subscriptions is defined as the number of mobile 
phone SIM cards “living” in a municipality. Following 
data privacy protection, Proximus only provided a num-
ber of trips “in”/”out” when a sufficient number of at least 
30 SIM cards were involved in a daily trip between two 
municipalities. The resulting index values of mobility 
were transposed from the municipality to the HCA level 

using the procedure described above. Estimates of PM2.5 
concentration were obtained from the Belgian Interre-
gional Environment Agency and provided in the form 
of daily geo-referenced grids. We again used the func-
tion exact_extract from the R package exactex-
tractr to extract and assign PM2.5 concentration values 
to assign to each HCA.

Three atmospheric variables were considered to explain 
the observed variations in DHR. All three variables were 
retrieved from the ERA5 climate reanalysis [16]. A cli-
mate reanalysis consists of outputs from a numerical 
model of the atmosphere that has been constrained by 
in-situ measurements like sea-level pressure, near-sur-
face air temperature and wind speed (among others), all 
obtained from in-situ measuring devices such as ther-
mometers in weather stations or radiosondes operating 
on weather balloons. The prime advantage of using rea-
nalyses is that they provide gridded information at high 
temporal frequency (up to hourly), which is not possible 
from the few weather stations available in Belgium alone. 
In the context of this study, for which regional scale 
near-real time estimates of atmospheric variables were 
required, the ERA5 reanalysis data (~ 35 km resolution) 

Fig. 1  Spatial covariates tested as potential predictors of the heterogeneity in hospitalisation incidence. PM2.5 refers to particulate matter 
of ≤ 2.5 μm. Median declared income is expressed in euros (€) and was averaged over each HCA (see the Methods section in Additional file for 
further detail). Mean concentration of particulate matter of ≤ 10 μm (PM10) and proportion of people who are more than 65 years old are not 
represented but are highly correlated with mean PM2.5 concentration and median age, respectively
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appeared as a better choice than the scattered point 
weather station data. The three variables retrieved from 
ERA5 are: (i) two-meter air temperature (units: K), (ii) 
the surface direct short-wave radiation flux (units: W 
m−2), (iii) the relative humidity at 1000  hPa, defined as 
the ratio between the water vapour pressure and the sat-
uration water vapour pressure (in %).

Results
Comparing the hospitalisation incidence of the two 
epidemic waves
A first visual exploration of the absolute number of 
cumulated new hospitalisations per HCA and per time 
period confirmed that hospital admissions were globally 
higher during the second than the first epidemic wave 
and that, as expected, hospital admissions were lower in 
less populated areas of the country (Fig. 2). As a prelimi-
nary analysis, we performed Moran’s I tests that did not 
lead to the detection of significant spatial autocorrelation 

for HI measures (for all time periods), meaning that there 
was no clear tendency for neighbouring HCAs to share 
similar hospitalisation incidence. Comparisons of HI 
values indicated that hospitalisation incidence was rela-
tively well correlated between the two epidemic waves 
(Fig.  3A), but also that the hospitalisation incidence of 
the second wave tended to be correlated with the HI 
differences between the two epidemic waves (Fig.  3B). 
The latter results thus relate to a tendency to observe a 
higher hospitalisation incidence during the second wave 
in HCAs that were relatively less affected by the first epi-
demic wave.

Investigating the drivers of the spatial heterogeneity 
in COVID‑19 hospitalisation incidence
Visual explorations based on PCAs (Fig.  4A, Addi-
tional file 2: Figure S2) did not yield a clear correlation 
pattern between HI and spatial predictors, even if we 
could observe that most HCAs with relatively higher HI 

Fig. 2  Spatial distribution of cumulative numbers of new hospitalisations per hospital catchment area (HCA). Cumulative numbers of new 
hospitalisations are here reported for three distinct periods: 01/03–31/05/2020 (corresponding to the first epidemic wave), 01/06–31/08/2020 
(summer period), and 01/09–30/11/2020 (corresponding to the second epidemic wave). The rightmost panel maps the baseline population in each 
HCA

A B C

Fig. 3  Exploration of the heterogeneity in hospitalisation incidence. The measure of hospitalisation incidence (HI) is computed as the cumulative 
number of new hospitalisations per 100,000 inhabitants for a given hospital catchment area (HCA) and a given time period. A Association between 
HI values of the second and first epidemic waves. B Association between HI values of the second epidemic wave and the difference between HI 
values of the second and first epidemic waves. C Association between HI values computed for the entire epidemic period (01/03–30/11/20) and 
the ratio between nursing home (NH) beds and population count in each HCA. Dot sizes are proportional to HI values computed for the entire 
epidemic period under consideration (01/03–30/11/20); R2 and “cor” refer to the coefficient of determination and the Spearman (rank) correlation
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values tended to be associated with higher local pop-
ulation density, proportion of urban areas, and ratio 
between NH beds and HCA population. In Fig. 4B, we 
could note that one of the HCA was associated with 
a particularly high HI value, which was likely due to 
the relatively small area defined around the hospital 
included in this area. As the resulting HCA could rep-
resent a potential outlier, we repeated the multivariate 
analyses after having excluded that specific HCA (see 
below). Overall, these PCA trends were further con-
firmed by the univariate analyses summarised in our 
correlogram (Fig. 4C): for all three periods considered 
(first and second epidemic waves, as well as the entire 
epidemic period until the end of November, 2020), 
HI values were positively correlated with the propor-
tion of urban areas and the ratio NH beds/population, 
but also negatively correlated with the percentage of 
people working in the primary sector. In our correlo-
gram, population density was, however, not signifi-
cantly associated with HI during the second epidemic 
wave (Fig.  4C). In our ULR analyses, only two spatial 
covariates were associated with a significant coefficient 
of determination (R2) value for all time periods under 

consideration: the proportion of urban areas and the 
ratio NH beds/population (Table 1).

To investigate the effects that the cross-covariate cor-
relations may have on our results, we further performed 
multivariate analyses, which confirm the association 
between HI and the ratio NH beds/population. We first 
performed MLR analyses, which were only based on 
spatial covariates for which we got a significant R2 value 
from the corresponding ULR analysis. For the ratio NH 
beds/population, we estimated significant MLR coef-
ficient (β) values ranging from 0.22 to 0.41 for the first 
and second epidemic wave, respectively (Table  1). On 
the contrary, we did not estimate significant MLR coef-
ficients for the proportion of urban areas. It is however 
important to note that our MLR analyses only explained 
a relatively limited proportion of HI variability (R2 < 0.25; 
Table  1). Secondly, we performed BRT analyses to fur-
ther explore non-linear relationships between HI and 
the different spatial covariates tested in this study. Our 
BRT models allowed reaching a relatively high correla-
tion between observed and predicted HI values, with 
Spearman correlation values ranging between 0.69 and 
0.76 for the first and second epidemic wave, respec-
tively (Table  1). These BRT analyses mainly confirmed 

A

B

C

D

Fig. 4  Analyses of the potential predictors of spatial heterogeneity in hospitalisation incidence (HI). A Principal component analysis (PCA) based on 
all spatial covariates, each dot corresponding to a distinct hospital catchment area (HCA; see also Additional file 2: Figure S2 for an alternative PCA 
that also includes HI variables). B Map of HCAs coloured by HI value computed for the entire epidemic period under consideration. C Correlogram 
reporting Spearman correlations among all spatial covariates and HI values for the three considered periods; only significant correlation values 
(p-values < 0.05) are reported. D Selected result from the boosted regression trees (BRT) analysis performed with all spatial covariates and HI values 
computed for the entire epidemic period as response variable: partial responses for HI values for the ratio of nursing home (NH) beds divided by 
the population in each HCA; i.e., the spatial covariate associated with the highest relative influence in the BRT model (~ 57%; Table 1). (*) indicates a 
potential HCA outlier discarded for the statistical analyses reported in Additional file 4: Table S2
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the notable contribution of the ratio NH beds/popula-
tion in predicting HI values. Specifically, we got BRT 
relative influence (RI) values of 48 and 55% for the first 
and second epidemic wave, respectively, as well as of 57% 
for the entire epidemic period (Table 1). For the propor-
tion of urban areas, RI values were much lower, except 
when considering the first epidemic wave for which we 
get a RI value of 25%. BRT response curves illustrate the 
positive yet not linear estimated relationship between HI 
and the ratio NH beds/population (Fig. 4D; and see also 
Additional file  3: Figure S3 for all response curves). We 
repeated all multivariate analyses only considering hos-
pitalisations of NH residents (Additional file 4: Table S1) 
and excluding HCAs of Brussels-Capital Region and the 
potential outlier area highlighted in Fig.  4B (Additional 
file  4: Table  S2). These two alternative sets of analyses 
confirmed the main results presented in Table 1.

In addition to exploring the association between HI 
and spatial covariates, we also used our BRT models to 
analyse the ability of those models to predict observed 
hospitalisation incidence. Specifically, we estimated 
the correlation between observed and predicted HI 
values, the latter being predicted under our differ-
ent BRT models: the BRT model trained with HI val-
ues of the first epidemic wave, the BRT model trained 
with HI values of the second epidemic wave, the BRT 
model trained with HI values for the entire epidemic 
period under consideration, and a fourth BRT model 
trained with HI values of the second epidemic wave 

(01/09–30/11/2020) but also including HI values of the 
first epidemic wave as a potential predictor in addition 
to all the other considered spatial predictors (Addi-
tional file 4: Table S3). Our results indicate a good abil-
ity of this fourth BRT model to predict HI values for the 
second epidemic wave, which can in practice be useful 
for predicting upsurge in hospital incidence in case of 
further epidemic waves.

Investigating the drivers of the temporal variability 
in COVID‑19 hospitalisation incidence
A first visual comparison indicates an association 
between daily hospitalisation incidence and two tempo-
ral covariates: temperature and solar radiation (Addi-
tional file 1: Fig. S1). For each HCA, we then estimated 
the correlation between DHR and a temporal covari-
ate while considering different lag times between the 
two measures (i.e. lag times ranging from 1 to 30  days; 
Fig.  5). The resulting density plots of correlation values 
highlight different trends in terms of temporal asso-
ciations (Fig. 5): (i) DHR only becomes clearly positively 
correlated with the mobility index when considering a 
lag time of at least ~15  days, (ii) DHR is negatively cor-
related with daily temperature but not when considering 
important lag times (> 20  days), (iii) DHR is positively 
and negatively correlated with relative humidity and solar 
radiation, respectively, for almost all lag times consid-
ered. However, DHR tends to be negatively correlated 

Table 1  Analyses of the potential predictors of spatial heterogeneity in hospitalisation incidence

This table summarises the results of univariate linear regression (ULR), multivariate linear regression (MLR), and boosted regression trees (BRT) analyses performed 
to investigate the association between measures of hospitalisation incidence (HI) and various spatial covariates associated with hospital catchment areas (HCAs). We 
report the following metrics: the coefficient of determination (R2) for the ULR analyses, the regression coefficient (β) for the MLR analyses, and the relative influence 
(RI) associated with each spatial covariate for the BRT analyses. We also report the overall R2 and Spearman correlation (“cor.”) for each distinct MLR and BRT analysis, 
respectively. (*) indicates if a given R2 or β is significant (p-value < 0.05). See also Additional file 4: Table S1 for the results of the same analyses performed when only 
considering HI values based on nursing home (NH) residents, and Additional file 4: Table S2 for the results of the same analyses performed after having discarded 
HCAs of Brussels-Capital region as well as a potential outlier HCA (highlighted in Fig. 4)

HI (01/03–31/05/2020) HI (01/09–30/11/2020) HI (01/03–30/11/2020)

MLR R2 = 0.18*, BRT cor. = 0.69 MLR R2 = 0.24*, BRT cor. = 0.76 MLR R2 = 0.23*, BRT cor. = 0.75

Spatial covariate ULR R2 MLR β BRT RI ULR R2 MLR β BRT RI ULR R2 MLR β BRT RI

Population density 0.00 – 0.8% 0.00 – 1.1% 0.00 – 0.9%

Median age 0.00 – 2.6% 0.02 – 6.2% 0.00 – 2.4%

Prop. > 65 years old 0.00 – 6.7% 0.01 – 1.4% 0.00 – 1.3%

Ratio NH beds/population 0.15* 0.22* 48.1% 0.22* 0.41* 55.3% 0.21* 0.31* 56.8%

Median income 0.00 – 3.2% 0.05* -0.07 5.5% 0.00 – 3.9%

% in primary sector 0.04 – 5.7% 0.04* 0.00 14.3% 0.05* 0.02 14.4%

% in secondary sector 0.02 – 2.2% 0.02 – 1.8% 0.00 – 2.4%

% in tertiary sector 0.05* 0.06 3.0% 0.01 – 2.5% 0.00 – 1.5%

PM10 concentration 0.01 – 1.6% 0.00 – 3.1% 0.00 – 1.7%

PM2.5 concentration 0.01 – 0.9% 0.00 – 1.8% 0.00 – 0.9%

Prop. urban areas 0.05* 0.05 25.4% 0.05* 0.09 7.1% 0.06* 0.12 13.7%
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with concentration of particles matter (≤ 2.5 μm) for lag 
times higher than 15–20 days.

Discussion
Our analyses of the spatial heterogeneity in COVID-19 
hospitalisation incidence mainly converge towards the 
relative importance of a particular spatial covariate: the 
ratio between the number of NH beds and the corre-
sponding HCA population. In other words, HCAs with 
relatively higher proportions of NH beds tended to be 
associated with a higher hospitalisation incidence during 
the two epidemic waves of 2020. If we assume that the 
number of NH beds is a good proxy for the number of 
NH residents and that most hospitalised NH residents 
were admitted in the hospital of their HCA, this overall 
result further illustrates the strong impact of COVID-19 
within NH communities on the Belgian hospitalisation 
burden. While it has been already established that nurs-
ing homes have to a large degree contributed to the Bel-
gian COVID-19 death toll (> 57% of COVID-19 deaths 
in Belgium are nursing home residents), our results also 
illustrate their important contribution to the national 
hospitalisation burden, despite the fact that symptomatic 
NH residents have not all been hospitalised. According to 
the weekly nursing home reports released by Sciensano 
(https://​covid-​19.​scien​sano.​be), a majority of COVID-19 
deaths of NH residents (76% since the beginning of the 
crisis) indeed occurred in nursing homes rather than in 
hospitals.

Our study highlights that hospitalisation incidence was 
reasonably correlated between the two epidemic waves of 
2020, but also that a BRT model based on spatial covari-
ates and previous hospitalisation incidence can lead to 
good predictions of hospitalisation incidence (correlation 
between predicted and observed hospitalisation inci-
dence > 0.85). The latter result should be interpreted with 

caution because we also show a tendency for an increase 
in incidence in HCAs that were relatively less impacted 
by the first epidemic wave. It is however difficult to 
interpret this tendency as it is based on the comparison 
between (i) hospitalisation incidence of the second wave 
and (ii) the difference in incidence between the second 
and first waves. These two measures are indeed by defini-
tion correlated because both are based on the incidence 
during the second wave.

Brussels-Capital Region is a particular case because 
it has several hospitals whose apparently small HCAs 
could not reflect the areas of origin of hospitalised peo-
ple. Because of their relatively important capacities, 
especially its two major university hospitals, hospitals in 
Brussels also admitted patients from surrounding areas. 
For all these reasons, we also performed a new set of 
multivariate analyses without HCAs of Brussels in order 
to investigate to what extent they might have affected the 
outcome of our analyses (Additional file  4: Table  S2). A 
comparison of the MLR and BRT results obtained with 
and without the HCAs of Brussels indicates no effect on 
our main conclusions.

The literature on hospitalisation incidence related to 
COVID-19 and spatial drivers is rather sparse. The few 
ecological studies describing the link between human 
and environmental drivers and COVID19, focus mostly 
on cases, mortality or case-fatality rates as outcomes. 
Also, to our knowledge, our study is the first indicating 
a significant association between the proportion of NH 
beds and hospitalisation incidence, even if some studies 
have shown a significant association between the propor-
tion of older individuals and other COVID-19 indicators 
[17–19]. Other studies reported associations between 
various demographic and socio-economic factors [18–
22] that are not confirmed in our analyses of hospitali-
sation incidence at the scale of Belgium. An association 

Fig. 5  Investigating the drivers of the temporal variability in COVID-19 hospitalisation incidence. Each density plot reports the distribution of 
correlation values obtained when comparing daily hospitalisation ratios (DHRs) and a specific temporal covariate for the entire epidemic period 
under consideration (01/03–30/11/20). Each reported distribution gathers 103 correlation values, i.e. one correlation value (Spearman) per hospital 
catchment area (HCA). In addition, we also report one distribution per lag time considered for estimating the correlation between DHRs and the 
considered temporal covariate. In practice, we investigated lag times ranging from 1 to 30 days. PM2.5 refers to particle matters ≤ 2.5 μm

https://covid-19.sciensano.be
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between urban areas and COVID-19 was also observed 
in Brazil, where the distance from the state capital (São 
Paulo) was negatively associated with COVID-19 preva-
lence [22].

In the second part of study, we explored the associa-
tion between the evolution of hospitalisation incidence 
through time and several temporal covariates of interest. 
Our relatively descriptive analyses support the previously 
discussed links between viral circulation (here reflected 
by resulting hospitalisations) and weather conditions 
[23–25]: new hospitalisations were far lower in between 
the two epidemic waves of 2020, corresponding to the 
summer period associated with higher temperature and 
solar radiation. Although it is not straightforward to infer 
a causality due to several confounding factors that may 
come into play (e.g. behavioural), several studies have 
previously discussed such potential direct or indirect 
links between viral circulation and climatic factors such 
as temperature or solar radiation [23, 24, 26–28]. When 
considering a delay of at least ~ 15  days, our analyses 
also indicate that the evolution of new hospitalisations is 
associated with human mobility, which is not necessar-
ily easy to interpret when looking at the overall epidemic 
period. Finally, our analyses find a negative and delayed 
association with concentrations of particulate matter, 
which is not in line with (nor necessarily contradicts) 
previous studies discussing the potential role of fine par-
ticulate matter in spreading the virus [29] or having a 
negative impact on COVID-19 symptoms [30].

The present study dealt with hospitalisation data only 
available at hospital level, and therefore used HCAs as 
units of analysis. This approach has some limitations. 
First, we assumed that patients were hospitalized in the 
closest hospital with a COVID-19 unit. However, other 
factors may influence hospital choices such as its size or 
reputation, especially in urban areas where the density 
of hospitals is higher. Second, the definition of HCAs is 
dependent on the friction surface used to calculate travel 
times. We used a global friction surface at a spatial reso-
lution of approximately one by one km, which is based 
on default input data and modelling methods [14]. Such 
estimations may however vary with local contexts such 
as varying road speed limits or congestion. Another limi-
tation relates to the way hospitalisations are recorded in 
Belgium. Some hospitals have several site locations, but 
COVID-19 patients were aggregated and only recorded 
at the main site. This may cause spatial discrepancies 
when a hospital receives COVID-19 patients on second-
ary sites. In addition, when hospitals were approaching 
saturation, patient transfers may have been organised 
resulting in hospitalisations recorded in more distant 
hospitals.

Conclusion
Our study proposes a comprehensive analytical frame-
work that can be applied to investigate dynamics and 
potential drivers of COVID-19 hospitalisation incidence 
at a regional or national scale. While our approach based 
on hospital catchment areas presents some limitations 
(discussed above), it allows performing spatially-explicit 
analyses of data aggregated at the hospital level. A better 
epidemiological understanding of the COVID-19 pan-
demic can serve as a guide in settling the most appropri-
ate public health responses. Because most public health 
interventions aim at avoiding a saturation of hospitals, 
understanding the spatio-temporal dynamic as well as 
the potential drivers of COVID-19 hospitalisation inci-
dence remains of crucial importance. In addition, we also 
illustrate that it is possible to get relevant predictions of 
hospitalisation incidence, which could be useful for a bet-
ter planning of transfers among hospitals and thus avoid-
ing potential saturation and local overflow.
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 Additional file 1: Figure S1. Visual comparison between the evolution 
of daily new hospitalisations and the evolution of the temporal covariates 
considered in the present study. All temporal covariates were averaged 
over a distinct hospital catchment area (HCA), and each curve thus cor-
responds to a distinct HCA. All variables were also preliminary treated by 
a moving average of 7 days. The mobility index is based on mobile phone 
data (see the text for further detail); the temperature is reported in the 
Kelvin scale (K); the relative humidity is expressed as a percentage (ratio 
between vapor partial pressure and saturation vapor partial pressure; 
100% meaning an air mass fully charged in humidity); and the solar radia-
tion is reported in Joules per square metre (J/m2). 

Additional file 2: : Figure S2. Principal component analysis (PCA) based 
on all spatial covariates as well as measures of hospitalisation incidence 
(HI). Specifically, we here included in the ACP HI values computed for the 
period corresponding to the first (01/03–31/05/2020) and the second 
(01/09–30/11/2020) epidemic waves. Each dot corresponds to a distinct 
hospital catchment area (HCA) and is displayed with an area proportional 
to the HI value computed for the entire epidemic period under considera-
tion (01/03–30/11/20). 

Additional file 3: : Figure S3. Response curves estimated for the boosted 
regression trees (BRT) model trained on measures of hospitalisation inci-
dence (HI) computed for the entire epidemic period under consideration 
(01/03–30/11/2020). 

Additional file 4: Table S1. Analyses of the potential predictors of spatial 
heterogeneity in hospitalisation incidence of nursing home (NH) residents. 
This table is equivalent to Table 1 and summarises the results of univariate 
linear regression (ULR), multivariate linear regression (MLR), and boosted 
regression trees (BRT) analyses performed to investigate the association 
between measures of hospitalisation incidence (HI) of NH residents and 
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various spatial covariates associated with hospital catchment areas (HCAs). 
We report the following metrics: the coefficient of determination (R2) 
for the ULR analyses, the regression coefficient (β) for the MLR analyses, 
and the relative influence (RI) associated with each spatial covariate for 
the BRT analyses. In addition, we also report the overall R2 and Spearman 
correlation (“cor.”) for each distinct MLR and BRT analysis, respectively. 
(*) indicates if a given R2 or β is significant (p-value < 0.05). Table S2.  
Analyses of the potential predictors of spatial heterogeneity in hospitalisa-
tion incidence, when excluding Brussels-Capital Region and a potential 
outlier area. This table is equivalent to Table 1 and summarises the results 
of univariate linear regression (ULR), multivariate linear regression (MLR), 
and boosted regression trees (BRT) analyses performed to investigate 
the association between measures of hospitalisation incidence (HI) and 
various spatial covariates associated with hospital catchment areas (HCAs). 
For these alternative analyses, we discarded the six HCAs of the Brussels-
Capital Region, as well as a potential outlier HCA (marked with an asterisk 
in Fig. 4). We report the following metrics: the coefficient of determination 
(R2) for the ULR analyses, the regression coefficient (β) for the MLR analy-
ses, and the relative influence (RI) associated with each spatial covariate 
for the BRT analyses. In addition, we also report the overall R2 and Spear-
man correlation (“cor.”) for each distinct MLR and BRT analysis, respectively. 
(*) indicates if a given R2 or β is significant (p-value < 0.05). Table S3. 
Comparison of the different boosted regression trees (BRT) models trained 
in the present study. Specifically, we here report the Spearman correla-
tion between hospitalisation incidence predicted under various BRT 
models (one row = one specific BRT model) and observed hospitalisation 
incidence. As detailed in the text, the measure of hospitalisation incidence 
(HI) is computed as the cumulative number of new hospitalisations per 
100,000 inhabitants for a given hospital catchment area (HCA) and a given 
time period. For each comparison between predicted and observed set 
of HI values, we report both the mean Spearman correlation value, as well 
as the minimum and maximum Spearman correlation values, all obtained 
while considering the ten BRT model replicates. (*) refers to the BRT model 
trained with HI values of the second epidemic wave (01/09-30/11/2020) 
but also including HI values of the first epidemic wave (01/03-31/05/2020) 
as a potential predictor in addition to all the other considered spatial 
predictors.
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