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Comprehensive network of miRNA-
induced intergenic interactions and 
a biological role of its core in cancer
Vladimir V. Galatenko   1,2,3, Alexey V. Galatenko1, Timur R. Samatov2,7, Andrey A. 
Turchinovich4, Maxim Yu. Shkurnikov5, Julia A. Makarova5,6 & Alexander G. Tonevitsky2,5

MicroRNAs (miRNAs) are a family of short noncoding RNAs that posttranscriptionally regulate 
gene expression and play an important role in multiple cellular processes. A significant percentage 
of miRNAs are intragenic, which is often functionally related to their host genes playing either 
antagonistic or synergistic roles. In this study, we constructed and analyzed the entire network of 
intergenic interactions induced by intragenic miRNAs. We further focused on the core of this network, 
which was defined as a union of nontrivial strongly connected components, i.e., sets of nodes (genes) 
mutually connected via directed paths. Both the entire network and its core possessed statistically 
significant non-random properties. Specifically, genes forming the core had high expression levels 
and low expression variance. Furthermore, the network core did not split into separate components 
corresponding to individual signalling or metabolic pathways, but integrated genes involved in key 
cellular processes, including DNA replication, transcription, protein homeostasis and cell metabolism. 
We suggest that the network core, consisting of genes mutually regulated by their intragenic miRNAs, 
could coordinate adjacent pathways or homeostatic control circuits, serving as a horizontal inter-circuit 
link. Notably, expression patterns of these genes had an efficient prognostic potential for breast and 
colorectal cancer patients.

MicroRNAs (miRNAs) are a family of short (~22 nt) noncoding RNAs that posttranscriptionally regulate gene 
expression and play an important role in various cellular processes, including oncogenesis, epithelial–mesenchy-
mal transition, regeneration, embryogenesis, and cellular differentiation1–5. Furthermore, miRNAs can function 
in coordination with various epigenetic regulators6 and transcription factors7. The miRNA concentration in a cell 
can rapidly change8, and therefore, miRNA expression is considered an element of early genetic response to exter-
nal stimuli9,10. Finally, miRNAs also regulate cellular homeostasis by serving as nodes of signalling networks11.

A significant percentage of miRNAs are intragenic, i.e., located within intronic or exonic regions of coding 
genes (host genes)12. In humans, more than half of miRNAs are intragenic13. At the same time, the majority of 
intragenic miRNAs are located within introns14; specifically, humans intronic miRNAs constitute more than 85% 
of all intragenic miRNAs13. Moreover, intronic miRNAs are usually transcribed in the same direction as their host 
genes14. In humans, more than 80% of intronic miRNA genes have a sense orientation with respect to their host 
genes13. Therefore, most human intragenic miRNAs are co-transcribed with their host genes and subsequently 
released at the splicing stage15,16.

In addition to having overlapping genome locations, intragenic miRNAs and their host genes can be func-
tionally connected; however, in studies demonstrating these links, the pairs of {host gene – intragenic miRNA} 
were analyzed independently from each other. Specifically, a number of theoretical and experimental studies 
have shown that the host genes can be the direct targets of their intragenic miRNAs. Targeting of a host gene by 
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its intragenic miRNA was observed not only for exonic antisense miRNAs (which are complementary to a gene 
region but transcribed independently of their host genes)17,18 but also for multiple intronic and exonic sense miR-
NAs19–23. Furthermore, computational analysis demonstrated that depending on the parameters applied in the 
model, self-regulation of genes via their intragenic miRNAs can have various biological roles, including buffering 
of “expression noise”, conferring expression robustness, regulating the timing of responses to external signals, and 
adapting gene expression to persistent stimuli, thus providing responses conforming to Weber’s law24. Notably, a 
non-canonical mechanism of self-regulation of genes, where intragenic miRNA enhances transcription instead 
of mediating posttranscriptional repression, was also reported25. Co-transcription of a host gene and its target-
ing miRNA (followed by subsequent release of the miRNA precursor during splicing and its processing into a 
mature miRNA via a common well-described mechanism16,26,27) can be regarded as a negative (in most cases) or 
a positive (occasionally) feedback loop28 (Fig. 1a,b). This self-regulation of gene expression may be regarded as a 
specific case of regulatory network motifs that include both transcription factors and miRNAs7,11,29,30.

Other reported types of functional relations between host genes and their intragenic miRNAs include 
miRNA-targeting of genes whose products are downstream effectors of host gene products, genes antagonistic to 
a host gene, or genes belonging to the same pathway as a host gene14,31–35.

We hypothesized that regulatory network motifs involving intragenic miRNAs could simultaneously func-
tion in a cell as interconnected parts of the entire mechanism of gene expression regulation. Therefore, in the 
present study, we did not focus on individual regulatory motifs but, for the first time, constructed and analyzed 
the entire network of intergenic interactions induced by intragenic miRNAs. It is a gene oriented network which 
edges correspond to miRNAs and represent targeting of one gene by a miRNA hosted in the other gene. In 
particular, we identified condensed core of the constructed network. The core contained 21 or 12 genes (for all 
intragenic miRNAs or only intronic sense miRNAs, respectively) involved in key cellular processes, including 
DNA replication, transcription, protein homeostasis and cell metabolism. Intragenic miRNAs located in the core 
genes are likely to confer the robustness of the core by buffering internal and external noises30,36–38, fine-tune the 
expression of the core genes39 and, more generally, coordinate adjacent pathways or homeostatic control circuits 
by serving as a horizontal inter-circuit link. We further hypothesized that regulation of expression of the core 
genes mediated by their intragenic miRNAs could be important for normal cell functioning, and distortion of the 
expression patterns of these genes could have a significant diagnostic potential. As proof of concept, we identified 
gene expression signatures consisting solely of core genes for highly efficient recurrence prognosis of breast and 
colorectal cancer. Remarkably, these expression signatures were as efficient as ones identified from a genome-wide 
transcriptome analysis40,41.

Results
The network design.  The construction and analysis of the network of intergenic interactions induced 
by intragenic miRNAs were performed on the levels of (1) all intragenic miRNAs and (2) only intronic sense 
miRNAs. For network construction we used only validated targets of miRNAs. Therefore, we focused on humans 
since human databases of validated miRNA targets are currently the most comprehensive.

The designed network is gene oriented and has the following structure. Its nodes are genes, and nodes (genes) 
A and B are connected by a directed edge (A –┤ B) if gene A is a host for an intragenic miRNA that targets gene B. 
We use bar-headed arrows to represent edges as miRNAs generally suppress their targets.

Specifically, a trivial cycle (loop) A –┤ A (Fig. 1c) in this network represents self-regulation of gene A by its 
intragenic miRNA. In addition to the loops, the resulting network contains nontrivial cycles, including pairs of 
mutually connected genes (Fig. 1d,e). To the best of our knowledge, this type of regulatory network pattern was 
not previously reported and analyzed for miRNA-induced intergenic interactions. At the same time, there are no 
triples in which each pair of genes is mutually (bidirectionally) connected. In other words, the network does not 
contain a sub-network depicted in Fig. 1f.

Figure 1.  Regulatory network motifs involving intragenic miRNAs. (а) A self-regulatory negative feedback 
loop. (b) A self-regulatory positive feedback loop. (c) Representation of a self-regulatory feedback loop in the 
constructed network of intergenic interactions induced by intragenic miRNAs (note that loops are removed 
prior to the analysis of the network). (d) A pair of genes mutually targeting each other via their intragenic 
miRNAs. (e) Representation of miRNA-induced intergenic interactions shown in panel (d) in the constructed 
network. (f) A three-node sub-network in which each pair of nodes is mutually (bidirectionally) connected.
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However, if not confined to one-edge paths (i.e., to direct miRNA-induced interactions) and considering 
longer paths with intermediate nodes, two relatively small components comprising nodes mutually connected 
by directed paths can be revealed. In other words, the network contains exactly two nontrivial (i.e., containing 
at least two nodes) strongly connected components. These components can be considered analogues of the host 
genes that are self-regulated by their intragenic miRNAs. Each node of a component is a host gene whose intra-
genic miRNA targets the members of the same component (although a direct miRNA-induced interaction exists 
not for all pairs of genes). And vice versa, each node is a gene targeted by a miRNA hosted in another gene from 
this component.

The union of the nontrivial strongly connected components will be further referred to as a “network core”. 
Section Network core: a simple example of Supplementary Information illustrates the definition of the network core.

Quantitative characteristics of networks.  A full network (F-network) of miRNA-induced intergenic 
interactions in humans was designed based on the lists of experimentally validated miRNA targets. A target 
was considered validated if it was present simultaneously in two databases of validated miRNA targets — 
DIANA-TarBase v7.042 and miRTarBase (Release 6.1)43.

The miRNA–target interactions were validated in total for 842 mature miRNAs, 445 of which were intragenic. 
Furthermore, these 445 mature miRNAs originated from 389 pre-miRNAs located in 305 different host genes 
and targeted 8,416 genes. The targeted genes included 176 out of 305 host genes. Consequently, the F-network 
contained 176 nodes with both in- and out-edges, 129 nodes with only out-edges and 8,240 nodes with only 
in-edges (see Supplementary Fig. 1 as an illustration): 8,545 non-isolated nodes in total. The number of edges in 
the F-network (after removing loops and merging multiple edges) was 19,081. These numbers are summarized 
in Table 1.

Along with the F-network, which was based on all intragenic miRNAs, we constructed an IS-network based 
solely on intronic sense miRNAs. In the IS-network, the number of different nodes and edges was evidently lower 
compared to that of the F-network; however, this difference was minor since intronic sense miRNAs constitute 
the majority of all intragenic miRNAs (Table 1).

Formal description of the constructed networks through the listing of their edges is presented in 
Supplementary Data (worksheets F-network formal descr. and IS-network formal descr.).

Nodes with the highest in-degree.  The analysis of lists of nodes with the highest in-degree (i.e., lists of genes 
having the highest regulation by intragenic miRNAs) revealed a moderate enrichment for several major functional 
categories. Specifically, for both networks, the enrichment was evident for such categories as cell cycle, p53 signal-
ling pathway, oncogenic pathway, focal adhesion, apoptosis, and transcriptional and posttranscriptional regulation 
of gene expression (Table 2). Additional data are presented in Supplementary Information (section The enrichment 
analysis of lists of nodes with the highest in-degree). Histograms of in-degree for the F-network and the IS-network are 
presented in Supplementary Data (worksheets F-network in-degree hist. and IS-network in-degree hist).

TotalN BothDirN OutN InN TotalE Mat-mi Pre-mi HostGenes

F-network 8,545 176 129 8,240 19,081 445 389 305

IS-network 8,307 140 106 8,061 16,913 364 277 246

Table 1.  Quantitative characteristics of the F-network and IS-network. TotalN – total number of non-isolated 
nodes. BothDirN – number of nodes with both in- and out-edges. OutN – number of nodes with out-edges 
but no in-edges. InN – number of nodes with in-edges but no out-edges. TotalE – total number of edges after 
removing loops and merging multiple edges. Mat-mi – number of mature miRNAs that induce intergenic 
interactions represented as network edges. Pre-mi – number of pre-miRNAs for these mature miRNAs. 
HostGenes – number of genes hosting these pre-miRNAs. Clearly, TotalN = BothDirN + OutN + InN, 
HostGenes = BothDirN + OutN.

Term
F-network adj. 
p-val

IS-network adj. 
p-val

Cell cycle 1.09 × 10−5 1.16 × 10−5

p53 signalling pathway 3.11 × 10−5 3.62 × 10−5

Pathways in cancer 2.15 × 10−5 4.24 × 10−4

Focal adhesion 6.54 × 10−4 5.25 × 10−4

Apoptosis 1.17 × 10−3 1.21 × 10−3

Posttranscriptional regulation of 
gene expression 3.32 × 10−5 1.63 × 10−3

Transcription regulation 4.12 × 10−3 1.19 × 10−2

Table 2.  Major functional categories overrepresented in lists of genes with the highest in-degree. F-network 
adj. p-val – Benjamini-corrected p-value for the F-network list reported by DAVID; IS-network adj. p-val – 
Benjamini-corrected p-value for the IS-network list reported by DAVID.
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Overrepresented three-node network motifs.  Both F- and IS-networks had properties different from 
those of random graphs with the same number of vertices and edges. Notably, the number of occurrences of the 
three-node network motif presented in Fig. 2a (41 for the F-network and 18 for the IS-network) was significantly 
higher than the expected number for this motif in a random graph. For random graphs generated using a model 
with a fixed set of out-degrees of vertices (which is equivalent to the randomization of lists of miRNA targets 
preserving sizes of the lists), p-values did not exceed 10−4 for the F-network and 0.017 for the IS-network (see 
Supplementary Table 5 – sub-network type 6). For random graphs generated using the Erdős–Rényi model44, 
the p-value was 2.6 × 10−3 for the F-network, but for the IS-network the statistical significance was lower, with a 
p-value of 0.1. However, a clear difference between the constructed networks and random graphs generated with 
the Erdős–Rényi model was revealed by the analysis of other three-node motifs. E.g., an evident overrepresenta-
tion in comparison with Erdős–Rényi– random graphs was observed for a motif shown in Fig. 2b (p-value < 10−4 
for both the F-network and the IS-network; see Supplementary Table 5 – sub-network type 14).

Furthermore, a three-node network motif presented in Fig. 2c was also overrepresented in the constructed 
networks in comparison with random graphs. The number of its occurrence in the F-network and in the 
IS-network was 30757 and 22913, respectively, which resulted in p-values < 10−4 for both the Erdős–Rényi model 
and the model with a fixed set of out-degrees (see Supplementary Table 5 – sub-network type 3).

Aggregate information on the number of non-equivalent (non-isomorphic) three-node sub-networks in the 
constructed networks and in random graphs is presented in Supplementary Information (section Three-node 
sub-networks). Histograms supporting the specified p-values are also presented in Supplementary Information 
(section Histograms supporting p-values).

The network core.  For the IS-network, the core consisted of two strongly connected components that 
included 10 and 2 genes (Fig. 3; Supplementary Data – worksheet IS-network core formal descr.). The core of the 
F-network contained the IS-network core as a subgraph and also consisted of two components, with 18 and 3 
genes (see Supplementary Fig. 6 and Supplementary Data – worksheet IS-network core formal descr.).

Similarly to the three-node network motifs discussed above, network core size clearly differentiated both the 
F-network and the IS-network from random graphs generated using the Erdős–Rényi model (for random graphs, 
the size of the core was substantially higher, p-value < 10−4). Applying the model with a fixed set of out-degrees 
of vertices resulted in the reduction of the core size in random graphs: the core size for the F- and IS-networks 
was still smaller than a median core size for random graphs, but statistical significance was violated (p-value was 
close to 0.17 for both the F- and IS-networks). Histograms supporting the specified p-values are presented in 
Supplementary Information (subsection Histograms supporting p-values).

The network core comprised genes that are essential for key cellular processes. For example, MCM7 and 
SMC4 are indispensable for DNA replication: MCM7 promotes unwinding of dsDNA in the replication fork45 
and SMC4 is involved in condensation of mitotic chromosomes46. Furthermore the CTDSP1 and ZRANB2 genes 
are important transcriptional regulators responsible for gene silencing and alternative splicing, respectively47,48. 

Figure 2.  Three-node network motifs overrepresented in the F-network and IS-network in comparison with 
random graphs (a) generated using a model with a fixed set of out-degrees of vertices; (b) generated with the 
Erdős–Rényi model; (c) generated using any of these two models.

Figure 3.  The core of the IS-network. The nodes are genes, and nodes (genes) A and B are connected by a 
directed edge (A –┤ B) if gene A is a host for an intronic sense miRNA that targets gene B.
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Four other genes from the IS-network core are involved in translation control and maintenance of protein home-
ostasis. EIF4H and ABCF1 are both involved in translation initiation49,50. RCL1 encodes a nuclease that cleaves 
pre-rRNA at the A2 site, thus separating rRNA destined for small and large ribosomal subunits51. The product of 
the HUWE1 gene is a E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal deg-
radation of target proteins, including the anti-apoptotic protein Mcl1, p53, c-Myc and core histones52. The protein 
encoded by HNRNPK is a key regulator of transcription and translation53. The PANK1, PANK3 and FASTKD2 
genes are essential for basic cellular metabolism. PANK1 and PANK3 genes encode isoforms of pantothenate 
kinase, which catalyzes the first rate-limiting step of panthotenate biosynthesis. At the same time, pantothenate 
is the precursor of coenzyme A — a key cellular metabolite that serves as a cofactor for multiple enzymes and is 
involved in various processes, including fatty and amino acid biosynthesis, cell signalling and regulation of gene 
expression54. Finally, the FASTKD2 protein is localized in the mitochondria, and its knockdown leads to the 
impairment of cellular respiration55.

To summarize, the network core connects the genes involved in basic cellular processes: DNA replication, 
transcription, protein homeostasis and underlying metabolic activity.

High expression levels and low expression variance of the core genes.  The analysis of 
genome-wide transcriptome profiles of 675 cell lines56 revealed that genes belonging to the cores of the 
IS-network and F-network have generally high expression levels. More specifically, after ranking the transcripts 
present in the dataset (ca. 26 thousand transcripts) by the median expression level, 10 out of 12 core genes from 
the IS-network were in the upper quarter, while two remaining genes were still in the upper half (binomial 
test p-value < 4 × 10−5). Similar ranking by the third (higher) or the first (lower) quartile led to similar results. 
Specifically, the distribution among quarters was exactly the same after ranking by the third quartile, while after 
the first quartile ranking, 11 out of 12 genes were located in the upper quarter, and the remaining gene was still 
found in the upper half. For the core of the F-network, statistically significant enrichment of highly expressed 
transcripts was even more remarkable. For example, after ranking by the median expression levels, 16 out of 21 
genes comprising the core of the F-network resided in the upper quarter, and the remaining 5 genes were still in 
the upper half, with the binomial test p-value less than 10−5.

At the same time, genes from the core were not the most highly expressed ones: after ranking of transcripts by 
a median expression level, as well as by the first quartile, only one gene from the core (HNRNPK) appeared in the 
top 1%. After ranking by the third quartile, HNRNPK moved down (but remained in the top 2% zone), and no 
genes from the core were present in the top 1%.

Along with high expression, genes from the core have generally low variance in expression levels. Even after 
excluding low expression transcripts from the analysis and retaining the upper half of the transcripts (with respect 
to the ranking by the first quartile of expression levels), most genes from the core were in the half with a lower 
variance — 10 genes for the core of the IS-network (binomial test p-value 0.019) and 16 genes for the core of the 
F-network (binomial test p-value 0.013). Moreover, 8 genes were in the quarter of transcripts with the lowest var-
iance for the core of the IS-network (binomial test p-value 0.0028), and for the core of the F-network, the number 
of such genes was 12 (binomial test p-value 0.0017).

Boxplots illustrating the described data are presented in Supplementary Information (Supplementary Figs 7, 
8). Details of the analysis, including measures used to quantify expression levels and expression variance, are 
described in Methods section (subsection Analysis of expression levels).

Further analysis of expression levels of genes comprising the core in tissue specimens from 298 breast cancer 
patients and 519 colorectal patients confirmed these results. Details are presented in Supplementary Information 
(section Expression levels of core genes in tissue specimens).

Therefore, our data strongly indicate that the genes comprising the network core of intragenic miRNA-induced 
gene-gene interactions can be characterized as generally having higher expression levels and lower variance com-
pared to the median values.

The prognostic power of genes belonging to the core.  Analysis of expression pattern of genes within 
the core led to clear conclusions about a cell and even a whole organism. More specifically, highly reliable prog-
nostic gene signatures were derived for breast and colorectal cancer using only expression patterns of the genes 
from the network core.

These prognostic gene signatures were constructed separately for breast cancer and colorectal cancer using 
an SVM-based exhaustive search strategy described previously40. Microarray data utilized for this construction 
are specified in Methods section (subsection Construction of prognostic gene signatures). Both for breast cancer 
and for colorectal cancer these data included one training, two filtration and one validation (testing) dataset. For 
breast cancer the datasets reported expression levels for 17 genes from the core of the F-network, including 10 
genes from the core of the IS-network; for colorectal cancer the datasets reported expression levels of all genes 
comprising the core of the F-network. Log-scaled expression levels were used.

For each gene its mean expression level and standard deviation of expression level were estimated based on 
the training dataset, and expressions in all datasets were (0, 1)-scaled by subtracting these means and dividing by 
these deviations.

Then for every studied subset of genes from the core of the F-network, ranging from individual genes to the 
whole core of the F-network, a binary classifier was constructed using Support Vector Machine57 (SVM) with the 
linear kernel and class weights inversely proportional to the number of patients in each class. This construction 
utilized only the training dataset. For triples of genes the classifier had a form

ρ= + + −R e e e w e w e w e( , , ) ,1 2 3 1 1 2 2 3 3
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where e1, e2, e3 were (0, 1)-scaled expressions (with scaling parameters derived from the training dataset), and 
weights w1, w2, w3 as well as ρ were computed using a standard SVM construction algorithm. Taking expression 
levels e1, e2, e3 associated with a patient, this classifier attributed the patient to the high risk group if R (e1, e2, e3) 
was nonnegative, and to a low-risk group otherwise. For sets with another number of genes the difference in the 
classifier forms was only in the number of terms in a linear combination.

If the resulting classifier did not pass thresholds on sensitivity and specificity for the training dataset (the 
utilized values are specified in Methods section, subsection Construction of prognostic gene signatures), it was 
excluded from the further analysis. Otherwise, in order to avoid overfitting, this classifier was additionally applied 
to each of the filtration datasets. If sensitivity or specificity for at least one filtration dataset was lower than a filtra-
tion threshold, the classifier was also filtered out. For classifiers that passed the filtration their prognostic charac-
teristics were estimated using the validation dataset. Samples from the validation dataset were utilized neither for 
classifier construction, nor for filtration.

Limiting the analysis to the triples comprising the genes from the core of the IS-network, we identified 
HNRNPK, PANK3 and SMC4 gene triple as having the highest prognostic power for estrogen receptor-positive 
(ER-positive) breast cancer (with respect to the training and filtration datasets – see Methods, subsection 
Construction of prognostic gene signatures). Furthermore, on the validation dataset this triple provided prediction 
of breast cancer recurrence with a sensitivity and specificity of 63.6% and 66.4%, respectively. The AUC value for 
the validation dataset was 0.662, while its mean value for the training and filtration datasets was equal to 0.708. 
The Kaplan-Meier curves for the validation dataset are presented in Fig. 4a.

The genes HNRNPK, PANK3 and SMC4 are not involved in one cellular process but contribute to different 
pathways related to DNA replication (SMC4), regulation of transcription and translation (HNRNPK) and cellular 
metabolism (PANK3). Notably, SMC4 and PANK3 genes had the highest degree (i.e., total number of in- and 
out-edges for a node) in the subgraph of the IS-network induced by its core (Fig. 3). Interestingly, the substitution 
of HNRNPK for MCM7 (the remaining gene with degree 4) yielded a three-gene signature with a similar prog-
nostic power for the training and filtration datasets (mean AUC value 0.693) and even higher characteristics for 
the validation dataset (sensitivity 69.7%, specificity 66.4%, AUC 0.670; Fig. 4b).

Extension of the SMC4-PANK3 pair to the triple with MAP2K4, which belongs to the core of the F-network, 
slightly enhanced the mean AUC value for the training and filtration datasets and increased the sensitivity, speci-
ficity and AUC value for the validation dataset to 84.8%, 60.2% and 0.728, respectively (Fig. 4c).

Therefore, the analysis limited to the core of the network of intragenic miRNA-induced gene-gene interactions 
allowed construction of three-gene signatures for the prognosis of ER-positive breast cancer recurrence with sen-
sitivity and specificity comparable to the most reliable three-gene signatures identified by extensive genome-wide 
analysis40 as well as the reliability of multigene commercial prognostic signatures, such as OncotypeDX58,59 and 
MammaPrint59,60.

For colorectal cancer, an exhaustive search revealed the FASTKD2, PANK1, and HUWE1 gene triple from the 
core to have the highest prognostic power (with respect to the training and filtration datasets). All these genes 
belong to the core of the IS-network, but this triple was also optimal for the core of the F-network. The sensitivity 
and specificity of this triple in predicting the recurrence for colorectal cancer on the validation dataset were 68.3% 
and 60.0%, respectively, while the AUC value was 0.659 (Fig. 4d). These values of sensitivity and specificity were 
similar to the ones for the OncotypeDX for Colon Cancer41, which was designed based on a large-scale transcrip-
tome analysis (expression levels were measured for 761 preselected candidate genes)41,61.

It is worth mentioning that the prognostic power of the above described triples of genes from the network 
core was provided by the totality of all genes in a triple. For gene pairs (and, obviously, for individual genes), the 
prognostic power was much lower. Moreover, none of the pairs of genes from the core passed the filtration.

Individual genes in each triple had different weights w (which characterize prognostic potential) in the result-
ing classifier value. The SMC4 gene had the highest weight in all the above described triples for breast cancer, and 
increased expression of this gene (in the case of unaltered expression levels of the other two genes in the triple) 
was associated with a higher risk of recurrence. These data are consistent with emerging reports on the oncogenic 
potential of the SMC4 gene62,63. Similarly, elevated expression of the MCM7 gene, whose oncogenic potential has 
been widely discussed64–66, was also associated with a higher risk of cancer recurrence. For PANK3, HNRNPK 
and MAP2K4 genes, this correlation was opposite. Two of these genes (HNRNPK and MAP2K4) were previously 
identified as tumor suppressors67–69; however, a pro metastatic-role of these genes was also reported70,71. To the 
best of our knowledge, the role of PANK3 in oncogenesis has not yet been described.

In the case of the FASTKD2-PANK1-HUWE1 triple, a higher risk of cancer recurrence was associated with 
increased expression of the HUWE1 gene and lower expression levels of FASTKD2 and PANK1. The FASTKD2 
gene, which has the greatest weight in the classifier for this triple, has been previously shown to promote apopto-
sis of cancer cells72. Furthermore, both oncogenic and tumor suppression roles were previously reported for the 
HUWE1 gene73–76. In contrast, as for the PANK3 gene, the role of the PANK1 gene in the oncogenesis remains 
unknown.

Interestingly, larger gene sets (e.g., quadruples) did not provide a substantial increase in prognostic power. 
Moreover, the reliability of cancer prognosis based on the set consisting of all genes in the core was even lower in 
comparison with the most reliable triples due to overfitting of the classifier.

Weights of genes in the above classifiers and additional details of triples filtration are presented in 
Supplementary Information (section Prognostic gene triples).

A connection between the IS-network core and the Myc protein.  Notably, a striking functional 
connection between the core of the IS-network and the Myc protein has been found. The transcription factor Myc 
is known to have a high number of different targets and has a pronounced oncogenic potential77–79. Analysis of 
the published data revealed that 9 out of 12 genes comprising the core were either regulated by Myc directly or 
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shown to conversely interact with Myc at the protein level, regulating its activity. See Supplementary Information 
for details (section Interplay of the IS-network core and Myc).

Discussion
Despite the fact that a typical miRNA-target interaction mediates only a subtle reduction in protein levels36,80, 
miRNAs play an important physiological role by conferring robustness of biological processes36,37, fine-tuning 
essential cellular pathways, controlling signal transduction11,39,81,82 and maintaining metabolic homeostasis83,84. In 
particular, one report showed that aberrant levels of miR-103 and miR-107, intronic sense miRNAs located in the 
pantothenate kinase genes PANK3 and PANK1, respectively, induced impaired glucose homeostasis85.

Over the last years, miRNAs have been shown to have significant impact in cancer, playing a role in each step 
of cancer biogenesis and progression86,87. Numerous networks involved in different cancer types and comprising 
miRNAs as well as the target genes have been identified88,89. The reported networks proved that miRNAs can 
generate connected graphs and revealed cancer type-specific patterns, pointing out to diagnostic, prognostic and 
therapeutic potential of miRNAs and miRNA-based networks90.

Intragenic miRNAs constitute a significant percentage of total miRNAs12,13 and are often functionally related 
with their host genes14, playing either antagonistic or synergistic roles31,33,35. In the present study, instead of focus-
ing on individual regulatory network motifs or disease-specific networks involving miRNAs, we analyzed the 
entire network of intergenic interactions induced by either intronic sense miRNAs or all intragenic miRNAs. 
Furthermore, in these networks, we focused on the core, which has been defined as a union of nontrivial strongly 
connected components, i.e., sets of genes mutually connected by directed paths.

Generally, the genes belonging to the core had high expression levels and low expression variance. The latter is 
consistent with the concept of the miRNome as an instrument for conferring robustness of gene expression30,36,37 

Figure 4.  Kaplan-Meier curves for prognostic three-gene signatures. Log-rank p-values are reported. (a) Breast 
cancer, genes HNRNPK, PANK3, SMC4. (b) Breast cancer, genes MCM7, PANK3, SMC4. (c) Breast cancer, 
genes MAP2K4, PANK3, SMC4. (d) Colorectal cancer, genes FASTKD2, PANK1, HUWE1.



www.nature.com/scientificreports/

8Scientific REPOrtS |  (2018) 8:2418  | DOI:10.1038/s41598-018-20215-5

and maintaining cellular homeostasis83,84. Interestingly, the core could not be split into the components cor-
responding to individual signalling or metabolic pathways, but it integrated genes involved in the key cellular 
processes, including DNA replication, transcription, protein homeostasis and cell metabolism. Thus, interactions 
between genes from the core mediated by intragenic miRNAs could be involved not only in independent path-
ways or homeostatic control circuits91 but also in a horizontal regulation that subtly coordinates adjacent circuits.

Remarkably, the expression pattern of genes forming the core was shown to be an efficient prognostic marker 
in breast and colorectal cancer patients. While individual genes, as well as gene pairs, had relatively low prognos-
tic power, a number of triples of genes from the network core provided a prognostic reliability comparable to that 
of the gene expression signatures identified by large-scale transcriptome analyses, including common commercial 
prognostic gene signatures. Furthermore, the higher risk of cancer recurrence was associated with differently 
directed changes in expression of genes for all identified triples, i.e., higher imbalance in the expression patterns 
of core genes.

The impact of expression changes of individual genes on the values of constructed prognostic classifiers was 
consistent with the previous reports on oncogenic or tumor suppressive roles of these genes. However, in the 
prognostic classifier for breast cancer, the weight of the well-studied MCM7 oncogene64–66 was essentially lower 
than the weight of the SMC4 gene with less reported oncogenic potential62,63. Similarly, there is limited evidence 
for the tumor suppressor potential of the FASTK2 gene, which had the highest weight in the prognostic three-gene 
expression signature for colorectal cancer72.

To the best of our knowledge, the roles of PANK1 and PANK3 in oncogenesis have not been yet confirmed. 
However, transcription of PANK1 has been previously reported to be directly targeted by p5392.

To summarize, we constructed a network of intergenic interactions induced by intragenic miRNAs and iden-
tified its core, which consists of genes involved in the key cellular processes. Both the network and its core pos-
sessed statistically significant non-random properties. Specifically, genes forming the core generally had high 
expression levels and low expression variance. Importantly, our data indicate that the expression pattern of these 
genes could be used for a reliable prognosis of recurrence for breast and colorectal cancer patients. Finally, we 
hypothesized that miRNA-induced intergenic interactions represented by directed edges in the network core 
could orchestrate subtle coordination of adjacent pathways and/or homeostatic control circuits by serving as 
horizontal inter-circuit regulatory links.

Methods
Network construction and analysis.  The list of identifiers for intragenic pre-miRNAs and their respec-
tive host genes was downloaded from the miRIAD intragenic microRNA database13. The information for the 
classification of intragenic miRNAs into intronic and exonic, as well as their sorting into sense and antisense 
miRNAs, was also derived from this database. The identifiers of mature miRNAs corresponding to pre-miRNAs 
were obtained from the miRBase database93,94 (Release 21). The lists of validated targets of mature miRNAs were 
downloaded from the DIANA-TarBase v7.042 and miRTarBase (Release 6.1)43 databases. An mRNA target was 
considered validated if both databases confirmed the targeting by a corresponding miRNA.

The analysis of the resulting networks was performed using the igraph library95. Multiple edges and loops, 
as well as isolated nodes, were removed prior to the analysis. This graph simplification used igraph R-package 
command simple.

The network core was defined as the union of nontrivial (i.e., containing at least two nodes) strongly connected 
components. These components were found using igraph command components with parameter mode = “strong”.

The comparison of properties of the constructed networks with the properties of random graphs was per-
formed using the Erdős–Rényi model44 and a model based on fixed out-degrees. For both models, the number of 
vertices and edges coincided with the number of nodes and edges in the analyzed networks of miRNA-induced 
intergenic interactions. For the Erdős–Rényi model, the presence of an edge with given starting and ending ver-
tices was equiprobable for all ordered pairs of vertices. For the second model, a number of outgoing edges Ng was 
fixed for each vertex g, and all possible sets of ending vertices for these edges (i.e., sets consisting of exactly Ng 
vertices and not containing g) were equiprobable.

Random graph generation under the Erdős–Rényi model was performed using igraph R-package command 
erdos.renyi.game with parameters type = “gnm”, directed = TRUE, loops = FALSE.

Generation of random graphs under the second model was performed as follows. Let |V| be the number of 
nodes (genes) in the analyzed networks of miRNA-induced intergenic interactions, and let (N1, N2, …, N|V|) be 
a vector of out-degrees. We obtained this vector using igraph command degree with parameter mode = “out”. 
Random graph generation started from a graph with |V| nodes {1, 2, …, |V|} and no edges. Then for each k from 1 
to |V| a random permutation on {1, 2, …, |V| − 1} was generated using the Fisher-Yates shuffle96, first Nk elements 
of the generated permutation were selected, and for each selected element l a directed edge from node k to node l 
(if l < k) or to node (l + 1) (if l ≥ k) was added to the graph.

Distribution of properties of random graphs was assessed using the standard Monte Carlo approach after 
generating 10,000 graphs for each model.

The enrichment analysis was performed using DAVID 6.7 online service97 with the default background setting 
(i.e., with a background automatically selected by DAVID).

Construction of prognostic gene signatures.  The prognostic gene signatures were constructed using 
SVM57 with the linear kernel as described previously40. The triples with the highest prognostic power were iden-
tified by an exhaustive search with the threshold for sensitivity and specificity equal to 60% and 50% for the 
training and the filtration datasets, respectively. The triples that passed the filtration were further sorted in a 
descending order with respect to the mean value of AUC for the training and filtration datasets. The same proce-
dure was used for the analysis of signatures with a different size (pairs, quadruples).
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Construction of signatures for patients with ER-positive breast cancer utilized the collection of microarray 
datasets identical to the one we used previously40, as well as the previously used division into groups (recurrence 
within 5 years, no recurrence and follow-up of at least 7 years, and the remaining “gray zone”).

Construction of signatures for patients with colorectal cancer utilized the GSE39582 series98 as a training 
dataset, GSE3789299 and GSE17536100,101 as filtration datasets, and GSE14333102 as a validation (testing) dataset. 
Datasets were jointly preprocessed using RMA method103. Numbers of patients in these datasets are presented in 
Supplementary Table 6. At the training and filtration stages, only patients with recurrence within the first three 
years and patients without recurrence and follow-up of for at least four years were considered; other patients 
(comprising the so-called “grey zone”) were excluded from the analysis. Patients with an unknown recurrence 
status and patients with a recurrence within the first month were excluded from the analysis as well.

For the identified triples of genes with the highest prognostic power a 3-fold and 10-fold cross validation 
on the training dataset was performed as an additional test that proved an absence of overfitting. The results of 
cross-validation are presented in Supplementary Information (section Cross-validation of the identified triples of 
genes on the training datasets).

Analysis of expression levels.  Analysis of expression levels and expression variance of transcripts in 
the cell lines was performed using information from the RNA-Seq dataset E-MTAB-270656, which contains 
genome-wide transcriptome profiles of 675 cancer cell lines. Reads per kilobase per million mapped reads 
(RPKM) metrics was used to represent the expression levels of genes; values of RPKM reported in the dataset file 
140625_Klijn_RPKM_coding.txt were used. The variance in expression level for a given transcript was quanti-
fied as the third quartile to the first quartile ratio of expression levels for this transcript. With respect to the gene 
ranking, this quantification was equivalent to the quantification based on the interquartile range in log-scale. 
Transcripts that remained in the upper half after ranking by the first quartile of expression level had positive val-
ues of this quartile, and hence, the above quantification of expression variance was applicable for these transcripts.

Analysis of expression levels of genes in tissue specimens obtained from breast and colorectal cancer patients 
was performed similarly and utilized the following microarray datasets: GSE17705104 for breast cancer patients 
and GSE3958298 for colorectal cancer patients. These datasets were preprocessed using RMA method103 as parts 
of larger sets utilized for construction of prognostic gene signatures as described in the previous subsection. The 
analysis used expression levels reported by the RMA preprocessing algorithm.

Statistical analysis.  The significance level was set to 0.05. For Monte Carlo hypothesis testing, a conven-
tional estimate of the p-value was used105. Log-rank tests were utilized to compare survival distribution between 
groups of patients; two-tailed p-values are reported. Binomial tests were used to analyze the size of intersection 
between halves or quarters of genes (with respect to a certain ranking) with the lists of genes comprising the 
network core.

Data availability.  The authors declare that the data supporting the findings of this study are available within 
the article and Supplementary Information or available from the authors upon request. All utilized datasets are 
properly referenced in the article and can be downloaded from publicly available databases.
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