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Abstract

The Above Ground Biomass (AGB) of seaweeds is the most fundamental ecological param-

eter as the material and energy basis of intertidal ecosystems. Therefore, there is a need to

develop an efficient survey method that has less impact on the environment. With the advent

of technology and the availability of popular filming devices such as smartphones and cam-

eras, intertidal seaweed wet biomass can be surveyed by remote sensing using popular

RGB imaging sensors. In this paper, 143 in situ sites of seaweed in the intertidal zone of

GouQi Island, ShengSi County, Zhejiang Province, were sampled and biomass inversions

were performed. The hyperspectral data of seaweed at different growth stages were ana-

lyzed, and it was found that the variation range was small (visible light range < 0.1). Through

Principal Component Analysis (PCA), Most of the variance is explained in the first principal

component, and the load allocated to the three kinds of seaweed is more than 90%. Through

Pearson correlation analysis, 24 parameters of spectral features, 9 parameters of texture

features (27 in total for the three RGB bands) and parameters of combined spectral and tex-

ture features of the images were selected for screening, and regression prediction was per-

formed using two methods: Random Forest (RF), and Gradient Boosted Decision Tree

(GBDT), combined with Pearson correlation coefficients. Compared with the other two mod-

els, GBDT has better fitting accuracy in the inversion of seaweed biomass, and the highest

R2 was obtained when the top 17, 17 and 11 parameters with strong correlation were

selected for the regression prediction by Pearson’s correlation coefficient for Ulva australis,

Sargassum thunbergii, and Sargassum fusiforme, and the R2 for Ulva australis was 0.784,

RMSE 156.129, MAE 50.691 and MAPE 28.201, the R2 for Sargassum thunbergii was

0.854, RMSE 790.487, MAE 327.108 and MAPE 19.039, and the R2 for Sargassum fusi-

forme was 0.808, RMSE 445.067 and MAPE 28.822. MAE was 180.172 and MAPE was

28.822. The study combines in situ survey with machine learning methods, which has the

advantages of being popular, efficient and environmentally friendly, and can provide techni-

cal support for intertidal seaweed surveys.
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Introduction

In October 2018, the Intergovernmental Panel on Climate Change released a report calling on

countries to take action to limit warming to 1.5˚C. China has also set the goal of "peaking CO2

emissions by 2030 and becoming carbon neutral by 2060". China’s coastline is long and com-

plex, with many seaweeds in the intertidal zone, and these seaweeds are a major component of

the nearshore carbon pool. In addition, the degradation of intertidal seaweed is serious due to

global warming and increasing ocean acidification caused by human activities and climate

change. The survey of intertidal seaweed biomass by satellite and Unmanned Aerospace Vehi-

cle (UAV) needs to be combined with in-situ sampling, which is the most laborious part of the

survey, and on the other hand, large-scale sample collection will inevitably damage the near-

shore ecological environment.

With the development of science and technology, the traditional biomass survey method,

from quadrat survey gradually to remote sensing drones, satellite remote sensing and other

efficient survey methods, the application of satellite for estimation can get the biomass results

of the target species in a large range, but its accuracy is difficult to guarantee [1–3]. Yuhan

Zheng et al. [4]. estimated the macroalgae farming area. With the popularity of drones, the

method of inversion of biomass based on spectral information combines the advantages of a

wide survey area and high accuracy, and is widely used in pastoralism and agriculture. Izar

Sinde Gonzalez et al. [5]. retrieved the aboveground biomass AGB of forage through multi-

source remote sensing data, and R2 was 0.78. The data obtained by the drone has a higher reso-

lution, not only the spectral information of the measurement area can be obtained, but also the

texture information can be obtained. Yinuo Liu et al. fitted the biomass of oilseed lettuce

through the spectral and texture characteristics of UAV [6]. H. Z. et al. effectively estimated

the aboveground biomass of rice in combination with the spectral and texture characteristics

of UAV [7]. R2 in the whole growth stage was 0.75 and the highest at heading stage was 0.84.

Numerous studies have shown that by combining spectral and texture features, UAV images

have great potential in biomass assessment.

Normally, experimental investigators are complicated to operate and also need to be com-

bined with the biomass data collected in situ for processing. Therefore, it is particularly impor-

tant to carry out quick in-situ surveys. With the development of sensors, high-resolution RGB

images have become readily available. Although common smart phones and cameras have

lower spectral resolution than Multi-spectral and Hyper-spectral sensors, their spatial resolu-

tion is high enough to effectively extract texture features in the image. The gray level co-occur-

rence matrix proposed by Haralik R M et al. can effectively extract image texture information

[8]. Huang X et al. studied multi-scale texture, shape feature extraction and object-oriented

classification of high-resolution remote sensing images [9]. Sarker et al. have extracted the tex-

ture features of the image through the gray level co-occurrence matrix to inverse the forest bio-

mass [10]. Therefore, through the texture features and spectral features of RGB images, an

inversion model with biomass can be established to evaluate the in-situ biomass of seaweed in

the intertidal zone. The method of inverting biomass through RGB images can only be carried

out in a small area, but it can quickly and efficiently obtain above-ground biomass (AGB). The

inversion of biomass through RGB images can be matched and applied with UAV images to

form an integrated above-ground biomass Quantity evaluation survey system.

The application of remote sensing images to retrieve biomass is actually a regression prob-

lem between image parameters and biomass. At present, agricultural researchers commonly

use logistic regression and simple linear regression for regression problems (Biplab Brahma)

[11]. The fitting accuracy results are often unsatisfactory. With the popularity of machine

learning, more and more studies in the field of remote sensing have begun to apply machine
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learning methods to regression problems. Amir Safari et al. retrieved Forest Aboveground bio-

mass through Landsat 5 TM and lidar data and machine learning methods such as random

forest and decision tree [12].

The machine learning method has good universality and robustness, and can train the model

according to the input data set, so as to achieve the ideal regression accuracy, it is widely used in the

Internet, medical, financial and other fields [13–15]. Common machine learning methods used for

regression prediction include Random Forest (RF), Gradient Boosting Decision Tree (GBDT), etc.

Therefore, in this paper, we will shoot with a 12-megapixel RGB sensor, extract 51 feature parame-

ters of the photo, and apply two commonly used models, RF and GBDT, to perform parameter

search and obtain the best parameters and the best accuracy of the model. In addition, to avoid

“dimensional disasters” [16, 17] caused by too many features, the input features are filtered by Pear-

son’s correlation coefficient to find the best inversion of the model.

Materials and methods

Sample Collection and Preparation In situ quadrat photography of intertidal seaweeds from

GouQi Island at low tide from 4 to 10 June 2021, 11:00–13:00 (UTC/GMT+08:00) in clear

weather (Table 1) A quadrat of size 0.25m x 0.25m was used for collection according to the

Marine Survey Specification [18, 19] (S1 Appendix). Each intertidal survey section was divided

into three stations, one for high tide, one for mid tide and one for low tide, and a total of nine

quadrats (3 x 3 parallel samples) were collected from each sampling station (S2 Appendix),

according to the method of Stphenson and Vaillant for the division of tidal zones and stations

[20]. This experiment was shot with a sensor resolution of 12 megapixels (iPhone 7plus) and at

a height of 0.5m above each quadrat. After filming, latitude and longitude were recorded and

all target species in the quadrat were collected, drained and brought back to the laboratory for

biomass determination (S3 Appendix). The target species for this study were the dominant

species commonly found in the intertidal zone of GouQi Island: Ulva australis, Sargassum
thunbergii, and Sargassum fusiforme.

Since RGB data is collected only in one season, in order to further illustrate the repeatability

of this paper, we used ASD Field Spec Handheld (Field Spec Handheld, ASD, USA) to measure

Table 1. Sample sites.

Longitude / ˚ Latitude / ˚

122.778 30.731

122.772 30.725

122.760 30.719

122.752 30.710

122.757 30.704

122.768 30.709

122.773 30.705

122.776 30.698

122.785 30.702

122.783 30.706

122.781 30.711

122.779 30.714

122.785 30.721

122.789 30.722

122.791 30.721

122.794 30.722

https://doi.org/10.1371/journal.pone.0263416.t001
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the hyperspectral data at each growth stage of seaweed. The seaweed in the intertidal zone of

GouQi island are in the prosperous period in summer and autumn and in the declining period

in winter and spring (S4 Appendix). Therefore, we conducted hyperspectral measurements on

seaweed of different lengths and sizes (different growth stages) in the sunny and cloudless noon

11:30–13:30 (UTC/GMT+08:00) in autumn and winter (October 17–24, 2019; January 1–7,

2020) [21, 22].

Data analysis

For the problem of regression between image parameters and biomass, common machine

learning methods used for regression prediction include Random Forest, Gradient Boosting

Decision Tree, etc. [23]. As a non-parametric learning algorithm, the random forest model is

integrated by multiple decision trees, and the model is simple and fast to build. It can effectively

solve the problems of covariance and overfitting caused by the large amount of data, and can be

used to solve regression and classification problems. Support vector machine models for regres-

sion prediction, where the computation and computational complexity of the hyperplane

depends on a small number of support vectors rather than the entire sample space, are widely

used in regression and classification problems [12]. While GBDT regression prediction, GBDT

(Gradient Boosting Decision Tree) also known as MART (Multiple Additive Regression Tree),

is an iterative decision tree algorithm, which consists of multiple decision trees and the conclu-

sions of all the trees are accumulated to make the final answer. It was considered a more gener-

alizable algorithm along with SVM when it was first proposed, but has less application in

remote sensing [24].

As the quadrat collected are less likely to have all three seaweeds present at the same time,

the biomass of the third seaweed is 0 when there is coexistence of two seaweeds. Therefore,

when the third seaweed is selected, a biomass of 0 is eliminated, so the sample sizes of the three

seaweed are not identical. These photos (S1 Appendix) are used to extract spectral information

and texture information after calculating their GLCM.

Yinuo Liu uses 4 spectral parameters and 10 texture parameters for regression modeling of

winter rape (Brassica napus L.) biomass [6]. In order to explore the optimal number of param-

eters used in regression modeling, each in-situ photograph in this article calculates the vegeta-

tion index by the spectral band (24 spectral features), Gray-level co-occurrence matrix of each

image (Gray-level co-occurrence matrix, GLCM), Then extract the texture feature parameters

to get 27 texture features, 51 features in total. It is equivalent to converting each RGB image

into a one-dimensional array consisting of 51 parameters and a biomass label. RF and GBDT

are used for regression modeling respectively, and 51 parameters are screened through Pear-

son correlation coefficient to obtain the best number of input parameters. The specific spectral

features and texture features are shown in Tables 2 and 3.

The 24 vegetation parameters are calculated based on three bands of RGB image, so the corre-

sponding texture feature parameters are used for each band. In Table 3, the red band (_ R) For

example, green band (_ G) And blue wave band (_ B) Similarly, there are 27 texture feature

parameters.

In image texture analysis, the selection of calculation window size is very important. Too

small a sliding window will lead to differences in the window, while too large a window will

not be able to effectively extract texture information. Through comparative analysis, this paper

finally selects the sliding window of 5 × 5 is analyzed.

In addition, this paper uses 51 features, which may lead to “dimension disaster” due to too

many feature [16, 17]. Therefore, this paper adopts the machine learning feature parameter

screening algorithm combined with Pearson correlation coefficient, and carries out exclusion
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screening from small to large through the absolute value of Pearson correlation coefficient, so

as to obtain different regression results.

Due to the influence of water vapor absorption and other factors, the data before 400nm

and after 900nm in the spectral data are noisy, so they are eliminated [25]. The measured data

Table 2. Spectral characteristic parameters.

Vegetation Index Formula

R Average DN value of red band

G Average DN value of green band

B Average DN value of blue band

r R/ (R+G+B)

g G/ (R+G+B)

b B/ (R+G+B)

Exg 2×g-b-r

NGBVI (g-b) / (g+b)

GBRI g/b

VEGI g/ ((r0.67) ×b0.33)

NPCI (r-b) / (r+b)

RGBVI (g2 − (b× r)) / (g2 + (b ×r))

RGRI r / g

RGMPI r × g

RBRI r / b

RBMPI r × b

RBMI r − b

RGMI r − g

RGPI r + g

RBPI r + b

GBPI g + b

GBMI g − b

VDVI (2×g − r − b) / (2×g+r+b)

VARI (g − r) / (g + r − b)

https://doi.org/10.1371/journal.pone.0263416.t002

Table 3. Texture feature parameters (red band).

Texture Parameters Formula

Mean_R [∑i ∑j P(i, j)]/N
Variance_R f½

P
i

P
j ½Pði; jÞ � �P�ði; jÞ�2�=Ng

Homogeneity_R
P

i;j

pði;jÞ
1þji� jj

Contrast_R ∑i ∑j P(i, j) (i − j)2

Second Moment_R
R
−11(x−c)2f(x)dx

Entropy_R ∑i ∑j P(i, j) × (−lgP(i, j))
Correlation_R [∑i ∑j ((ij)(i, j)) − μxμy]/σxσy

ASM_R ∑i ∑j P(i, j)2

IDM_R ∑i ∑j {P(i, j)/[1 + (i − j)2]}

Note: Since the GLCM calculated based on the original image is calculated in Table 3, mean_ R is different from the

value of R in Table 3. μx, μy is the mean, σx, σy is the variance. IDM means Inverse Different Moment. ASM means

Angular Second Moment.

https://doi.org/10.1371/journal.pone.0263416.t003
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were averaged every 10, and the spectral curves of different stages of each seaweed were

obtained [21, 22]. Quantitative analysis of spectral data by PCA.

Result

Spectral data analysis of seaweed

The hyperspectral data of three seaweed species in the intertidal zone were measured by spec-

trometer, and the spectral curves of three seaweeds at different growth stages were obtained

after data processing (Fig 1). Different color curves represent different stations and seasons.

Through Fig 1, it can be intuitively and qualitatively concluded that there is little difference in

spectral data at different growth stages of seaweed.

Fig 1. Spectral curves of seaweed at different growth stages. a. Ulva australis, b. Sargassum thunbergii, c. Sargassum fusiforme. The spectral curves of different colors

represent the average of each growth stage.

https://doi.org/10.1371/journal.pone.0263416.g001
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Through Principal Component Analysis (PCA), Most of the variance is explained in the

first principal component, and the load allocated to the three kinds of seaweed is very high,

all reaching more than 90%. It shows that the spectral curves of the three seaweed have lim-

ited changes in the data set. In this paper, RGB images only use these three bands of seaweed

as input parameters, and do not use other bands. When the spectral is used to calculate vege-

tation index, normalization is performed. Therefore, this paper has repeatability and simple

practical operation.

Pearson correlation coefficient between parameters and biomass

Pearson correlation analysis was carried out for each characteristic parameter and biomass of

RGB image, and Pearson correlation coefficients between 3 kinds of seaweed and 51 charac-

teristic parameters and their respective biomass were obtained (Fig 2).

In Fig 1, the correlation coefficients between different spectral parameters, texture

parameters and biomass vary greatly. There are about 17 characteristics with good

correlation for each kind of seaweed. According to Pearson correlation coefficient, 51

parameters of three seaweeds were screened and preliminarily predicted by machine learn-

ing method. The correlation coefficients between 51 parameters and biomass are sorted

from large to small according to the absolute values of these coefficients. Then, all these

parameters are substituted into the model as dependent variables, and the results of 51

parameters are obtained. the parameters ranking last (the absolute value of correlation coef-

ficient is the smallest) are removed, and 50 parameters are substituted into the model to

obtain the results of 50 parameters. In this way, the parameters are eliminated one by one,

and the operation results of different numbers of parameters are obtained. Until the last

parameter. The change of prediction accuracy with the decrease of parameters is obtained.

Among them, the correlation between the biomass of Ulva australis and the spectral charac-

teristic parameters is higher, and the joint prediction R2 is higher than that predicted only

by the spectral characteristic parameters or only by the texture features (R2 of

RGBVI = 0.741, R2 of texture = 0.717, R2 of texture_ RGB = 0.784). In the regression

between biomass and spectral characteristics of Sargassum thunbergii, it has a higher corre-

lation with texture characteristic parameters, but compared with that of Ulva australis, Sar-
gassum thunbergii has a better correlation with most characteristic parameters. Similarly,

joint prediction is the best (R2 of RGBVI = 0.57, R2 of texture = 0.74, R2 of texture_

RGB = 0.854). Sargassum fusiforme is similar to Sargassum thunbergii, and there is little dif-

ference in the correlation with spectrum and texture, but the correlation between all char-

acteristics and biomass is almost smaller than that of the other two seaweeds (R2 of

RGBVI = 0.738, R2 of texture = 0.638, R2 of texture_ RGB = 0.808). Therefore, it is not that

the more features, the better the regression effect. When there are too many features, it will

lead to "dimension disaster" and reduce the prediction accuracy. Therefore, in order to

improve the accuracy of estimation, parameter optimization is needed. In this paper,

parameter screening is carried out by combining Pearson correlation coefficient. Accord-

ing to the absolute value of Pearson correlation coefficient, the R2 of biomass estimated by

the model is obtained.

In the process of regression analysis, the R2 estimated by GBDT is the highest among the

two models, so GBDT model can be selected for parameter screening in practical applica-

tion. With the decrease of input parameters, R2 of biomass estimation shows different

trends. The accuracy of joint parameters is higher than that of spectral parameters or texture

parameters alone. Therefore, 51 parameters are screened, and the optimal parameters of
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Ulva australis, Sargassum thunbergii and Sargassum fusiforme were 17, 17 and 11 respec-

tively (precision in Table 4). The same method was used to screen the parameters of the

three seaweed in RF, and the optimal number of parameters was 15, 14, 10 respectively. The

precision of RF is not as high as that of GBDT (Table 5).

Fig 2. Pearson correlation coefficients of different parameters. a. Pearson correlation coefficient between 51 characteristics and biomass of Ulva australis, b. Pearson

correlation coefficient between 51 characteristics and biomass of Sargassum thunbergii, c. Pearson correlation coefficient between 51 characteristics and biomass of

Sargassum fusiforme.

https://doi.org/10.1371/journal.pone.0263416.g002
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Comparison between predicted biomass and actual biomass

After dimension reduction by using the parameter screening method based on Pearson

correlation coefficient, the optimal number of input parameters of each seaweed is obtained.

These parameters are taken as feature, and the biomass of the three seaweeds are taken as

labels. Two regression models of RF and GBDT are used for regression prediction, and the

training set and test set are randomly divided according to the ratio of 3:1. The effective sam-

ples of Ulva australis, Sargassum thunbergii and Sargassum fusiforme were 100, 59 and 58

respectively.

In order to explore the best regression model, the parameters of each model are optimized.

Through the Grid-Search Method (CV = 4), the optimal input parameters of each model are

found, and different prediction graphs are obtained.

GBDT modeling is carried out in Python 3.8 environment through pycharm2020.1, and

GBDT regression model is established by calling gradient boosting regressor in sklearn library.

The traversal method is used to optimize the model parameters, in which the maximum itera-

tions of the weak learner range from 100 to 1000, the step size is 10, and the weight of each

weak learner is learning_ The rate ranges from 0.1 to 1 in steps of 0.05. After traversal, the best

estimators and learning are obtained_ The rates were 100 and 0.1 respectively, and the param-

eters were used for regression prediction of the three seaweed.

In order to evaluate the accuracy of the model, we call r2_score from the sklearn library to

calculate the R2 of the training set and the test set. Call numpy library to calculate RMSE and

MSE. The training set of Ulva australis, Sargassum thunbergii and Sargassum fusiforme was

obtained, and the highest R2, RMSE and MAE in the test set (Table 4).

In the GBDT model, after optimizing the input characteristics and model parameters by

Pearson correlation coefficient and grid search method, the prediction model R2 of Ulva aus-
tralis, Sargassum thunbergii and Sargassum fusiforme is improved by 0.008, 0.015 and 0.018

respectively compared with the non-optimized model.

Carry out RF modeling in Python 3.8 environment through pycharm2020.1, and establish

RF regression model by calling random forest regressor in sklearn library. Number of decision

trees n_ The range of estimators is 1 to 200, the step size is 1, and the maximum tree depth is

max_ The depth range is 1 to 20, the step size is 1, and the maximum characteristic number is

max_ Features range from 0 to 1, and the step size is 0.1. After traversal, the best n is obtained_

estimators, max_ depth, max_ The features are 21, 12 and 1 respectively, and this parameter is

used for regression prediction of three kinds of seaweed.

Calling r2_score from sklearn library to calculate the R2 of training set and test set. Call

numpy library to calculate RMSE and MSE. The training set of Ulva australis, Sargassum thun-
bergii and Sargassum fusiforme was obtained. The highest R2, RMSE and MAE in the test set

are shown in Table 5.

Table 4. Three kinds of seaweed statistical parameters (GBDT).

seaweed Ulva australis Sargassum thunbergii Sargassum fusiforme
Train set Test set Train set Test set Train set Test set

R2 0.998 0.784 0.999 0.854 0.999 0.808

RMSE 13.550 156.129 20.559 790.487 18.608 445.067

MAE 10.420 50.691 16.828 327.108 15.341 180.172

MAPE 9.431 28.201 8.973 19.039 8.088 28.822

https://doi.org/10.1371/journal.pone.0263416.t004
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Discussion

In this paper, the biomass is evaluated by RGB image combined with machine learning

method, which has a good inversion accuracy, indicating the feasibility of using RGB image

to evaluate the biomass of intertidal seaweed. RGB images are easy to obtain and can be

obtained by popular means such as smart phones and cameras. This method can efficiently

obtain ecological index in large-scale surveys or in-situ surveys required for assessment in

combination with satellites and UAVs [26]. Future research can explore other seaweed spe-

cies, improve the investigation system of seaweed biomass in the intertidal zone, effectively

evaluate the biomass of various seaweed in the intertidal zone, reduce the ecological damage

caused by large-scale investigation and reduce the manpower and material resources con-

sumed in the investigation.

Ulva australis, look like green plants, has obvious color characteristics. It is easy to extract

by spectrum, but it is difficult to extract the spectral index of Sargassum thunbergii and Sargas-
sum fusiforme. Therefore, RGB images obviously have too few spectral bands during spectral

analysis; The texture of Ulva australis is chaotic, and the correlation between texture parame-

ters and biomass is small, which is similar to reefs, mussels and other substrates. Therefore, the

texture parameters calculated by gray level co-occurrence matrix may be disturbed by other

substrates; In addition, Ulva australis is often covered at low tide [27]. In this paper, biomass

inversion is only carried out through RGB image, so there are inevitably covered seaweed and

errors. However, due to the distribution of the three in the intertidal zone with characteristics

of changes in seaweed species along the offshore direction, the area covered is usually small

[28]. From the regression results, the errors caused by above factors have little impact on the

evaluation results. The total seaweed biomass in the study area is about 4200g/m2, which is

consistent with relevant studies [29].

This paper applies the machine learning input parameter screening method combined with

Pearson correlation coefficient, which can effectively improve the regression accuracy and

effectively avoid the over fitting phenomenon caused by too many features and noise. The

algorithm of this method is clear, simple and easy to use, and suitable for practical application.

In addition, the correlation between spectral parameters and texture parameters and biomass

can be sorted respectively, and then the spectral and texture features can be eliminated

together, which may further improve the prediction accuracy. In this paper, the same evalua-

tion methods are used for biomass evaluation of texture parameters, but the accuracy is lower

than that of joint regression, which is consistent with the relevant research results [30]. The

normalized correlation of r-band is good, which is basically consistent with the research of

related studies (forage, wheat, rice, etc.) [21, 31, 32], indicating that the red band and its

derived indexes play an important role in plant biomass inversion [33].

Finally, according to the survey results, the dominant species of seaweed1 in the intertidal

zone of GouQi island in autumn are Ulva australis, Sargassum thunbergii and Sargassum fusi-
forme, and their biomass is 411.060 g/m2, 2380.388 g/m2, 1411.486 g/m2 respectively.

Table 5. Three kinds of seaweed statistical parameters (RF).

seaweed Ulva australis Sargassum thunbergii Sargassum fusiforme
Train set Test set Train set Test set Train set Test set

R2 0.931 0.759 0.919 0.781 0.897 0.719

RMSE 85.157 164.314 586.991 955.362 305.523 494.707

MAE 60.756 85.697 462.728 668.785 258.921 357.712

MAPE 34.695 557.985 271.383 2511.657 195.712 1694.078

https://doi.org/10.1371/journal.pone.0263416.t005
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Conclusion

Combined with spectral and texture features, the accuracy of Biomass Assessment of intertidal

seaweed (Ulva australis, Sargassum thunbergii and Sargassum fusiforme) is higher than that of

using only a single feature. Through parameter optimization by Pearson correlation coeffi-

cient, the optimal number of input features is about 11–17.

Applying machine learning method to biomass regression can get high precision results. In

this paper, RF and GBDT models are used to predict the biomass of Ulva australis, Sargassum
thunbergii and Sargassum fusiforme respectively. It is found that the GBDT model has higher

accuracy than the RF models.

In this paper, the in-situ RGB image is used for biomass inversion for the first time. It is

obtained that the dominant seaweed species in the intertidal zone of GouQi island in June

2021 are Ulva australis, Sargassum thunbergii and Sargassum fusiforme respectively, and their

average biomass is about 411.060 g/m2, 2380.388 g/m2, 1411.486 g/m2.
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