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ABSTRACT

High-throughput data sets such as genome-wide
protein–protein interactions, protein–DNA inter-
actions and gene expression data have been pub-
lished for several model systems, especially for
human cancer samples. The University of
California, Santa Cruz (UCSC) Interaction Browser
(http://sysbio.soe.ucsc.edu/nets) is an online tool
for biologists to view high-throughput data sets
simultaneously for the analysis of functional rela-
tionships between biological entities. Users can
access several public interaction networks and
functional genomics data sets through the portal
as well as upload their own networks and data
sets for analysis. Users can navigate through cor-
relative relationships for focused sets of genes be-
longing to biological pathways using a standard
web browser. Using a new visual modality called
the CircleMap, multiple ‘omics’ data sets can be
viewed simultaneously within the context of
curated, predicted, directed and undirected regula-
tory interactions. The Interaction Browser provides
an integrative viewing of biological networks based
on the consensus of many observations about
genes and their products, which may provide new
insights about normal and disease processes not
obvious from any isolated data set.

INTRODUCTION

The behavior of a cell or cellular organism is orchestrated
by networks of interacting genes. Large-scale projects such
as ENCODE and the Cancer Genome Atlas (TCGA) are
underway to uncover the genomic, epigenomic and func-
tional genomic landscapes of many different cells. As
high-throughput techniques such as DNA and RNA
sequencing become even more efficient, a key challenge

lies in developing integration and visualization approaches
to shed light on the significant pathways underlying intrin-
sic, adaptive and developmentally programmed cellular
changes that can be aberrantly regulated in disease
processes.

Heatmaps are valuable tools aiding the human eye to
detect patterns of activity associated with subsets of genes
over subsets of samples, introduced in bioinformatics by
the seminal work of Weinstein et al. (1) and later Eisen
et al. (2). Gene set enrichment analysis tools such as a
Fisher’s exact overlap test or the use of gene set
enrichment analysis (3) can be used to determine statistic-
ally significant pathways overrepresented in clusters of
genes. At this point in the analysis, viewing the data in
the context of an enriched pathway may provide signifi-
cant interpretative power. Using a pathway-guided view,
correlations between genomic and transcriptional events
could be traced through the regulatory logic of interacting
genes, the expression of genes in common regulatory
programs could be verified, the consequences of copy
number changes on the transcriptome could be mapped;
the RNA expression of microRNAs against the RNA or
protein-level expression of predicted targets could help
identify those targets under active silencing control, and
so on.

While many tools for viewing genetic networks are
available such as Cytoscape, Reactome, STRING, IMP
and WikiPathways (4–13), few provide a solution that
allows a biologist to interpret a pathway’s activity
deduced from multiple platforms of data. It is of para-
mount importance that new tools enter this space that
go beyond network ‘hairball’ viewing that can both
reduce the information overload of massive data sets,
while at the same time focus attention on critically import-
ant pathways and trends as observed in collected data. We
have developed an interactive browsing tool for viewing
multiple measures of gene activity such as gene expression,
copy number, methylation, and somatic mutation data in
the context of cellular pathways. The pathways may
include any number of different ‘features’ (proteins,
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complexes, small molecules and cellular processes) con-
nected by sets of known regulatory interactions. This
new tool should aid researchers in viewing both publicly
available as well as user-defined data sets and pathway
collections.

DESCRIPTION OF THE INTERACTION BROWSER

Overview

We propose a solution called the University of California,
Santa Cruz (UCSC) Interaction Browser (IB) that
provides several features for viewing biological data sets
overlaid on genetic pathways. The IB is a web portal to
explore evidence pertaining to the regulatory interactions
present in a genetic pathway (Figure 1). The browser takes
two main inputs: (i) a network of interactions among gene
products and (ii) ‘omics’ data measuring evidence on
multiple genes across multiple samples.

Interaction data sets can be selected from a backend
database of networks or supplied by the user. A genetic
network is displayed as a graph with nodes and edges.
A user can select a set of genes representing a pathway
of interest and a set of networks to explore known
functional interactions documented among the selected
genes. Molecular entities such as genes, gene products,
complexes, families, small molecules and abstract
cellular processes can be rendered. Genes are keyed
based on HUGO gene symbols to facilitate the communi-
cation of protein-level information across a variety of
functional networks, genetic pathways, as well as meas-
urement platforms such as microarrays, RNA-seq, SNP-
chip copy number and proteomics measurements.

Currently, the IB contains 929 curated pathways avail-
able for viewing including those ingested from Reactome
(6), Biocarta (http://www.biocarta.com/) and NCI-PID
(8) (Supplemental Table S1). In addition, the IB currently
contains 59 networks predicted from functional genomics
sources such as those derived from protein interaction
databases including BioGRID (14) (19 networks) or ex-
tracted from the meta-analysis of many gene expression
data sets to infer co-expression networks (Supplemental
Table S2). The IB provides different visual styles to display
multiple types of linkages in networks or pathways.
Directed edges allow viewing curated regulatory and sig-
naling interactions. Arrowheads are used for activating
actions and lines ending with a small perpendicular line
segment (‘T-bars’) are used for inhibitory actions.

The user interface (UI) is geared toward the display of
smaller focused pathways, for example, those pathways
containing 10–100 genes. However, the IB does pro-
vide access to much larger networks that can be drawn
on. For example, the UCSC Superimposed Pathway
(‘SuperPathway’) combines the interactions collected
from NCI-PID, BioCarta and Reactome into one
network currently containing 32 000 directed and undir-
ected interactions among over 7000 proteins (15). These
larger pathways can be loaded into the background,
allowing smaller subnetworks of interest to be brought
into the display using filtering steps. This allows users to
query the background network while avoiding the display

of massively complex interaction sets that can tax browser
responsiveness.
To enable identifying high-confidence relations,

multiple interaction networks can be used for filtering or
display simultaneously. Borrowing a convention from the
UCSC Genome Browser (16), different networks of inter-
actions are available as overlays onto a set of genes as
separate network ‘tracks’. If an interaction between two
genes in the current display is present in a selected track, it
is rendered using colors that distinguish the database
source of the interaction. In this way, several network
tracks can be visualized at once to investigate the degree
to which any functional linkage between genes is sup-
ported by multiple data sets and platforms, thereby
raising the confidence level of particular links. For
example, regulatory interactions from transcription
factors (TFs) to targets (directed) can be displayed along-
side physical protein–protein interactions (undirected)
detected from yeast two-hybrid or co-immunopre-
cipitation assays. In this context, the protein–protein
links between TFs can help identify putative transcription
factor complexes that share common targets, which in
turn may be connected by co-expression–derived
linkages (undirected).
The IB provides a portal to visualize publicly available

genomics data sets, functional genomics data sets, pheno-
type data on samples and outcome data on patients.
Currently, 22 cancer genomics data sets from TCGA are
available, where each contains multiple different measure-
ment platforms including copy number abnormalities
(CNA), DNA methylation patterns, gene expression
levels and protein levels from reverse phase protein
arrays. Data summarized at the gene level (Level 3 data)
as well as associated clinical information on patient
outcomes and relevant subtypes are obtained from the
TCGA Data Repository (http://tcga-data.nci.nih.gov/
tcga/). TCGA data are also ingested from the Broad
Institute’s Firehose pipeline (http://www.broadinstitute.
org/cancer/cga/Firehose) that provides higher levels of in-
terpretive results such as significantly mutated genes, focal
regions of amplification from GISTIC (17) analysis of
CNA and pathway-level inferences from the UCSC-de-
veloped PAthway Recognition Algorithm using Data
Integration on Genomic Models (PARADIGM) engine.
The IB is particularly well suited for viewing inferences
from PARADIGM’s integrative analysis. Briefly,
PARADIGM was developed to infer the activities of
genes in the context of pathways by integrating any
number of functional genomic data sets in a patient
sample (18). Other cancer genomics data sets are also
available through the IB including several breast cancer
studies, several lung, blood, skin, brain, ovarian, pancre-
atic cancer tracks, two COSMIC (19) tracks, NCI60 cell
line data, the Connectivity Map (20) data sets,
and the Cell Line Encyclopedia (21) data measuring
expression and drug response on different cancer cell
lines. A description of the collection can be found in
Supplemental Table S3.
Users can upload their own data matrices to the IB for

viewing. The input file format is a matrix of scores in
which the rows represent the data for a gene and the
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columns represent the data for samples. The first column
identifies the gene, preferably the HUGO name. The first
row lists the column names, usually pertaining to unique
sample identifiers for each column. Once the data matrix
has been uploaded, a custom checkbox can be used to
select the data set that is private only to the user’s
current IB session. The IB also allows users to provide
their own files for gene sets and networks. The IB
webpage has information about how this API may be
accessed programmatically to query the IB data sets.
CircleMaps are generated through an HTTP GET mech-
anism. Open source Python scripts are available for free
from the IB website for users to generate their own
CircleMaps outside of the IB, which may be more con-
venient for users to generate CircleMaps of their own data
set files.
The IB’s website gives biologists immediate access to all

of the networks and omics data without software installa-
tion for a variety of modern web browsers. The UI is
developed with the Google Web Toolkit (GWT),
building on Asynchronous JavaScript and XML (AJAX)
created using Java development tools. The network-
drawing portion of the IB is implemented in Scalable
Vector Graphics (SVG). The AJAX UI treats the SVG
as an object in the Document Object Model tree, which
may be dynamically modified. The backend of the IB uses
Apache Tomcat to serve up the GWT-compiled
JavaScript UI as well as Java servlets for accessing and
processing data. A MySQL server is used as the data
source.

CircleMaps: dynamic, coordinated viewing

Pathways and networks can enrich the viewing of high-
throughput data sets by focusing the exploration of data
on established or predicted gene regulatory logic. One of

the main IB features is the introduction of the ‘CircleMap’
concept for viewing omics data sets. A CircleMap displays
multiple data sets as nested rings pivoted around each
protein. Each ring represents measurements of a gene
property across any number of samples. Rings are
composed of a series of colored ‘spokes’, where each
spoke represents one sample in the data set (e.g. cell line
or tumor sample). All of the data for a particular sample,
oriented for a particular gene, can be viewed as one
radiating spoke. Importantly, CircleMaps for multiple
genes are coordinated so that a sample is located at the
same angular position, allowing the results to be easily
traced across an entire pathway.

Figure 2 illustrates the comparison of a CircleMap to a
heatmap to illustrate the complementary strength added
by the CircleMap. The heatmaps for two theoretical data
sets on the same samples (columns) are shown, one con-
taining DNA methylation levels for CpG islands near the
promoters of a set of genes (left matrix) and another
containing gene expression levels for the same set of
genes (right matrix). Such multidimensional data sets are
becoming common especially from national and interna-
tional consortia. The two-dimensional clustered matrix
display of the heatmaps allows one to visually see the
dominant patterns in the data. For example, most genes
have increasing DNA methylation and decreasing mRNA
expression (left to right orientation in the heatmap), an
anti-correlation relationship that is expected because
DNA methylation tends to silence gene promoters.
However, the heatmap view can overlook specific relations
between a subset of interacting genes. In this contrived
example, gene A’s product inhibits the expression of
gene B. While the DNA methylation profiles of the
genes are positively correlated, leading to the co-clustering
of genes A and B, the mRNA expression of the two are
anti-correlated and therefore gene B is sorted far from

Figure 1. Overview of the UCSC IB workflow. Users select or supply (i) a network of interactions (left box) and (ii) a data set for viewing (right
box). The data are viewed for a selected set of genes in the main panel using a CircleMap display (center box). Data for individual samples are
displayed as individual ‘tick marks’, different data platforms are displayed as separate rings (‘Full CircleMap’). Samples can be aggregated together
into groups, displayed as segments with averaged color hue (‘Aggregated CircleMap’).
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gene A in the mRNA heatmap. Identifying the presence of
this confirmed regulatory relationship is therefore prob-
lematic in the heatmap because a user’s eye has to relate
one or a few gene vectors, embedded in a much larger
collection, to other vectors across long visual distances.
On the other hand, the CircleMap view readily reveals
this kind of relationship using a single sort of the
samples based on gene A’s mRNA expression levels.

Several fundamental CircleMap operations including
spoke coordination, spoke sorting and spoke aggregation
provide simple but powerful view modalities. First, all of
the nested rings in the display are coordinated such that
every gene maintains the same spoke order for the
samples. Second, by selecting any ring, the spokes are
sorted in ascending or descending order according to the
data values of the ring and this order is propagated to all
other rings. Third, samples can be grouped together by
disease subtypes, tissues, common phenotypes and
patient outcomes. All of the values within a group can
be averaged together and displayed as a ring segment.
The combination of these operations allows the eye to

pick up trends and detect correlations between particular
genes that exist within important subsets.

CASE STUDY: ANALYSIS OF A TCGA CANCER
GENOMICS DATA SET

To illustrate the functionality of the IB, we analyzed the
TCGA colorectal carcinoma (CRC) data set (22). In CRC,
the MYC oncogene is often activated through disruption
of normal signaling of the Wnt or TGF-beta pathways,
accounting for >90% of patient tumors. For example,
APC mutations lead to the loss of inhibition of MYC by
beta-catenin (CTNNB1). However, a minority of CRC
patients have an elevated number of mutations in their
exomes (>200) and are associated with disruptions in dif-
ferent signaling pathways, one of which is disruption of
the RAS-MAPK and PI3K signaling pathways.
v-raf murine sarcoma viral oncogene homolog B1

(BRAF) is preferentially mutated in a subset of CRC
patients’ tumors harboring highly elevated rates of
somatic mutations (>200 mutations in the exome),
known as the ‘hypermutated’ class of tumors. Inspection
of BRAF’s CircleMap easily reveals this known phenom-
enon (Figure 3A). In addition, the figure also shows gene
expression levels and CNA rings selected for the BRAF
gene. By sorting both the hypermutated subtype ring and
the BRAF mutation ring, the enrichment of BRAF muta-
tions in the hypermutated patients becomes apparent. The
trend can be confirmed visually by converting the view to
Figure 3B, which displays the average values of the rings
within each of the patient subgroups.
The IB allows a researcher to load a moderately sized

pathway diagram for CircleMap viewing. Figure 3C
shows most of the genes in the CRC pathway discussed
in the TCGA marker paper (22), showing many of the
components involved in the Wnt, TGF-beta and PI3K
signaling pathways impinging on MYC oncogene
regulation. The visualization allows a large amount of
the TCGA data to be quickly screened by eye.
Experimentally determined levels, such as the CNA and
mutation values for all of the genes, can be viewed along-
side inferred activities from a pathway analysis method
such as PARADIGM. The data can be sorted and
grouped based on the hypermutation versus non-
hypermutated dichotomization to allow viewing the data
along familiar patient subtypes.

SUMMARY AND FUTURE DIRECTIONS

The visualization approach described here is complemen-
tary to standard heatmap viewing. Ideally, a system could
connect both views together so that a user would be able
to switch between the two as analysis dictates. The UCSC
Cancer Genomics Browser (https://genome-cancer.ucsc.
edu/) is a set of web-based tools to display, investigate
and analyze cancer genomics data and its associated
clinical information (23). The browser uses dynamic
heatmaps to navigate cohorts of samples, allowing users
to correlate genomic or proteomic data with phenotypic
information. In the future, we plan to develop a tight

Figure 2. A toy example illustrating relationship of a CircleMap to a
standard heatmap. (A) Left matrix represents DNA methylation data;
right matrix mRNA expression data for the same genes (rows) and 10
samples (columns) as for the DNA methylation data. Two genes (gene
A and gene B) co-cluster in the DNA methylation data (top) but do not
in the mRNA data owing to gene B’s anti-correlation with gene A’s
expression. (B) CircleMap shows data across the 10 samples for genes
A and B with mRNA expression on the inner ring and DNA methy-
lation on the outer ring. Each ‘spoke’ represents one sample (column)
in the heatmap of part A.
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interconnection of the IB with the Cancer Genomics
Browser.
The IB interactively displays multiple data sets overlaid

onto a genetic pathway using an intuitive CircleMap. The
technique allows various different platforms of data to be
stacked concentrically around genes of interest. The
network interaction databases are updated every 6
months, and cancer genomics data sets are updated as
they are made available from projects like TCGA. Future
versions will include even more interaction types and
extend to additional platforms of data such as
microRNAs and Chip-Seq data. The Clinical Proteomic

Tumor Analysis Consortium (24) and Library of
Integrated Network-Based Cellular Signatures (25)
projects are currently producing massive amounts of prote-
omics data on tumor samples and cell lines. These data sets
often focus on subsets of genes, measuring their response
under thousands of different combinations of perturb-
ations such as siRNA knockdowns or treatments with
multiple molecular compounds. Experiments will need to
be grouped by perturbagen, cell line and other experimental
parameters. The IB will provide a useful alternative mech-
anism for viewing such ‘lopsided’ data sets that cover only a
few genes in a targeted pathway but over many conditions.

Figure 3. Case study of the TCGA colorectal adenocarcinoma data set. (A) A zoom-in view of the BRAF oncogene’s CircleMap showing the full
detail of all samples as individual spokes. Rings correspond to (inside to outside) somatic missense mutations, copy number estimates from the
GISTIC algorithm, PARADIGM pathway inferences and a hypermutation phenotype indicator. (B) Same as in part A but the values within the
hypermutated and non-hypermutated groups are averaged within each ring showing the aggregated view. (C) CircleMap display of most of the Wnt-,
TGF-beta and PI3K-signaling members regulating MYC oncogene activation. Both curated regulatory links from the UCSC SuperPathway are
shown (purple directed links) as well as protein–protein interactions collected from human protein reference database (brown undirected links). All
nodes are sorted according to the hypermutated versus non-hypermutated as the primary sort and BRAF mutation as the secondary sort, control-
lable from the zoom-in on BRAF.
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Finally, we have described an approach that is neces-
sarily gene-centric in which the data are wrapped around
gene products and the interactions depict known (or pre-
dicted) gene–gene relations. One could use the same
CircleMap and interaction metaphor to provide sample-
centric views of the data sets. This view would wrap
columns from a heatmap around individual samples
rather than rows around genes as is discussed here.
Ticks in the sample-centric view could correspond to
genes and therefore be sorted or grouped by their mem-
bership in known pathways or functional modules (analo-
gous to the grouping by patient subtypes). Samples could
be connected to one another based on shared properties
such as the presence of a common mutation (e.g. TP53 or
PIK3CA) or based on the similarity in clinical or other
phenotypic outcomes. Directed graphs among patient
samples could represent censored survival relations. The
sample-centric view may be worth investigating as a way
to browse genomics and proteomics data sets for precision
medicine applications. In conclusion, the IB represents a
flexible new tool for coordinated viewing of rich
multimodal data sets to discover data trends present
among genes that participate in pathways of critical
cellular functions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3.

ACKNOWLEDGEMENTS

The authors thank the Cancer Genome Atlas and the
Library of Integrated Network-Based Cellular Signatures
projects for early access to data sets. Special thanks to
Peter K. Sorger and his laboratory for helpful feedback
regarding the representation of LINCS data, especially
Caroline Shamu, Mario Neipel and Marc Hafner. We
thank Jing Zhu and the Cancer Genome Browser group
at UCSC for coordinating and processing cancer genomics
data sets. Finally, Evan O. Paull provided many ideas on
improving the resource at various stages of development.

FUNDING

National Institutes of Health LINCS program (to J.M.S
and C.W.); National Cancer Institute [5U24CA143858];
an National Science Foundation (NSF) CAREER award
(to J.M.S.); Howard Hughes Medical Institute (to D.H.).
Funding for open access charge: NSF CAREER award.

Conflict of interest statement. None declared.

REFERENCES

1. Weinstein,J.N., Myers,T.G., O’Connor,P.M., Friend,S.H.,
Fornace,A.J. Jr, Kohn,K.W., Fojo,T., Bates,S.E., Rubinstein,L.V.,
Anderson,N.L. et al. (1997) An information-intensive approach to
the molecular pharmacology of cancer. Science, 275, 343–349.

2. Eisen,M.B., Spellman,P.T., Brown,P.O. and Botstein,D. (1998)
Cluster analysis and display of genome-wide expression patterns.
Proc. Natl Acad. Sci. USA, 95, 14863–14868.

3. Subramanian,A., Tamayo,P., Mootha,V.K., Mukherjee,S.,
Ebert,B.L., Gillette,M.A., Paulovich,A., Pomeroy,S.L.,
Golub,T.R., Lander,E.S. et al. (2005) Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-
wide expression profiles. Proc. Natl Acad. Sci. USA, 102,
15545–15550.

4. Cerami,E., Gao,J., Dogrusoz,U., Gross,B.E., Sumer,S.O.,
Aksoy,B.A., Jacobsen,A., Byrne,C.J., Heuer,M.L., Larsson,E.
et al. (2012) The cBio cancer genomics portal: an open platform
for exploring multidimensional cancer genomics data. Cancer
Discov., 2, 401–404.

5. Hu,Z., Hung,J.H., Wang,Y., Chang,Y.C., Huang,C.L., Huyck,M.
and DeLisi,C. (2009) VisANT 3.5: multi-scale network
visualization, analysis and inference based on the gene ontology.
Nucleic Acids Res., 37, W115–W121.

6. Joshi-Tope,G., Gillespie,M., Vastrik,I., D’Eustachio,P.,
Schmidt,E., de Bono,B., Jassal,B., Gopinath,G.R., Wu,G.R.,
Matthews,L. et al. (2005) Reactome: a knowledgebase of
biological pathways. Nucleic Acids Res., 33, D428–D432.

7. Kelder,T., van Iersel,M.P., Hanspers,K., Kutmon,M.,
Conklin,B.R., Evelo,C.T. and Pico,A.R. (2012) WikiPathways:
building research communities on biological pathways. Nucleic
Acids Res., 40, D1301–D1307.

8. Schaefer,C.F., Anthony,K., Krupa,S., Buchoff,J., Day,M.,
Hannay,T. and Buetow,K.H. (2009) PID: the Pathway Interaction
Database. Nucleic Acids Res., 37, D674–679.

9. Schroeder,M.P., Gonzalez-Perez,A. and Lopez-Bigas,N. (2013)
Visualizing multidimensional cancer genomics data. Genome Med.,
5, 9.

10. Smoot,M.E., Ono,K., Ruscheinski,J., Wang,P.L. and Ideker,T.
(2011) Cytoscape 2.8: new features for data integration and
network visualization. Bioinformatics, 27, 431–432.

11. Szklarczyk,D., Franceschini,A., Kuhn,M., Simonovic,M., Roth,A.,
Minguez,P., Doerks,T., Stark,M., Muller,J., Bork,P. et al. (2011)
The STRING database in 2011: functional interaction networks
of proteins, globally integrated and scored. Nucleic Acids Res., 39,
D561–D568.

12. Vlasblom,J., Wu,S., Pu,S., Superina,M., Liu,G., Orsi,C. and
Wodak,S.J. (2006) GenePro: a Cytoscape plug-in for advanced
visualization and analysis of interaction networks. Bioinformatics,
22, 2178–2179.

13. Wong,A.K., Park,C.Y., Greene,C.S., Bongo,L.A., Guan,Y. and
Troyanskaya,O.G. (2012) IMP: a multi-species functional
genomics portal for integration, visualization and prediction of
protein functions and networks. Nucleic Acids Res., 40,
W484–W490.

14. Chatr-Aryamontri,A., Breitkreutz,B.J., Heinicke,S., Boucher,L.,
Winter,A., Stark,C., Nixon,J., Ramage,L., Kolas,N., O’Donnell,L.
et al. (2013) The BioGRID interaction database: 2013 update.
Nucleic Acids Res., 41, D816–D823.

15. Heiser,L.M., Sadanandam,A., Kuo,W.L., Benz,S.C.,
Goldstein,T.C., Ng,S., Gibb,W.J., Wang,N.J., Ziyad,S., Tong,F.
et al. (2011) Subtype and pathway specific responses to anticancer
compounds in breast cancer. Proc. Natl Acad. Sci. USA, 109,
2724–2729.

16. Karolchik,D., Hinrichs,A.S. and Kent,W.J. (2012) The UCSC
Genome Browser. Curr. Protoc. Bioinformatics, Chapter 1,
Unit1.4.

17. Beroukhim,R., Getz,G., Nghiemphu,L., Barretina,J., Hsueh,T.,
Linhart,D., Vivanco,I., Lee,J.C., Huang,J.H., Alexander,S. et al.
(2007) Assessing the significance of chromosomal aberrations in
cancer: methodology and application to glioma. Proc. Natl Acad.
Sci. USA, 104, 20007–20012.

18. Vaske,C.J., Benz,S.C., Sanborn,J.Z., Earl,D., Szeto,C., Zhu,J.,
Haussler,D. and Stuart,J.M. (2010) Inference of patient-specific
pathway activities from multi-dimensional cancer genomics data
using PARADIGM. Bioinformatics, 26, i237–i245.

19. Forbes,S.A., Bindal,N., Bamford,S., Cole,C., Kok,C.Y., Beare,D.,
Jia,M., Shepherd,R., Leung,K., Menzies,A. et al. (2011)
COSMIC: mining complete cancer genomes in the Catalogue of

Nucleic Acids Research, 2013, Vol. 41, Web Server issue W223

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt473/-/DC1


Somatic Mutations in Cancer. Nucleic Acids Res., 39,
D945–D950.

20. Lamb,J., Crawford,E.D., Peck,D., Modell,J.W., Blat,I.C.,
Wrobel,M.J., Lerner,J., Brunet,J.P., Subramanian,A., Ross,K.N.
et al. (2006) The Connectivity Map: using gene-expression
signatures to connect small molecules, genes, and disease. Science,
313, 1929–1935.

21. Barretina,J., Caponigro,G., Stransky,N., Venkatesan,K.,
Margolin,A.A., Kim,S., Wilson,C.J., Lehár,J., Kryukov,G.V.,
Sonkin,D. et al. (2012) The cancer cell line encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature, 483,
603–607.

22. Cancer Genome Atlas Network. (2012) Comprehensive molecular
characterization of human colon and rectal cancer. Nature, 487,
330–337.

23. Goldman,M., Craft,B., Swatloski,T., Ellrott,K., Cline,M.,
Diekhans,M., Ma,S., Wilks,C., Stuart,J., Haussler,D. et al. (2013)
The UCSC Cancer Genomics Browser: update 2013. Nucleic
Acids Res., 41, D949–D954.

24. Clinical Proteomic Tumor Analysis Consortium. (2011) http://
proteomics.cancer.gov/programs/cptacnetwork.

25. Library of Integrated Network-Based Cellular Signatures. (2010)
https://commonfund.nih.gov/LINCS/.

W224 Nucleic Acids Research, 2013, Vol. 41, Web Server issue

http://proteomics.cancer.gov/programs/cptacnetwork
http://proteomics.cancer.gov/programs/cptacnetwork
https://commonfund.nih.gov/LINCS/

