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Abstract

Background: Despite the vagueness and uncertainty that is intrinsic in any medical act, interpretation and decision
(including acts of data reporting and representation of relevant medical conditions), still little research has focused on
how to explicitly take this uncertainty into account. In this paper, we focus on the representation of a general and
wide-spread medical terminology, which is grounded on a traditional and well-established convention, to represent
severity of health conditions (for instance, pain, visible signs), ranging from Absent to Extreme. Specifically, we will
study how both potential patients and doctors perceive the different levels of the terminology in both quantitative
and qualitative terms, and if the embedded user knowledge could improve the representation of ordinal values in the
construction of machine learning models.

Methods: To this aim, we conducted a questionnaire-based research study involving a relatively large sample of 1,152
potential patients and 31 clinicians to represent numerically the perceived meaning of standard and widely-applied
labels to describe health conditions. Using these collected values, we then present and discuss different possible fuzzy-
set based representations that address the vagueness of medical interpretation by taking into account the perceptions
of domain experts. We also apply the findings of this user study to evaluate the impact of different encodings on the
predictive performance of common machine learning models in regard to a real-world medical prognostic task.

Results: We found significant differences in the perception of pain levels between the two user groups. We also
show that the proposed encodings can improve the performances of specific classes of models, and discuss when
this is the case.

Conclusions: In perspective, our hope is that the proposed techniques for ordinal scale representation and ordinal
encoding may be useful to the research community, and also that our methodology will be applied to other widely
used ordinal scales for improving validity of datasets and bettering the results of machine learning tasks.
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Background
The machine learning community seems to put particular
emphasis on performance metrics and skill improvement.
And rightly so, if this general attitude has pushed some
models to perform equally or even better than humans in
many tasks, especially with respect to pattern recognition
[1, 2].

Much smaller attention and reflection has been paid so
far in regard to the validity of data, both input (train-
ing) data and output data, that is, the predictions. With
validity we do not mean just accuracy, as widely intended,
but above all the extent to which a measurement is well-
founded and corresponds to the real world phenomena
that are to be rendered in symbolic terms [3]. In other
terms, we intend the validity of a data set as the degree
to which the data set represents the phenomena it is
intended to.

In order to deal with the intrinsic uncertainty of the
medical domain [4], a natural choice has always been to
make use of fuzzy logic and fuzzy sets. Several surveys on
this connection can be found in literature, for instance [5–
8]. The main use of fuzzy logic in this context is to model
rules in expert systems (for example [9]) or, often in com-
bination with other approaches such as neural networks,
for image processing . On the other hand, only a few
attempts to deal with the vagueness of medical terms have
been made. We recall here the pioneering work to repre-
sent medical terms [10], the fuzzy version of the Arden
markup language [11] and several fuzzy ontology applica-
tions to medicine [12, 13]. More related to our work is the
paper [14], as discussed later in this introduction. Further,
even less efforts are available on how uncertainty influ-
ences the validity of medical datasets. The recent work by
Zywica [15] goes in this direction, by using fuzzy sets for
transforming heterogenous data in homogenous ones and
to deal with the lack of knowledge.

In this light, we set out to investigate how a specific kind
of ordinal features (that is, features whose values come
from a categorical label set on which an order relation is
defined. In what follows, we consider these ordered cate-
gories ordinal data natively.) can be transformed in order
to improve the internal validity of the training set (in the
sense above), as well as the validity of the model output
(that is, accuracy).

In this article we will specifically address the prob-
lem of the representation of ordinal scales in quantitative
terms (and vice-versa), and the usage of these represen-
tations to define user-informed encoding to be employed
in machine learning tasks, by considering the specific
case of a very common terminology to represent severity
of health conditions and symptoms in medical docu-
ments, which has been recently adopted also by the Health
Level 7 (HL7) Fast Healthcare Interoperability Resources
(FHIR) [16] framework, that is, the most widely adopted

standards framework for the representation of health data
on the Internet and in digital health applications [17].

This terminology is used in many questionnaires (for
instance, the EQ-5D-5L [18]) aimed at collecting Patient
Reported Outcome Measures (PROMS), which are recog-
nized [19] as a powerful tool to enable the monitoring of
the actual safety and effectiveness of medical procedures
and treatments, their continuous improvement, and what
is called a value-based health care [20, 21].

According to this terminology, both patients and doc-
tors are called to express the severity of health conditions
and symptoms in medical documents in terms of five ordi-
nal categories, namely: Absent (or No Condition), Mild,
Moderate, Severe and Very Severe (or Extreme) conditions.
Ordinal scales are very common in medicine [22, 23] and
on their basis doctors can understand each other and
make critical decisions despite their seeming arbitrariness
and loosely defined semantics; ordinal values like those
mentioned above are also extensively used to annotate
medical records, and to some extent report a written inter-
pretation of other medical data, like laboratory results and
medical images. For this reason severity labels are increas-
ingly used in ground truthing, that is the preparation of
training and test data sets for the definition and evalu-
ation of predictive models. This justifies our interest in
investigating whether some knowledge on how these lev-
els are interpreted by the actors involved can affect the
performance of predictive models and decision making.
Although these categories are used extensively and on a
daily basis by most medical doctors around the world in
most forms, charts and reports (even paper-based ones),
their meaning has never been established univocally and,
more importantly from the computational point of view,
quantitatively [24]. As a matter of fact, no standardizing
body nor single doctor can establish what, say, Moderate
really means in objective terms [25], nor determine that
the transition from a Mild condition to a Moderate one
is like passing from a Moderate one to a Severe condition:
a standard terminology to describe severity is just a set
of available values, in which only a total order relation is
defined. Of course all these terms are subject to personal
views, contextual situations or interpretation of evidence:
in a word, they are intrinsically fuzzy.

More specifically, the scope of the present work is
twofold:

1 Firstly, to represent severity categories using fuzzy
sets by means of a collective intelligence process: by
collecting the different perceptions provided by
interested users, both domain experts (that is,
medical doctors) and potential patients;

2 Secondly, to assess the potential impact of these
techniques to construct encoding techniques for
ordinal data, based on the collective knowledge, to be
fed to machine learning models.
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As regards the first research question, we will con-
sider these categories as so-called linguistic labels [26] and
assign them different types of fuzzy sets with domain on
numerical scales according to a human-centered study. In
doing so, we can get both a representative, yet approx-
imate, model to map ordinal categories to numerical
values (on a scale [ 0 − 100], where the lower bound
represents absence of perceivable signs of the condition
of medical interest and the upper bound its strongest
expression), and vice versa. Also the work [14] deals
with grades of questionnaire answers, however, in a dif-
ferent way and with a different scope with respect to
us. Indeed, the aim of the authors in [14] is to define
a formal logic that enables to describe the derivation
of a “total” scores (typically, the average) from a set of
degrees (the answers to a questionnaire). Thus, they do
not address the problem of defining the total score, but,
given the definition of a total score, how to describe it in a
formal logic.

The data set we used to define this mapping
is a collection of intervals or numerical values for
each category/label, provided by both domain experts
(that is, medical doctors) and potential patients by
means of an ad-hoc Web-based questionnaire, admin-
istered during an online survey. We present and dis-
cuss several ways to aggregate these values in order
to obtain some kind of fuzzification of the severity
conditions.

This approach is different from existing approaches to
fuzzify ordinal scales such as [27, 28], where the fuzzifi-
cation process is done automatically by assigning a fuzzy
number to each label and then applied to a case study.
Here, our aim is to fuzzify the ordinal scale starting from
the collected data and we will particularly be interested
in ascertaining if the representations provided by the dif-
ferent respondent groups (that is doctors and potential
patients) present significant differences.

As regards the second research question, the traditional
approaches, adopted in the machine learning community,
to deal with ordinal data in a training set [29] regard either
transforming them into categorical, usually binary, values
(such as one-hot encoding or rank-hot encoding), or into
the rank index of the corresponding level, that is a number
usually ranging from 0 to k.

As already introduced, we explore an alternative
approach, that is encoding ordinal values in terms of
scalar values on a continuous 100-point scale, accord-
ing to the fuzzy set representation constructed from the
subjective perceptions of the corresponding level on that
scale. In doing so, we aim to embed some “true” struc-
ture into the dataset, in cases where the assumption that
ordinal values are equally-distributed numbers (as in the
rank index) does not hold, is ill-grounded or excessively
weak.

Methods
Data collection
In order to build the different representations, we col-
lected user data in three different settings, which will be
discussed in this section.

First data collection: quantitative meaning for doctors
To collect data on the subjective perception of the quan-
titative meaning of the categories (each denoted by a
specific label) of the severity Health Level 7 (HL7) ordinal
scale, we first designed a closed-ended two-page question-
naire to be administered online in a Computer-Assisted-
Web-self-Interview (CAWI) configuration. The first page
of this questionnaire (depicted in Fig. 1) asked the respon-
dents to express each level of severity of the original
5-item HL7 scale (that is, Absent, Mild, Moderate, Severe,
and Very Severe) into a Visual Analogue Scale (VAS). A
VAS is a measurement instrument that has been devised
and introduced in health care to try to measure charac-
teristics that appear or are easily perceived as continuous
but that cannot be directly measured easily, like pain, and
by which to overcome the intrinsically discrete nature of
ordinal categorizations [30].

To this aim, we associated each item with a 2-cursor
range slider control. By moving each of the two indepen-
dent cursors the respondents could thus create an inner
interval, comprised within the two cursors, encompassing
all those numerical values that they felt could represent
the ordinal category properly. The interface was designed
so that initially the respondents would want to move the
cursors to set the new intervals and, in doing so, “see” the
overlap that they deem useful to report between the cate-
gories. This overlap was neither promoted nor prevented,
as the cursors could be moved freely along each range
slider with the only constraint that the ‘lower’ extreme
cursor could never be moved to the right of the ‘higher’
extreme cursor, and vice versa. Moreover, the respondents
could get only an approximate idea of the numerical val-
ues that were associated with the position of the cursors
(and in fact this association was not mentioned in the
task description, reported at the top of Fig. 1, but only
in the help section), since the range was intended to be
on a strict analogue scale, with no explicit nor numerical
anchor. That notwithstanding, VASs are common repre-
sentational tools most potential respondents were very
familiar with for its wide adoption in clinical practice, as
said above, and this suggests that respondents performed
the task effortlessly. We also explicitly asked for a single
number that the respondents could perceive as the most
representative for each level: we call this number Repre-
sentative Point (of each level, RP). The second page of the
questionnaire was intended to collect a few data on the
respondent’s professional profile (which was intended to
be anonymous), namely their medical specialty.
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Fig. 1 The first page of the on-line questionnaire that we administered to the sample of clinicians to collect their perception on severity categories
(original text in Italian). The translation of the question asked is as follows: “Think of having to represent the severity of a condition of clinical interest on
an analogue-visual scale. Below, by appropriately moving the two cursors of each scale, we ask you to indicate the range to which each ordinal category of
the following could associate”

At the end of November 2017, we invited 97 clini-
cians by email to fill in the two-page questionnaire. Most
respondents worked as clinicians and surgeons at the Sci-
entific Institute for Research, Hospitalization and Health-
care (IRCCS) Orthopedic Institute Galeazzi (IOG), which
is one of the largest teaching hospitals in Italy specialized
in the study and treatment of musculoskeletal disorders; at
IOG almost 5,000 surgeries are performed yearly, mostly
arthroplasty (hip and knee prosthetic surgery) and spine-
related procedures. After two weeks since this first invi-
tation we sent a gentle reminder and one week later we
definitely closed the survey. Response rate was moderately
high, especially in light of the very busy daily schedule
of the involved prospective respondents, the anonymity
of the survey and the lack of incentives: indeed slightly
less than half of the potential respondents accepted the
invitation and filled in the on-line questionnaire: thus
we collected 42 questionnaires by as many respondents
(Fig. 2). When we analyzed the responses, some question-
naires were found filled in with seemingly random data
and were discarded: then the final dataset contained 298

data points, corresponding to 149 intervals (Fig. 3) by 31
different respondents. Moreover, the questionnaires com-
pleted in each and every item were 27. In doing so, we
obtained an Interval Extreme Distribution (IED) for each
severity item. The original doctor data set contained the
lower and upper extremes of the five ordinal categories
expressing increasing levels of severity for all of the sur-
vey respondents, that is a 31 x 10 matrix of data points
on the severity dimension, ranging from 0 to 100. From
this data set of coordinates of interval extremes we com-
puted a new one, by computing the central points for each
IED. An extract of this dataset is reported in Table 1. Both
from Fig. 2 and Table 1, it can be seen that in the majority
of cases, each level is represented as an interval, not just
a coordinate point, and these intervals can overlap. Also,
significant differences can exist between different doctors.

Second data collection: quantitative meaning for potential
patients
In addition to the doctors of IRCCS Orthopedic Institute
Galeazzi (Ndoctors=31), the doctor sample of our data, we
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Fig. 2 Stacked bar chart representing the composition of the sample of respondents involved in this study. The majority of the sample were trauma
and orthopedic surgeons, the rest of the sample is relatively varied, as also shown by the ‘other’ category, which is the second one for numerosity
and encompasses (among the others) two neurologists, one endocrinologist and one rheumatologist. This suggests that, despite the relatively small
sample, this is sufficiently heterogeneous not to consider the responses limited to a specific medical discipline

also involved the students enrolled in a computer science
bachelor degree class in the 2018/2019 academic year and
asked them to involve other potential respondents among
their contacts (Npatients=1,152); students were given extra
credits for participating in the survey and their responses
provided the laypeople (seen as potential patients) sample
in this study.

Students were asked to complete a questionnaire sim-
ilar to the doctor’s, as in the previous section. We then
computed the Centroids of the IED (CoIED) for each
level (that is, IEDs) in both strata. We also calculated the
median, as the data appeared to be affected by noise and
dirtiness and thus a more robust central tendency indi-
cator would be more useful, RP of each level, for both
doctors and patients.

Third data collection: qualitative meaning
Lastly, in order to collect data on the perception of the
qualitative meaning of each category, we administered a
short questionnaire to the students enrolled in the same
computer science class in the following year and their
acquaintances. For each questionnaire, a random value is
generated a priori in a range from 1 to 99 with equiproba-
bility. The following question is then asked:

“Imagine that you are a patient, and that you are given a
scale from 0 to 100, which is often used to represent your
health level in numerical form. Imagine that you want to
mark on that scale that your health level today is {100 -
random value generated}. If you had to express in words
the same concept, coherently with this numerical value,
what expression would you use between the following?”

The respondent is asked to select which category is the
most appropriate for his value, from the list of severity cat-
egories from HL7. Users are also optionally asked for their
sex and age range. We collected 1,257 responses between
student and acquaintances. 265 (21%) answers had to be
discarded due to an incomplete submission, meaning only
992 (79%) forms were complete and useful for our pur-
poses. For each value in the numerical scale we had an
average of 10 complete answers, with a standard deviation
of 3.2. For visualization purposes and to enhance the clar-
ity, we performed a binning of the value with granularity
of 3, obtaining 33 different bins.

Dataset for regression analysis
In order to perform the regression analysis and test the
effects, if any, of the proposed encodings we employed
a further dataset. This dataset has been collected from

Fig. 3 Diagram showing the data set at a glance. Different questionnaires are represented along the vertical dimension; intervals related to different
severity categories are represented in different hues along the horizontal 0-100 continuum
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Table 1 An extract of the dataset, for each severity level the min
and max values are shown, while the representative point, a
scalar value ∈ [0, 100] for each level, is not shown for brevity

Absent Mild Moderate Severe Extreme

3–20 23–40 39–55 56–76 83–100

0–18 18–36 37–58 61–81 82–100

2–15 17–37 39–61 63–83 84–97

23–58 44–78 55–93 60–91 71–97

0–9 10–30 30–53 54–77 78–100

7–7 30–30 56–56 67–67 95–95

real patients who had undergone joint surgery in IRCCS
Orthopedic Institute Galeazzi (IOG), one of the major
Italian hospitals specialized in musculoskeletal disorders.
Specifically, the dataset contains data about 336 patients,
with particular reference to so-called Patient Recorded
Outcomes (PROMs), that is data reported and collected
by the patients (or the doctors) in the last 3 years. In order
to measure the effect of the proposed encodings, we con-
sidered in particular as a target feature their improvement
(on a physical function score) 6 months after joint surgery.

Representation of ordinal values using fuzzy sets
Starting from the collected data, we will define different
techniques for representing ordinal scale level using fuzzy
sets [31] and to transform the obtained fuzzy set repre-
sentations into scalar (or vector) features, so to implement
encodings of ordinal features.

From ordinal values to fuzzy sets
We will consider a linguistic variable [26] with values in
V = {v1, ..., vk} (in our specific context, the linguistic vari-
able is Severity condition and V = {Absent, Mild, Moder-
ate, Severe, Extreme}). In this section, we give a semantics
to each term in V by means of a fuzzy set in the universe
U =[ 0, 100]. The precise fuzzification technique that one
can adopt, depends on the type of information speci-
fied by the involved respondents; indeed, as described in
the “Data collection” section, we asked the respondents
two different types of information with respect to the
representation of ordinal levels in numeric terms: single
numeric values (that is representative points), or whole
intervals associated to a given level. In the first case, the
fuzzification is straightforward: for each term v in V and
each value x in the range [ 0 − 100] we simply count how
many times x has been associated to term v as a represen-
tative point. In the second case, two approaches can be
adopted:

1 An indicator of central tendency of the single
intervals (such as the centroid of the interval or its
median) can be employed to convert each interval to

a single numeric value. These values can then be
employed straightforwardly to compute the fuzzy
sets for each of the ordinal levels.

2 The whole interval can be used to construct the fuzzy
set representation of the ordinal levels. In this case,
given an interval i = [li, ui] reported by a respondent,
where li (resp. ui) is the lower (resp. upper) limit of
the interval, each point in i is weighted by a factor
wi = 1

ui−li+1 . Then, for each term v and each value x
we count how many times an interval i such that
x ∈ i has been associated to term v, weighed by factor
wi. Compared with the above mentioned technique,
this second approach has the advantage that the
whole interval information is explicitly considered in
building the fuzzy set, however it has been noted in
[31] that simply applying this technique on the raw
data may result in too noisy distributions, hence
binning techniques should be employed to reduce
the granularity.

As a concluding note, we observe that, irrespective of the
fuzzification technique adopted, the resulting fuzzy sets
are not required to be fuzzy numbers [32].

From fuzzy representations to encodings
In order to make the fuzzy representations of the ordinal
values, obtained by means of one of the techniques pre-
viously describer, usable by machine learning algorithms,
we need to perform another transformation in order to
map the informative but unstructured fuzzy set repre-
sentation into standard scalar-valued (or vector-valued)
features, in a manner which is similar to the traditional
defuzzification step [33]. To this end, we will describe
three different approaches, two of which produce sin-
gle scalar-valued encodings and one which results in a
vector-valued encoding. Let v be an ordinal term and
μv :[ 0, 100] �→[ 0, 1] the respective fuzzy set encoding. As
regards the first approach, that we call Centroids of the
Interval Extreme Distribution (CoIED) and is akin to the
standard center of gravity defuzzification method [33], we
simply compute the centroid of the membership function
μv, that is:

CoIED(v) = 1
∑

x∈[0,100] μv(x)

∑

x∈[0,100]
x ∗ μv(x) (1)

Notice that this approach produces the same value for
each instance of the v label and thus, if the centroids are
order-preserving (that is v1 ≤ v2 =⇒ CoIED(v1) ≤
CoIED(v2)) this method always preserves the ordinality of
the labels.

The second approach that we describe, and that we call
Weighted Sampling, is based on a sampling method, sim-
ilar to Monte Carlo approaches [34] and the sampling
defuzzification techniques which can be employed for
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generalized fuzzy sets [35]. Given the membership func-
tion μv of an ordinal term v, a probability distribution is
computed as pv(x) = μv(x)∑

y μv(y) . Then uniformly across the
dataset a value x is sampled randomly according to pv(x)

and each occurrence of v is mapped to x. Notice that,
contrary to the CoIED method, this method can reverse
or otherwise change the ordinality of the labels as it may
happen that even if v1 ≤ v2, for a given row, two values
x1, x2 are sampled (respectively, from pv1 and pv2 ) such
that x2 ≤ x1.

The third approach, which we call Membership, results
in a vector-valued encoding and is based on a two-step
method. Firstly, given a term v, the numeric value xv
which is most representative of it is selected, that is xv =
argmaxx∈[0,100]μv(x). Then xv is mapped to the vector of
its membership values in the different level-specific fuzzy
sets, that is:

Membership(v) = 〈
μv1(xv), ..., μvk (xv)

〉
(2)

where, respectively, μvi is the membership function asso-
ciated to the ordinal term vi ∈ V . It is easy to observe
that this approach consists of a generalization of one-
hot or rank-hot encodings which takes in consideration
the inherent vagueness of the underlying ordinal scale:
indeed, if the fuzzy sets of the different terms are com-
pletely disjoint (that is there does not exists x ∈[ 0, 100]
and v1, v2 ∈ V such that v1, v2 ≥ 0) then the result
of the membership encoding is equivalent to the above
mentioned encodings.

Ordinal data in machine learning
The fuzzy set representations obtained with the quan-
titative data collection allow us to address two research
questions. First: do doctors and potential patients perceive
severity levels differently (on an equivalent 100-scale)? On
the other hand, the resulting representations were used to
address a second research question: does a user-centered
encoding improve the validity of machine learning models
on some regression tasks?

To this latter aim, we have compared the performance
of 4 common machine learning models, namely Random
Forests (RF) [36] and Support Vector Regressor (SVR)
[37], whose performance is generally recognized as the
best one in data-driven predictive tasks [38], and the
k-Nearest Neighbour (k-NN) [39] and Least Absolute
Shrinkage and Selection Operator (LASSO) [40] ones.
These regression models were trained on the same dataset
whereas, in one case, ordinal values had been encoded
traditionally (that is, 0, 1, 2, 3, 4 respectively), and in the
other we had applied the CoIED, Weighted Sampling and
Membership encodings.

The regression predictive modeling was based on a
set of 15 features (namely gender, age, type of interven-
tion, 3 continuous scores and 9 ordinal features, which
were all filled in by patients in pre-operative PROMs
questionnaires) to predict the functional improvement 6
months after joint surgery, the models were compared
with respect to the Mean Absolute Error (MAE) metric
and coefficient of determination (R2). Comparisons among
models were performed on the basis of the confidence
intervals on 5-fold nested cross validation. In order to
account for the randomness in the Weighted Sampling
approach, for that encoding only we repeated the process
10 times and calculated average performances.

Results
In this section we briefly report the results of the statistical
procedures conducted in our studies.

Visualization of quantitative meaning: differences
between doctor and patient’s perception
We performed a Kolmogorov-Smirnov test [41] to com-
pare the shapes of the IEDs of doctors and laypeople
(Fig. 4). We decided to employ the Kolmogorov-Smirnov
test, in place of other goodness of fit such as the Cucconi
test or the Anderson-Darling test, as it provides a con-
servative test for equality of distributions [42] with good
quality implementations in standard statistical packages.
We found a statistically significant difference in regard to
the Absent condition and the two highest severity levels
(Absent, P<0.001, Severe, P=0.038 and Extreme, P=0.021),
while for the other levels the difference was not found
significant, although the p-values are quite low (Mild,
P=0.067 and Moderate, P=0.145).

We performed a Mann-Whitney U test [43] to compare
the mean ranks of the patients IEDs (as a sort of hypothet-
ical testing on the equality of their centroids, Table 2) and
found significant differences in regard to Absent, Severe
and Extreme (P<0.001 in all cases), while differences were
not significant for the Mild and Moderate levels (P=0.425
and 0.105, respectively). We decided to adopt the above
test, instead of the Student’s t-test, because the main
assumptions of this latter did not hold true, and because
the Mann-Whitney test is more efficient than the t-test
for non-normally distributed data, as well is generally less
susceptible to outliers [44].

We also performed a Mann-Whitney U test to com-
pare the mean ranks of the RP distributions and found the
same significant differences, in regard to Absent, Severe
and Extreme (P<0.001 in all cases), while differences were
not significant for Mild and Moderate (P=0.425 and 0.105,
respectively).

Visualization of qualitative meaning
We also investigated the inverse mapping, that is, how
respondents mapped precise numerical values to ordinal
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Fig. 4 Violin plots of the IEDs for each severity level (red for doctors, NdoctorIED=62; blue for patients, NpatientIED=[1970, 2155, 1971, 1944, 1670],
respectively). The CoIED are indicated as a vertical lines in the violin plots. Small circles indicate the median RPs for each level and stratum (doctors
Ndoctors=31, patients Npatients=1,152)

labels from the Health Level 7 (HL7) terminology. A visu-
alization of this mapping in terms of a stacked barchart is
shown in Fig. 5.

Another way of visualizing this mapping is shown in
Fig. 6. The hue represents the most common variable (red
for Absent, blue for Mild, green for Moderate, purple for
Severe, orange for Extreme), while transparency represent
the prevalence: very light for superiority (mode), medium
for majority (prevalence of the most common class >

50%), opaque for statistical majority (p-value < 0.05). Sta-
tistical majority has been calculated by the means of a χ2

test between the most common class and the second most
common.

Table 2 Findings from the user study on the perceptions
(expressed in terms of CoIEDs and RPs) by doctors and laypeople
of illness severity levels. Significance levels are computed
through the Mann-Whitney U test

Level

Doctor Patient Diff

Doctor Patient RP RP Doctor

CoIED CoIED median median vs

95% CI 95% CI 95% CI 95% CI Patient

Absent [4.74, 13.7] [12.9, 14.6] [4.5, 8.0] [0.0, 0.0] ***

Mild [22.2, 29.6] [25.8, 27.3] [20.5, 30.0] [20.0, 20.0] NS

Moderate [42.6, 50.7] [40.4, 42.2] [45.0, 49.5] [50.0, 50.0] NS

Severe [63.5, 71.5] [56.83, 59.15] [67.0, 75.5] [75.0, 75.0] ***

Extreme [83.5, 92.5] [69.12, 72.51] [90.5, 94.5] [99.0, 100.0] ***

Results of proposed ordinal representations in machine
learning
In Fig. 7 and Tables 3 and 4 we show the results of
the comparative regression analysis, after having trained
4 common models on the dataset discussed in the
“Methods” section, in order to predict their improvement
(on a physical function score) 6 months after joint surgery.

Discussion
This paper addresses the fuzzification of a common ter-
minology, which is also adopted by the Health Level
7 (HL7) framework in the digital health domain, that
characterises health conditions, the appearance of med-
ical signs and other expressions of medical relevance.
We show how these are perceived by either the medi-
cal doctors or the patients themselves (for instance, in
the so called Patient Reported Outcome Measures [19])
and the usage of these fuzzy representations to imple-
ment knowledge-based encodings to be used by machine
learning algorithms.

Perception of HL7 terminology
As regards the perception of these terminologies for the
two different respondent groups, as highlighted in the
“Results” section, we found a statistically significant dif-
ference between the distributions obtained for the respon-
dent groups. In particular, we found that patients tend
to overestimate the severity of illness, when this is either
serious or absent. We can conjecture that differences in
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Fig. 5 The stacked bar charts indicate, for each bin, the percentage of respondents for each linguistic label. The original labels were in Italian, as
shown in the legend, but they can be directly translated to the already discussed HL7 labels

Fig. 6 These bar charts indicate, for each bin, the most common variable chosen by respondents and its prevalence
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Fig. 7 Taylor diagram of the models’ skills. Each point on the diagram indicates the mean performance of all model in a specific representation, with
the circle indicating the RMSD 95% confidence interval. RMSD indicates the Root Mean Square Deviation (the lower the better, with 0 denoting a
perfect fit to the data). If models denoted with the same glyphs get closer to the inner circle of RMSD and move downward in the diagram (that
means that their predictions are more correlated with the true value), then their performance improves and gets better. Red glyphs indicate models
with ordinal encodings, while blue glyphs the models with CoIED encodings

the higher part of severity spectrum could be related to
the fact that laypeople experience illness in the first per-
son, and hence see it as under a magnifying glass, while
doctors have had experience of a much wider range of
conditions, relatively few extremely serious and therefore
can often scale the assessment lower than patients. By a
weaker conjecture, we could see differences in the lower
end of the scale as effect of a sort of suppression of the idea
to be ill and fear of disease, that induces underestimating
light symptoms. These findings, which confirm and are
supported by similar findings in the clinical literature [45,
46], have relevant implications, especially as regards their
potential impact on machine learning and Artificial Intel-
ligence systems. Indeed, these observations draw atten-
tion to the importance of carefully considering the source

of data (that is who annotated a specific ordinal value) as
the underlying meaning of the same label, even from a
standardized terminology as in the case that we consid-
ered, could be strongly dependent on who produced the
said label. This means that using labels as univocal tokens
in advanced statistical techniques, like the ones employed
in machine/statistical learning and in the definition of pre-
dictive models, can be harmful. The same patient could be
associated with a Mild label by a doctor, and a Severe label
by another doctor, and this even if either doctors intend
to characterize the very same condition, which could be
represented by the same numerical value on a 0-100 con-
tinuum. This observation regards the phenomenon of
inter-rater reliability that, although widely known in the
medical ambit [47], is still little known and considered

Table 3 The regression performance of the 4 machine learning models considered in the comparative study in terms of Mean
Absolute Error (MAE) and related confidence intervals (CIs, at a 95% Confidence Level): the lower the value, the better the performance.
The first column presents the CIs of the MAE of models with the ordinal encoding; the second column the same accuracy indicators for
the CoIED encoding

Ordinal CoIED Membership Weighted Sampling

RF [1.458, 1.89] [1.459, 1.89] [1.467, 1.861] [1.688, 1.825]

k-NN [2.012, 2.277] [1.503, 1.813] [2.078, 2.321] [1.731, 1.854]

LASSO [1.586, 1.863] [1.474, 1.736] [2.121, 2.367] [1.769, 1.902]

SVR (RBF kernel) [1.985, 2.312] [1.268, 1.736] [2.047, 2.373] [1.654, 1.829]
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Table 4 The regression performance of the 4 machine learning models considered in the comparative study in terms of coefficient of
determination (R2) and related confidence intervals (CIs, at a 95% Confidence Level): the higher the value, the better the performance.
The first column presents the CIs of the R2 of models with the ordinal encoding; the second column the same accuracy indicators for
the CoIED encoding

Ordinal CoIED Membership Weighted Sampling

RF [0.275, 0.581] [0.275, 0.58] [0.291, 0.602] [0.338, 0.435]

k-NN [0.043, 0.275] [0.333, 0.567] [0.006, 0.229] [0.339, 0.426]

LASSO [0.324, 0.545] [0.364, 0.637] [0.0, 0.198] [0.312, 0.416]

SVR (RBF kernel) [0.017, 0.296] [0.265, 0.665] [0.01, 0.26] [0.303, 0.427]

in most of the fields of applied computer science [3, 48].
For these reasons we argue that any method for properly
representing ordinal scales in numerical terms should be
grounded on an empirical and human-centered approach,
that is, on the subjective perceptions of domain experts
for whom the ordinal categories to be fuzzified are mean-
ingful according to the context, right in virtue of their
descriptive power and despite their ambiguity. It is note-
worthy to say the fuzzification methods proposed and
discussed in this paper have been applied to the traditional
5-item severity terminology only as a proof of the con-
cept: we chose this terminology because it is common to
many health conditions, used in most medical specialties,
and it has also been recently adopted by the HL7 stan-
dard developing organization and hence it is nowadays
widespread in most digital health applications. However,
these fuzzification methods can be applied to any ordinal
terminology, and not only to those specific of the medical
domain.

A potential limitation with respect to this first part of
the study, regards the fact that some respondents con-
tacted us after doing the CAWI to warn us that they
had found it difficult to move the cursors of the range
slider controls on mobile and multi-touch devices like
smart phones and tablets. Although we did not col-
lect information on the device used during the CAWI,
we can consider that several people could have tried
to fill in questionnaire from their smart phones: this
could account for some of the “dirtiness” we detected in
the original data set (like improbable interval extremes
and empty cells). In any case, to our knowledge no
study has so far involved more than thirty domain
experts to have them represent the quantitative “mean-
ing” (onto a numerical 0-100 range) for the ordinal
categories they use in their reports and records on a
daily basis.

Machine learning with ordinal encodings
As regards our second research question, that is inves-
tigating the effects of the proposed encodings on the
performance of the machine learning models, we recall

Table 3: as the reader can easily see, the best performing
method (in terms of average MAE) is the SVR algo-
rithm with the CoIED encoding. When considering the
confidence intervals, the SVR with CoIED encoding is not
significantly better than other models on the same rep-
resentation (RF, LASSO with Ordinal encoding, all algo-
rithms with the CoIED encodings, RF with the Weighted
Sampling encoding and SVR with the Membership encod-
ing) however it has both a smaller lower bound and
one of the smallest interval widths. In general, all algo-
rithms except RF obtained a better performance using
the CoIED encoding and in particular they were statis-
tically significant for both k-NN and SVR. This suggest
that, at least for specific model classes, the usage of
user-informed encodings can significantly improve the
predictive performance. Interestingly, the performance of
RF using the Ordinal and CoIED encoding were almost
exactly equivalent, the explanation for such a behavior
resides in the specifics of the RF training algorithm [49].
Indeed, the construction of the Regression Trees embed-
ded in the Random Forests requires the determination
of threshold levels on the features and does not take
in consideration the metric distance between the values
of a feature but only their ordinality: this means that
every feature transformation which is order-preserving,
such as the CoIED encoding, results in the same
exact trees.

As regards the Membership encoding, there were
no statistically significant differences with the Ordinal
encoding except for the LASSO algorithm, for which the
Membership method had worse performance than the
traditional Ordinal encoding.

As regards the LASSO algorithm, a possible explanation
of the observed behavior is not completely straightfor-
ward. A possible explanation may consists in the fact that
the Membership encoding replaces a single feature with
a group of features which are mutually related, while this
relationship is not taken in consideration when train the
LASSO model. In this sense, a group LASSO [50] or sparse
group LASSO [51] could be an appropriate choice to prop-
erly take into consideration the relations and constraints
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between the level features introduced by the Membership
encoding.

Interestingly, the Weighted Sampling encoding was
found to be significantly better than the Ordinal Encod-
ing for k-NN and SVR, although generally the CoIED
encoding resulted in better average performance. This
observation is especially interesting as we did not con-
sider averaging techniques during model training, hav-
ing just performed multiple samplings for performance
evaluation. This suggests that further research should
consider the combination of the Weighted Sampling
encoding with probabilistic ensembling techniques [52]
to assess if these could result in robust and effective
methods.

This second part of our study has some limitations,
mainly due to its exploratory nature. First, we are aware
that performances, as we previously discussed in the case
of Random Forests and the CoIED encoding, can vary
depending on the match between different encodings,
model families, and specific tasks. Even assuming that our
encoding is more valid (that is truthful) than the tradi-
tional one, for many practical tasks the order information
(hence, the Ordinal Encoding) can be as much predic-
tive as the finer-grained one provided by a user-informed
one. Although we adopted an approach similar to that
applied in [53], we recognize that considering only one
task could not be sufficient to draw definitive recom-
mendations. That notwithstanding, we emphasize that we
considered a regression task with actual prognostic value
that is based on real-world PROMS and clinical data, and
that has been integrated in a decision support system cur-
rently experimented in a large Orthopedic hospital with
promising results.

We are also aware that the observed improvements,
while in specific cases statistically significant, are rela-
tively small. That notwithstanding, it is known that sig-
nificant differences could be associated also to confidence
intervals that overlap slightly [54], so our findings must be
considered conservative; and most notably all the MAEs
observed are lower than the minimum clinically impor-
tant difference values found for the prognostic task at hand
[55] (which are at least almost twice as big, if not much
bigger).

Furthermore, we are aware that in the specialist
literature some methods to encode ordinal variables
in numerical terms exist (for instance, rologit [56]).
For this reason, our future work will be devoted
to integrate the knowledge about the user percep-
tions into these methods to achieve a good compro-
mise between validity and generalization. Also a fur-
ther validation of the incremental advantage due to
the user-informed encoding on different predictive tasks
is due.

Conclusion
In this paper we have provided elements to consider fuzzi-
fication as a convenient way to convert single ordinal
labels, which are the representation of choice of many
predictive models, into numbers by the means of a user-
informed approach.

The advantage of this approach lies in the fact just men-
tioned above: the mapping is made on the basis of the per-
ceptions of a heterogeneous sample of domain experts, in
our case, clinicians. If perceptions are collected from the
experts who annotated a ground truth data set, this map-
ping could optimally represent the implicit meaning that
group of people, as a collective, attach to the annotation
labels, and hence to the classes the machine learning have
to work with. Even if the perceptions are not collected
from the same group of people involved in the observa-
tions and the annotations, the opportune selection of the
sample (for instance,through stratified random sampling)
could guarantee a certain degree of representativeness and
bring forth reasonable and meaningful mappings. We also
observed that significant differences may exist in the rep-
resentations provided by different user groups and argued
that these should be taken into proper consideration when
working with this type of information, as otherwise using
naive encodings could be harmful: leading to noisy or
wrong predictions or, perhaps even worse, deceitful or
ill-founded conclusions.

We then showed how these novel user-based encoding
techniques, and more specifically the CoIED encoding,
could profitably be used to enhance the performance of
standard classes of machine learning models. We also
suggested potential areas of improvements and future
research with respect the other two proposed encoding
techniques.

In conclusion, we believe this paper contributes to
the research line that, within the more general field
of machine learning in medicine, aims to embed user-
derived knowledge into feature engineering tasks (for
instance, [31]), especially in regard to the encoding of
ordinal features, which are very common in medical data
sets, to improve the validity of predictions and of the data
considered for medical decision making.

Our future work will be devoted to integrate the knowl-
edge about the user perceptions into other methods to
achieve a good compromise between validity and gen-
eralization. Also a further validation of the incremental
advantage due to the user-informed encoding on different
predictive tasks is due.

Abbreviations
CAWI: Computer-Assisted-Web-self-Interview; CoIED: Center of Interval
Extreme Distribution; FHIR: Fast Healthcare Interoperability Resources; HL7:
Health Level 7; IOG: Orthopedic Institute Galeazzi; IED: Interval Extreme
Distribution; IRCCS: Scientific Institute for Research, Hospitalization and
Healthcare; k-NN: k-Nearest Neighbour; LASSO: Least Absolute Shrinkage and
Selection Operator; MAE: Mean Absolute Error; PROMS: Patient Reported



Seveso et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 5):142 Page 13 of 14

Outcome Measures; RF: Random Forests; RP: Representative Point; SVR:
Support Vector Regressor; VAS: Visual Analogue Scale

Acknowledgments
The authors would like to thank Pietro de Simoni, a Master student of the
Master Degree in Data Science, who has proposed an intuition for Fig. 3. The
authors are also grateful to Prof. Giuseppe Banfi for advocating the survey at
IOG and to all of the anonymous clinicians and students who spontaneously
participated in the research by playing the game of reporting severity
categories on a traditional VAS.

About this supplement
This article has been published as part of BMC Medical Informatics and
Decision Making, Volume 20 Supplement 5, 2020: Selected articles from the
CIBB 2019 Special Session on Machine Learning in Healthcare Informatics and
Medical Biology. The full contents of the supplement are available at https://
bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-
20-supplement-5.

Authors’ contributions
FC and AC provided the PROM data. FC and DC collected the ordinal data. FC
designed the research. AS, AC and FC wrote the manuscript; FC and DC
supervised and supported the research; DC and AC conceived the theoretical
analysis; AS performed experimental analysis. FC and AS substantively revised
the manuscript. All author(s) have read and approved the final manuscript.

Funding
The work has been published with the contribution of the Department of
Informatics of the University of Milano-Bicocca.

Availability of data and materials
The user questionnaire data generated during the current study are available
in the BMC2020 Public Dataset repository, located at https://github.com/
AndreaSeveso/BMC-2020-Public-Dataset. On the other hand, patient data
that support the findings of the machine learning results are property of IRCCS
Orthopedic Institute Galeazzi, but restrictions apply to the availability of these
data, which were used under license for the current study, and so are not
publicly available. Data are however available from the authors upon
reasonable request and with permission of the above Institute.

Ethics approval and consent to participate
The dataset used in the machine learning part of the study is anonymous and
it was built within a research compliant with all relevant national regulations,
institutional policies and in accordance with the tenets of the Helsinki
Declaration (as revised in 2013), which was approved by the IRCCS Orthopedic
Institute Galeazzi Institutional Review Board or equivalent committee. For the
ordinal data collections, which do not contain personal nor medical data,
approval by review boards or equivalent committees was not necessary at the
time we conducted this study.

Consent for publication
We obtained the written consent to publish their clinical data from the
patients in this study.

Competing interests
The authors declare that they have no competing interests.

Author details
1Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli
Studi di Milano-Bicocca, Viale Sarca 336, 20126 Milan, Italy. 2IRCCS Istituto
Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy.

Received: 29 May 2020 Accepted: 8 June 2020 Published: 20 August 2020

References
1. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S.

Dermatologist-level classification of skin cancer with deep neural
networks. Nature. 2017;542(7639):115.

2. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A,
Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R,
Cuadros J, Nelson PC, Mega JL, Webster DR. Development and validation
of a deep learning algorithm for detection of diabetic retinopathy in
retinal fundus photographs. J Am Med Assoc. 2016;316(22):2402–10.

3. Cabitza F, Campagner A, Ciucci D. New frontiers in explainable AI:
Understanding the GI to interpret the GO LNCS, volume 11713. In:
International Cross-Domain Conference for Machine Learning and
Knowledge Extraction. Cham: Springer; 2019. p. 27–47.

4. Fox RC. Medical uncertainty revisited. Handb Soc Stud Health Med.
2000;409:425.

5. Abbod MF, von Keyserlingk DG, Linkens DA, Mahfouf M. Survey of
utilisation of fuzzy technology in medicine and healthcare. Fuzzy Sets
Syst. 2001;120(2):331–49.

6. Ahmadi H, Gholamzadeh M, Shahmoradi L, Nilashi M, Rashvand P.
Diseases diagnosis using fuzzy logic methods: A systematic and
meta-analysis review. Comput Methods Prog Biomed. 2018;161:145–72.

7. Szczepaniak P, Lisboa P, Kacprzyk J, (eds). Fuzzy Systems in Medicine.
Heidelberg: Springer; 2000.

8. Barro S, Marín R. Fuzzy Logic in Medicine. Heidelberg: Springer; 2002.
9. Godo L, de Mántaras RL, Puyol-Gruart J, Sierra C. Renoir, pneumon-ia

and terap-ia: three medical applications based on fuzzy logic. Artif Intell
Med. 2001;21(1-3):153–62.

10. Sanchez E. In: Jones A, Kaufmann A, Zimmermann H-J, editors. Medical
Applications with Fuzzy Sets. Dordrecht: Springer; 1986, pp. 331–47.

11. Vetterlein T, Mandl H, Adlassnig K-P. Fuzzy Arden syntax: A fuzzy
programming language for medicine. Artif Intell Med. 2010;49(1):1–10.

12. El-Sappagh S, Elmogy M. A fuzzy ontology modeling for case base
knowledge in diabetes mellitus domain. Eng Sci Technol Int J. 2017;20(3):
1025–40.

13. Lee C-S, Wang M-H, Hsu C-Y, Chen Z-W. Type-2 fuzzy set and fuzzy
ontology for diet application. Stud Fuzziness Soft Comput. 2013;301:
237–56.

14. Vetterlein T, Zamansky A. Reasoning with graded information: The case
of diagnostic rating scales in healthcare. Fuzzy Sets Syst. 2016;298:207–21.

15. Zywica P. Modelling medical uncertainties with use of fuzzy sets and their
extensions vol. 855. In: 17th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based
Systems. Cham: Springer; 2018.

16. Saripalle R, Runyan C, Russell M. Using HL7 FHIR to achieve
interoperability in patient health record. J Biomed Inform. 2019;94:103188.

17. Valueset-condition-severity - FHIR V4.0.1. 2019. http://hl7.org/fhir/
ValueSet/condition-severity. Accessed 01 Apr 2020.

18. Hernandez G, Garin O, Dima AL, Pont A, Pastor MM, Alonso J,
Van Ganse E, Laforest L, de Bruin M, Mayoral K, Serra-Sutton V, Ferrer M.
EuroQol (EQ-5D-5L) Validity in Assessing the Quality of Life in Adults With
Asthma: Cross-Sectional Study. J Med Internet Res. 2019;21(1):10178.

19. Black N. Patient reported outcome measures could help transform
healthcare. Br Med J. 2013;346:167.

20. Baumhauer JF, Bozic KJ. Value-based healthcare: patient-reported
outcomes in clinical decision making. Clin Orthop Relat Res. 2016;474(6):
1375–8.

21. Challener DW, Prokop LJ, Abu-Saleh O. The proliferation of reports on
clinical scoring systems: Issues about uptake and clinical utility. J Am Med
Assoc. 2019;321(24):2405–406.

22. Forrest M, Andersen B. Ordinal scale and statistics in medical research. Br
Med J Clin Res Ed. 1986;292(6519):537–8.

23. Jakobsson U. Statistical presentation and analysis of ordinal data in
nursing research. Scand J Caring Sci. 2004;18(4):437–40.

24. Salomon JA. Reconsidering the use of rankings in the valuation of health
states: a model for estimating cardinal values from ordinal data. Popul
Health Metrics. 2003;1(1):12.

25. Atkinson TM, Hay JL, Dueck AC, Mitchell SA, Mendoza TR, Rogak LJ,
Minasian LM, Basch E. What do ‘none,’ ‘mild,’ ‘moderate,’‘severe,’ and
‘very severe’ mean to patients with cancer? Content validity of
PRO-CTCAE response scales. J Pain Symptom Manag. 2018;55(3):3–6.

26. Zadeh LA. The concept of a linguistic variable and its application to
approximate reasoning I. Inf Sci. 1975;8(3):199–249.

27. Li Q. A novel likert scale based on fuzzy sets theory. Expert Syst Appl.
2013;40(5):1609–18.

28. Vonglao P. Application of fuzzy logic to improve the likert scale to
measure latent variables. Kasetsart J Soc Sci. 2017;38(3):337–44.

29. Coates A, Ng AY. The importance of encoding versus training with sparse
coding and vector quantization. In: Proceedings of the 28th International
Conference on Machine Learning (ICML-11); 2011. p. 921–8. https://icml.
cc/Conferences/2011/papers/485_bibfile.bib.

30. Crichton N. Visual analogue scale (VAS). J Clin Nurs. 2001;10(5):706–6.

https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-5
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-5
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-5
https://github.com/AndreaSeveso/BMC-2020-Public-Dataset
https://github.com/AndreaSeveso/BMC-2020-Public-Dataset
http://hl7.org/fhir/ValueSet/condition-severity
http://hl7.org/fhir/ValueSet/condition-severity
https://icml.cc/Conferences/2011/papers/485_bibfile.bib
https://icml.cc/Conferences/2011/papers/485_bibfile.bib


Seveso et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 5):142 Page 14 of 14

31. Cabitza F, Ciucci D. Fuzzification of ordinal classes. The case of the HL7
severity grading LNCS, volume 11142. In: International Conference on
Scalable Uncertainty Management. Cham: Springer; 2018. p. 64–77.

32. Dijkman JG, van Haeringen H, de Lange SJ. Fuzzy numbers. J Math Anal
Appl. 1983;92(2):301–41.

33. Van Leekwijck W, Kerre EE. Defuzzification: criteria and classification.
Fuzzy Sets Syst. 1999;108(2):159–78.

34. Kroese D, Taimre T, Botev Z. Handbook of Monte Carlo Methods.
Hoboken: Wiley; 2011.

35. Greenfield S, Chiclana F, John R, Coupland S. The sampling method of
defuzzification for type-2 fuzzy sets: Experimental evaluation. Inf Sci.
2012;189:77–92.

36. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
37. Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat

Comput. 2004;14(3):199–222.
38. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need

hundreds of classifiers to solve real world classification problems? J Mach
Learn Res. 2014;15(1):3133–81.

39. Altman NS. An introduction to kernel and nearest-neighbor
nonparametric regression. Am Stat. 1992;46(3):175–85.

40. Tibshirani R. Regression shrinkage and selection via the LASSO. J R Stat
Soc Ser B Methodol. 1996;58(1):267–88.

41. Massey Jr FJ. The Kolmogorov-Smirnov test for goodness of fit. J Am Stat
Assoc. 1951;46(253):68–78.

42. Landoni E, Ambrogi F, Mariani L, Miceli R. Parametric and nonparametric
two-sample tests for feature screening in class comparison: a simulation
study. Epidemiol Biostat Public Health. 2016;13(2):.

43. Mann HB, Whitney DR. On a test of whether one of two random variables
is stochastically larger than the other. Ann Math Stat. 1947;18(1):50–60.

44. Fay MP, Proschan MA. Wilcoxon-Mann-Whitney or t-test? on
assumptions for hypothesis tests and multiple interpretations of decision
rules. Stat Surv. 2010;4:1.

45. Boyle CM. Difference between patients’ and doctors’ interpretation of
some common medical terms. Br Med J. 1970;2(5704):286–9.

46. Forrest M. Assessment of pain: a comparison between patients and
doctors. Acta Anaesthesiol Scand. 1989;33(3):255–6.

47. Cabitza F, Locoro A, Laderighi C, Rasoini R, Compagnone D, Berjano P.
The elephant in the record: on the multiplicity of data recording work.
Health Inform J. 2019;25(3):475–90.

48. Cabitza F, Ciucci D, Rasoini R. A giant with feet of clay: on the validity of
the data that feed machine learning in medicine. In: Cabitza F, Magni M,
Batini C, editors. Organizing for the Digital World. Cham: Springer; 2019.
p. 121–36.

49. Hastie T, Tibshirani R, Friedman J. Additive Models, Trees, and Related
Methods. New York, NY: Springer; 2009, pp. 295–336.

50. Yuan M, Lin Y. J R Stat Soc Ser B Stat Methodol. 2006;68(1):49–67.
51. Puig AT, Wiesel A, Hero AO. A multidimensional shrinkage-thresholding

operator. In: 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.
Cardiff: IEEE; 2009. p. 113–116.

52. Murphy KP. Machine Learning: a Probabilistic Perspective. Cambridge,
Massachusetts: MIT press; 2012.

53. Potdar K, Pardawala TS, Pai CD. A comparative study of categorical
variable encoding techniques for neural network classifiers. Int J Comput
Appl. 2017;175(4):7–9.

54. Ranstam J. Why the p-value culture is bad and confidence intervals a
better alternative. Osteoarthr Cartil. 2012;20(8):805–8.

55. Hung M, Bounsanga J, Voss MW, Saltzman CL. Establishing minimum
clinically important difference values for the patient-reported outcomes
measurement information system physical function, hip disability and
osteoarthritis outcome score for joint reconstruction, and knee injury and
osteoarthritis outcome score for joint reconstruction in orthopaedics.
World J Orthop. 2018;9(3):41.

56. Ophem HV, Stam P, Praag BV. Multichoice logit: modeling incomplete
preference rankings of classical concerts. J Bus Econ Stat. 1999;17(1):
117–28.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Data collection
	First data collection: quantitative meaning for doctors
	Second data collection: quantitative meaning for potential patients
	Third data collection: qualitative meaning
	Dataset for regression analysis

	Representation of ordinal values using fuzzy sets
	From ordinal values to fuzzy sets
	From fuzzy representations to encodings

	Ordinal data in machine learning

	Results
	Visualization of quantitative meaning: differences between doctor and patient's perception
	Visualization of qualitative meaning
	Results of proposed ordinal representations in machine learning

	Discussion
	Perception of HL7 terminology
	Machine learning with ordinal encodings

	Conclusion
	Abbreviations
	Acknowledgments
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

