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The postmortem microbiome plays an important functional role in host decomposition
after death. Postmortem microbiome community successional patterns are specific to
body site, with a significant shift in composition 48 h after death. While the postmortem
microbiome has important forensic applications for postmortem interval estimation, it
also has the potential to aid in manner of death (MOD) and cause of death (COD)
determination as a reflection of antemortem health status. To further explore this
association, we tested beta-dispersion, or the variability of microbiomes within the
context of the “Anna Karenina Principle” (AKP). The foundational principle of AKP is
that stressors affect microbiomes in unpredictable ways, which increases community
beta-dispersion. We hypothesized that cases with identified M/CODs would have
differential community beta-dispersion that reflected antemortem conditions, specifically
that cardiovascular disease and/or natural deaths would have higher beta-dispersion
compared to other deaths (e.g., accidents, drug-related deaths). Using a published
microbiome data set of 188 postmortem cases (five body sites per case) collected
during routine autopsy in Wayne County (Detroit), MI, we modeled beta-dispersion to
test for M/COD associations a priori. Logistic regression models of beta-dispersion and
case demographic data were used to classify M/COD. We demonstrated that beta-
dispersion, along with case demographic data, could distinguish among M/COD –
especially cardiovascular disease and drug related deaths, which were correctly
classified in 79% of cases. Binary logistic regression models had higher correct
classifications than multinomial logistic regression models, but changing the defined
microbial community (e.g., full vs. non-core communities) used to calculate beta-
dispersion overall did not improve model classification or M/COD. Furthermore, we
tested our analytic approach on a case study that predicted suicides from other deaths,
as well as distinguishing MOD (e.g., homicides vs. suicides) within COD (e.g., gunshot
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wound). We propose an analytical workflow that combines postmortem microbiome
indicator taxa, beta-dispersion, and case demographic data for predicting MOD and
COD classifications. Overall, we provide further evidence the postmortem microbiome
is linked to the host’s antemortem health condition(s), while also demonstrating the
potential utility of including beta-dispersion (a non-taxon dependent approach) coupled
with case demographic data for death determination.

Keywords: postmortem microbiome, forensic microbiology, manner of death, cause of death, microbial
communities, beta-dispersion, Anna Karenina Principle, necrobiome

INTRODUCTION

The organisms represented in microbiomes have important
functional roles for host life – influencing health status,
development, and disease susceptibility, among many others
(Turnbaugh et al., 2007; Zaneveld et al., 2017). Microbes also
play an important functional role in the decomposition process
(Pechal et al., 2014), as the communities change with dispersal,
competition, and other interactions after host death (Pechal et al.,
2014, 2018; Metcalf et al., 2016). These dynamic, yet predictable
(Belk et al., 2018; Pechal et al., 2018), microbial community
profile changes after death make the postmortem microbiome
a potential forensic resource for postmortem interval (PMI)
estimation. PMI estimation is indeed the most studied forensic
application of the postmortem microbiome (Metcalf et al.,
2013; Pechal et al., 2014); but, this community has additional
potential for other forensic applications as well, like indicating
antemortem health conditions (e.g., cardiovascular disease or
violent death) (Pechal et al., 2018) and the living environment
(e.g., neighborhood blight) (Pearson et al., 2019).

The postmortem microbiome is structured in part by a
decedents’ antemortem health condition and the suite of stressors
that impact the human host. These stressors include drug/alcohol
abuse or high stress lifestyle conditions like neighborhood blight
(e.g., abandoned building, inactivity, and dumping), that are
associated with certain manners of death (e.g., homicide) (Pechal
et al., 2018; Pearson et al., 2019; Zhang et al., 2019). Importantly,
the adult human postmortem microbiome does not significantly
change from the antemortem microbiome for approximately 48 h
after death when tested in a single geographic region (Pechal
et al., 2018). Due to the stability of the postmortem microbiome
within 48 h of death, and the potential connection to lifestyle
condition, microbial community metrics (e.g., diversity) were
associated with certain manners of deaths (MOD) or causes of
deaths (COD) (Pechal et al., 2018; Zhang et al., 2019). However,
fewer studies have tested associations of postmortem microbial
community variability with MOD or COD (Pechal et al., 2018;
Pearson et al., 2019; Zhang et al., 2019).

In past work, microbial diversity and indicator taxa were
shown to reflect antemortem health conditions and MOD (Pechal
et al., 2018; Pearson et al., 2019; Zhang et al., 2019). In
some cases, lower microbial alpha-diversity was associated with
cardiovascular disease, non-violent deaths, and neighborhood
blight (Pechal et al., 2018; Pearson et al., 2019); however, it is
difficult to capture the variability in a large sample set using
alpha-diversity metrics alone (e.g., richness), as they do not

account for taxon relative composition. Zhang et al. (2019)
combined microbial indicator taxa and case demographic data
found in autopsy reports (e.g., decedents age, sex, race, etc.) to test
machine learning models for classifying M/COD (Zhang et al.,
2019). While indicator taxa are a useful reflection of antemortem
conditions, microbial indicator taxa may not be present in all
cases (e.g., Haemophilus influenzae), or they may be ubiquitous
(e.g., Staphylococcus), and so less useful for a generalizable tool
for M/COD determination (Pechal et al., 2018). For this study,
we tested a metric that captures microbial variability while not
specifically relying on indicator taxa: beta-dispersion. Our goal
was to determine how postmortem microbiome beta-dispersion
could be an additional tool for predicting M/CODs during
death investigation.

Following the conceptual context of the “Anna Karenina
Principle” (AKP), after prolonged exposure to any array of
stressors, the microbiomes of unhealthy individuals becomes
more variable compared to the microbial communities of healthy
individuals (Zaneveld et al., 2017). For example, beta-dispersion
increased among living individuals with a history of obesity,
infection, and smoking (Barbian et al., 2015; Zaneveld et al.,
2017). In other words, increased variation in the microbial
communities reflects dysbiosis, and this community variability
can be quantified through calculations of beta-dispersion
(Barbian et al., 2015; Zaneveld et al., 2017). Beta-dispersion is
calculated, within the context of a dataset, using a multivariate
distance from the centroid for each case sample, as defined
by a grouping factor (e.g., body site, PMI, weight status)
(Oksanen et al., 2019). Based on the link between increased beta-
dispersion and health status in living populations, we considered
M/COD as grouping factors to quantify microbial signatures and
develop metrics associated with M/COD determinations. Such
association of beta-dispersion with M/COD could conceivably be
additional evidence in future death investigation.

Microbial community metrics could potentially aid medical
examiners and other certifiers of death (referred to as “medical
examiners”), as determining M/COD can be error prone. While
COD spans a variety of causes relating to the injury/disease a
person died from, MOD encompasses only five major categories:
natural, accident, suicide, homicide, and indeterminate (Randy
et al., 2002). Medical examiners qualify their MOD determination
with incremental degrees of certainty considering the available
evidence (Randy et al., 2002). Given the possibility for mismatch
between the MOD determination and the actual MOD, the
postmortem microbiome could provide another potential piece
of evidence to document M/COD determination.
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To evaluate how postmortem microbiome variability is
associated with M/CODs, we modeled postmortem microbiome
beta-dispersion from five body sites of 188 routine autopsy with
known M/COD (as determined by a board-certified forensic
pathologist). We predicted that certain M/CODs, such as natural
deaths and cardiovascular disease, would have higher beta-
dispersion than other M/CODs due to the previous antemortem
health condition links found in previous studies (Pechal et al.,
2018). However, the effect of life environment was predicted to
increase beta-dispersion as well, in a way that could potentially
factor into deaths classified as homicide, for example, those due
to blunt force trauma or gunshot wounds (Pearson et al., 2019).
Quantifying beta-dispersion, using M/COD as a grouping factor,
could provide reliable and usable tool in death investigation for
M/COD determination.

MATERIALS AND METHODS

Sample Collection, DNA Extraction, and
Sequencing
The postmortem microbiome data used in this study were
acquired from Pechal et al. (2018) but re-analyzed to test M/COD
determination from beta-dispersion. This dataset contains
postmortem microbiome samples obtained from 188 Wayne
County Medical Examiner’s Office autopsy cases (Detroit, MI,
2014–2016), representing multiple MODs (accident, homicide,
suicide, natural) and CODs (asphyxiation, blunt force trauma,
cardiovascular disease, drug-related deaths, gunshot wounds,
etc.) (Supplementary Table S1) (Pechal et al., 2018). The
cases also represent a cross-section of the greater Detroit
metropolitan area population and were nearly evenly divided
among females and males (83:105) and black and white (90:98)
(Supplementary Table S1). Cases comprised of adults (18–
88 years) with a body mass index (BMI) ranging from 8.5–
67.5 kg/m2 (Supplementary Table S1). The dataset is the
largest postmortem microbiome available to test beta-dispersions
potential to aid in M/COD determination.

Detailed methods for sample collection, DNA extraction, and
sequencing can be found in Pechal et al. (2018). To summarize,
trained personnel at Wayne County Medical Examiner’s Office
collected microbial community swab samples from five body sites
(nose, mouth, rectum, ears, and eyes) during routine autopsy.
Microbial DNA was extracted and sequenced to characterize
the microbial communities. The Michigan State University
(MSU) Genomics Core Facility (East Lansing, MI, United States)
sequenced the 16S rRNA V4 region using an Illumina MiSeq
standard flow cell (v2) using a 500-cycle reagent cartridge.

Data Analysis and Bioinformatics
Sequence reads from postmortem microbiome samples were
analyzed with QIIME2 (v2018.11) (Bolyen et al., 2019),
following the methodology outlined in Kaszubinski et al.
(2019). DADA2 v1.8.0 (Callahan et al., 2016) was used
for denoising. Sequences were aligned using MAFFT v7.397
(Katoh and Standley, 2013), and FastTree v2.1 (Price et al.,
2010). Taxonomy and amplicon sequencing variant (ASV)

tables were exported as comma separated values (csv) files
to be used as input data for all downstream analysis. ASV
and taxonomy files were combined with demographic data
obtained from autopsy reports (age, sex, race, BMI, etc.) as
phyloseq (v1.28.0) objects in R (v3.6.1) (McMurdie and Holmes,
2013; R Core Team, 2018). ASVs less than 0.01% of the
mean library size were trimmed, removing 22,214 ASVs for
a total of 8,692 ASVs. Phyloseq objects were split among
the body sites (nose, mouth, rectum, ears, and eyes) and
analyzed separately.

Method Selection
To determine the optimal methodology for calculating beta-
dispersion before moving forward with classifying M/COD,
we compared standardization approaches of the microbial
communities, distance matrices, and alpha-diversity to select
the optimal method for beta-dispersion calculation. For
standardization, rarefying (randomly subsampling ASVs to
a specified minimum library size) and normalizing (non-
rarefaction based method; removing ASVs not present in
a specified percentage of samples) were compared for each
body site using three minimum library sizes (3,000, 5,000,
and 7,000 sequences) and sample percentage cut off (1%,
3%, 10%), respectively. We wanted to determine not only
which standardization strategy was optimal, but also how
sensitive the standardizations were (minimum library size and
sample percentage cut off). While rarefaction has been debated
(McMurdie and Holmes, 2014; Weiss et al., 2017), we sought
to eliminate bias associated with different library sizes that
could inflate differences in beta-dispersion among M/CODs
(Kaszubinski et al., 2019). Specifically, library size differences can
mask biologically meaningful results especially for unweighted
distance matrices (Weiss et al., 2017). Normalization (as
referenced in this manuscript), is a common non-rarefaction
technique used in ecology studies (Poos and Jackson, 2012).
However, this leads to different library sizes among samples,
which may be an artifact in some analyses.

We also compared unweighted and weighted UniFrac
distances matrices for calculating beta-dispersion to determine
whether considering abundances (weighted UniFrac) would
affect the beta-dispersion calculation and should be considered
for downstream modeling; UniFrac (weighted and unweighted)
is commonly used in forensic studies (Javan et al., 2017; Pechal
et al., 2018). Beta-dispersion was calculated among MODs and
CODs using the vegan package (v2.5-5) in R at each minimum
library size and sample percentage cutoff (Oksanen et al.,
2019). The betadisper function from vegan reports the distance
from the centroid for each sample, as defined by a grouping
factor (in this dataset M/COD). Each postmortem microbiome
sample had two corresponding beta-dispersion values, with either
MOD or COD as a grouping factor. Kruskal–Wallis, Fligner-
Killeen, and post hoc Nemenyi tests among beta-dispersion
values tested differences among M/CODs and were reported
with a Bonferroni correction (Pohlert, 2018). Additionally, alpha-
diversity metrics (Chao1 and Shannon diversity) were calculated
using phyloseq for each minimum library size and sample
percentage cutoff level.
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We then selected a methodology [standardization of input
data analysis (rarefaction or normalization) and distance matrix]
for calculating beta-dispersion based on the number of significant
differences in beta-dispersion (among M/CODs) identified by
Kruskal–Wallis and post hoc Nemenyi tests as well as the highest
alpha-diversity (see the section “Method Selection” in “Results”).
This standardization approach was identified for its potential
to distinguish M/COD, while maintaining microbial diversity.
For subsequent analyses, microbial communities were rarefied
to 5,000 sequences and beta-dispersion was calculated using
unweighted UniFrac distance.

Model Selection
We built multinomial logistic regression models to classify
M/COD from beta-dispersion values and case demographic data
(Böhning, 1992) using the lme4 (v1.1-21) and mlogit package
(v1.0-1) (Bates et al., 2019; Croissant, 2019). Logistic regression
is an analysis commonly used in clinical settings because it has
distinct advantages (de Jong et al., 2019). Logistic regression
does not assume normality, linearity, or homoscedasticity (even
variance) (Harrell et al., 1996; Steyerberg et al., 2001). Logistic
regression is prone to overfitting, especially in cases with small
datasets (de Jong et al., 2019). However, goodness-of-fit metrics,
such as R2 and model comparison can be used to evaluate the
validity of models (Pohlert, 2018; de Jong et al., 2019).

Full multinomial logistic regression models included all
categories of interest for classifying M/COD (e.g., homicide,
suicide, natural, and accidental death for MOD; cardiovascular
disease, drug related deaths, blunt force trauma, asphyxiation,
gunshot wounds, and “other deaths” for COD). Demographic
data of interest [age, BMI, sex, race, PMI (<48 h; >49 h),
season, and event location (outdoors, indoors, hospital,
vehicular)] were summarized (Table 1) and demographic
means were tested among M/CODs (Kruskal–Wallis with a
Bonferroni correction) to identify potential significant (p < 0.05)
covariates for inclusion in model building (Pohlert, 2018).
Multicollinearity was evaluated among the covariates using a
correlation test, which found the covariates to be independent,
meeting model assumptions (Supplementary Figure S1)
(Steyerberg et al., 2001).

Multiple logistic regression models classifying M/COD were
built and tested for each body site. We used a stepwise selection
with backward elimination of predictors to determine significant
covariates (Steyerberg et al., 2001). Only those models with
significant (p < 0.1) beta-dispersion contribution as a covariate
were selected for further modeling with case demographic
data. We chose a more conservative p-value for the beta-
dispersion covariate cut off to avoid excluding potentially
relevant models for further evaluation, as recommended in
other studies (Steyerberg et al., 2001). However, overall
model significance was considered at p < 0.05. The best
performing models were identified based on goodness-of-
fit metric McFadden R2 (excellent fit ranges from 0.2-0.4)
(McFadden, 1979), model comparison using Akaike information
criterion (AIC) (lower AIC = better model) (Bozdogan, 1987),
and classification success (correct classifications/total number
of samples). Based on these initial model building results, TA
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models could be improved (see the section “Model Selection”
in “Results”).

To improve logistic regression models, we considered three
microbial community types for beta-dispersion calculation:
full communities, random forest indicator communities, and
“non-core” communities. While the grouping factor (M/COD)
remained the same, the microbial communities used to calculate
beta-dispersion differed. “Full community” beta-dispersion was
calculated from the standardized community input data within
each body site. “Random forest indicators,” as determined by
Boruta (v6.0.0) in R, used confirmed and tentative taxa of
importance (p < 0.05) (Kursa and Rudnicki, 2018), and beta-
dispersion was calculated from this set of significant indicator
taxa. Random forest classification error was determined using
the randomForest package (v4.6-14) in R (Breiman et al., 2018).
While the definition of a “core microbiome” is widely debated
(Shade and Handelsman, 2012), we defined “non-core” taxa
in this study as taxa present in only one M/COD. The taxa
had to be present in at least one case, for example the genus
Turicella was present in only one homicide case, while the family
Streptococcaceae was represented in several homicide cases.
“Core” taxa were removed, and beta-dispersion was calculated
from the remaining ‘non-core’ taxa.

Lastly, we tested binary logistic regression (classifying between
two categories) compared to multinomial logistic regression
(multiple categories). Binary logistic regression models were
also built using the lme4 (v1.1-21) and mlogit package
(v1.0-1) in R (Bates et al., 2019; Croissant, 2019), and
the best performing models were considered based on AIC
(Bozdogan, 1987), McFadden R2, and classification success
(correct classifications/total number of samples). Beta-dispersion
differences were visualized using principal coordinate analysis
(PCoA) plots created in phyloseq, and potential beta-dispersion
differences were assessed using permutational multivariate
analysis of variance (PERMANOVA) (Anderson, 2017).

Case Studies
Using the methodology outlined above, we tested data from
two case studies for classifying MOD from nose communities
to showcase the forensic potential beta-dispersion has as a
tool for medical examiners. For the first case study (Case
Study #1), a matched design with paired cases of similar
age, race, and sex, to limit the effect of demographic data
(Supplementary Table S2), were examined to compare suicides
(n = 22) against other manners of death (n = 21 accident,
homicide, or natural). For the second case study (Case Study
#2), we examined MOD within COD, specifically examining
homicides (n = 25) vs. suicides (n = 4) resulting from gunshot
wounds (Supplementary Table S1). Potential indicator taxa
for each grouping (MOD) were identified using Boruta in
R. We also evaluated the potential beta-dispersion differences
between MODs using PERMANOVA (Anderson, 2017), and
classified MOD using binary logistic regression. We calculated
achieved power using G∗Power 3 v3.0.5 (Faul et al., 2007).
Case study beta-dispersion was compared using the mean and
standard deviation using an independent mean two−tailed t-test
(α = 0.05).

RESULTS

Method Selection
Unweighted UniFrac distances, compared to weighted UniFrac
distances, were the optimum distance matrix for these data.
In summary, unweighted UniFrac had three-times as many
significant comparisons (identified mean differences of beta-
dispersion among M/CODs by Kruskal–Wallis and post hoc
Nemenyi p < 0.05) across rarefied and normalized communities,
four-times as fewer deviations of variance (identified variance
differences of beta-dispersion among M/CODs by Fligner-
Killeen p < 0.05), and lack of library size bias (Supplementary
Figures S2, S3 and Supplementary Tables S3, S4). Unifrac
distances were more robust against rarefying and normalizing,
as significant comparisons occurred with both standardization
methods (Kruskal–Wallis and post hoc Nemenyi p < 0.05;
Supplementary Figure S3 and Supplementary Table S3).
Rarefaction was the more appropriate standardization strategy
than normalization for this dataset as well. While normalizing
the data had more than double the significant comparisons
than rarefying, normalizing microbial communities led to a
significant decrease in alpha-diversity compared to rarefying
(Kruskal–Wallis and post hoc Nemenyi p < 0.05; Supplementary
Figures S2, S4 and Supplementary Tables S3, S5). For
normalizing combined with Weighted Unifrac, we found
a bias of library size among the significant comparisons
(Supplementary Table S4). Most of the significant comparisons
(7 out of 10) had differential library sizes, reflecting that
M/COD differences in beta-dispersion may have been related to
library size using our normalization approach (Kruskal–Wallis
and post hoc Nemenyi p < 0.05; Supplementary Table S4).
A minimum library size of 5,000 sequences was selected for
model comparisons, as more body sites yielded significant
comparisons (Kruskal–Wallis p < 0.05) than other library sizes
(7,000: 3 body sites, 5,000: 5 body sites; 3,000: 1 body site;
Supplementary Figure S2) and was the appropriate minimum
library size based on alpha-rarefaction curves of sequencing
depth (Supplementary Tables S3, S5 and Supplementary
Figures S5, S6).

Model Comparison
Beta-dispersion significantly differed among body sites and
M/CODs (Kruskal–Wallis p < 0.05, Figure 1 and Supplementary
Table S6). Every postmortem microbiome sample had two
corresponding beta-dispersion values (distances from centroid),
with either MOD or COD as the grouping factor. On
average, eye microbiomes had the highest beta-dispersion
[MOD: 0.646 (SD = 0.0346); COD: 0.642 (SD = 0.0346);
Supplementary Table S6], while mouth communities had
the lowest beta-dispersion [MOD: 0.567 (SD = 0.0779);
COD: 0.563 (SD = 0.0800); Supplementary Table S6]. Beta-
dispersion was significantly different among all body site
communities, except the ears and eyes, but we considered all
body sites for downstream modeling with logistic regression
to not prematurely remove body sites from consideration
(Kruskal–Wallis p < 0.05; Supplementary Table S6). Natural
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death postmortem microbiomes had the highest average beta-
dispersion [0.628 (SD = 0.0560); Supplementary Table S6]
compared to homicides [0.606 (SD = 0.0694)] and accidents
[0.608 (SD = 0.0683); Kruskal–Wallis p < 0.05; Supplementary
Table S6]. Microbiomes of cases with cardiovascular disease
had significantly higher beta-dispersion among all body sites
[0.625 (SD = 0.0565); Supplementary Table S6] compared to
gunshot wounds [0.605 (SD = 0.0708)], blunt force trauma [0.601
(SD = 0.0624)] and drug-related deaths [0.611 (SD = 0.0684);
Kruskal–Wallis p < 0.1; Supplementary Table S6]. While
beta-dispersion means differed significantly among MODs
and CODs, there was overlap among beta-dispersion values,
indicating that other variables contribute to microbiome beta-
dispersion (Figure 1). Therefore, we considered additional
case demographic data for downstream modeling. Age, sex,
race, and event location were significantly different among
MODs/CODs (Kruskal–Wallis p < 0.05; Table 1; Supplementary

Table S7); however, so as to not prematurely remove potentially
important demographic data we included all demographic data
of interest in downstream modeling [age, BMI, sex, race, PMI
(<48 h; >49 h), season, and event location (outdoors, indoors,
hospital, vehicular)].

Multinomial logistic regression models were useful for
initially determining which body site beta-dispersion had the
best classification potential for M/COD. Classifying among
all MODs, nose and mouth beta-dispersion were significant
covariates, while nose, mouth, and ear beta-dispersion were a
significant covariate for classifying all COD categories (p < 0.1;
Supplementary Table S8). Nose community beta-dispersion, on
average, successfully classified MODs at 61.1% (SD = 0.872),
while ears and nose beta-dispersion successfully classified CODs
on average 62.3% (SD = 0.599) and 62.5% (SD = 0.291),
respectively (Supplementary Table S8). Based on these results,
we only used those body sites with statistically significant

FIGURE 1 | Beta-dispersion values (distances from the centroid) for each postmortem sample, stratified among body sites and MODs/CODs. (A) Beta-dispersion
values with MOD as the grouping factor and stratified among body sites. (B) COD as the grouping factor and stratified among body sites. (C) Beta-dispersion values
for all postmortem samples with MOD as the grouping factor, (D) with COD as the grouping factor (cardio, cardiovascular disease; drug, drug-related deaths; BFT,
blunt force trauma; asphyx, asphyxiation).
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(p < 0.05) models among M/CODs for further model building:
nose, mouth, and ears.

While initial multinomial logistic regression models were able
to classify among all M/CODs at higher success rate than random
(overall average 50.2%; random chance: MOD: 25.0%; COD:
16.7%), models could be improved (Supplementary Table S8).
Models classifying M/COD with only beta-dispersion (no case
demographic data) were significant (p < 0.05) but had low
classification success and model fit (∼40% average classification
success; McFadden R2 of ∼ 0.0244; Supplementary Table S8).
Adding case demographic data to the models led to better
classification success and model fit (∼60% average classification
success; McFadden R2: ∼0.298; Supplementary Table S8).
However, we attempted to improve our models by testing
different microbial communities to calculate beta-dispersion (full
communities, random forest indicator communities, and “non-
core” communities) and binary logistic regression rather than
multinomial logistic regression.

Overall, microbial community type (full communities,
random forest indicator communities, and “non-core”
communities) did not improve logistic regression models
(Figure 2 and Supplementary Tables S9, S10). Models using
“non-core” community beta-dispersion were not significant
(p > 0.05) and so thus removed from further consideration
and downstream modeling (Supplementary Table S9). Even
though random forest indicator communities were specific to
M/COD, multinomial logistic regression models were not more
successful than full communities at classifying M/COD, and
were less successful in some cases [percent correct classifications
for full: 59.1% (SD = 2.64); RF: 57.8% (SD = 3.06); Figure 2;
Supplementary Table S10]. For the random forest indicator
communities and full communities, all models were within
7% of each other for McFadden R2, a metric of model fit
[full: 0.298 (SD = 0.0367); RF: 0.318 (SD = 0.0445); Figure 2;
Supplementary Table S10].

For some M/COD comparisons (natural vs. accidental death;
cardiovascular disease vs. drug-related death; disease vs. non-
diseased state), binary logistic regression models performed best
with an average classification success of 83.2% (SD = 5.50)
(Supplementary Table S11) for full community and random
forest indicator communities (“non-core” communities were
not modeled for binary logistic regression due to poor
results in the multinomial logistic regression models). For
nose communities, beta-dispersion was a significant covariate
(p < 0.1) between natural vs. accidental death, cardiovascular
disease vs. drug-use, and diseased (natural deaths) vs. non-
diseased (accidental, homicide, suicide) deaths (Table 2 and
Supplementary Table S11). While random forest indicator
communities had marginally higher successful classification
compared to full communities (full: 78.9%; RF: 83.6%) and
higher McFadden R2 (full: 0.347; RF: 0.369), the sample size
of cases included in the random forest models was smaller
(Table 2 and Supplementary Table S11), as some samples
were discarded if they did not have the RF indicator taxa.
Therefore, we considered full community beta-dispersion as
the most appropriate metric (Figure 3). There was no distinct
visual clustering of samples suggesting that misclassification was

randomly distributed among samples (PERMANOVA p > 0.05;
Figure 3). In summary, we have compiled the best performing
multinomial and binary logistic regression models for this
dataset, based on the percent correct classifications, McFadden
R2, and AIC (Supplementary Table S12).

Case Studies
Case Study #1
Of the 188 cases, we matched nose communities of 22 cases by
age [43 years (SD = 14)], sex (21 females; 22 males), and race
(6 blacks; 37 whites) with other deaths (natural, homicide, and
accidental) for a total of 43 cases (Supplementary Table S2).
We identified three significant indicator taxa of suicide (Boruta
p < 0.05; Supplementary Table S13). Suicide communities had
higher beta-dispersion [0.659 (SD = 0.0433)] than non-suicides
[0.654 (SD = 0.0427); Supplementary Table S13] but there
were no significant differences in beta-dispersion among suicides
(PERMANOVA permuted p = 0.144; Supplementary Table S13).
Logistic regression of beta-dispersion without demographic data
classified suicide cases with a 58.1% success rate (Supplementary
Table S13), likely associated with low power (1–β: 0.0660). For
future studies, we proposed a potential workflow using this
matched-design case study for other researchers to use as a
reference (Figure 4 and Supplementary Table S13).

Case Study #2
Despite the low sample sizes, we identified ten potential
indicator taxa for homicide vs. suicide resulting from gunshot
wounds (Boruta p < 0.05; Supplementary Table S14). Beta-
dispersion among gunshot wound homicides was significantly
higher [0.626 (SD = 0.0491)] than gunshot wound suicides
[0.543 (SD = 0.0959); PERMANOVA permuted p < 0.05;
Supplementary Table S14]. Furthermore, we found significant
logistic regression models of homicides vs. suicides with gunshot
wounds accurately classified 93.1% of the time (Supplementary
Table S14), despite uneven and low sample sizes (n = 25
homicides; n = 4 suicides; Supplementary Table S14), we
achieved moderate power (1–β: 0.469).

DISCUSSION

In previous research, the AKP concept was tested with distinct
treatment vs. control groups based on living health conditions
and in living hosts (Zaneveld et al., 2017). However, we
postulated the postmortem microbiome of various M/CODs
would correspond with differential beta-dispersion, which could
potentially be used as additional evidence in future forensic
investigations. We hypothesized that cardiovascular disease
and/or natural deaths would have the highest beta-dispersion,
as AKP correlates with disease state in the antemortem life
condition (Barbian et al., 2015; Zaneveld et al., 2017). Higher
microbiome beta-dispersion was also predicted to be related
to a stressful life environment, which is often associated with
homicides, gunshot wounds, and blunt force trauma deaths
(Pearson et al., 2019). Our best performing models were
binary logistic regression models that confirmed the medical
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FIGURE 2 | Multinomial logistic regression model comparison among full communities and random forest indicator communities beta-dispersion for MODs/CODs.
For the bottom panel, the y-axis indicates percent correct, or the number of correct classifications/total number of samples. Each bar represents a multinomial
logistic model. For the top panel, the y axis indicates McFadden R2 for the corresponding multinomial logistic regression model.

examiner’s M/COD assessment ∼79% of the time, specifically
for cardiovascular disease vs. drug-related deaths. Multinomial
logistic regression models confirmed the medical examiner’s
M/COD assessment nearly 62% of the time. While better than
random chance, including all M/CODs during classification (with
uneven sample sizes) likely resulted in reduced classification
accuracy for the multinomial logistic regression models.

Our dataset represents a cross-section of deaths from
a large metropolitan area, with multiple body sites, using
targeted sequencing of the 16S rRNA gene. The cases included
were predominately natural cardiovascular disease deaths and
accidental drug-related deaths. Therefore, direct comparison of
the results of this study would be most applicable for cities
with similar demographics (U.S. Census Bureau, 2020a), such
as Chicago, IL (U.S. Census Bureau, 2020b) or Cincinnati, OH
(U.S. Census Bureau, 2020c). While the demographic data lends
classification ability in multinomial logistic regression, areas with
differing demographics will require the creation of independent
baseline models. It is also important to note that beta-dispersion
is calculated in reference to the samples included in the dataset
(Anderson et al., 2006). Therefore, future work should include
data and cases from multiple geographic areas that include a
range of socio-economic diversity and overall living conditions.

While we included five body site (ears, nose, mouth, eyes,
and rectum) communities that showed differential success
in classifying M/COD with beta-dispersion, there are more
body sites of interest for the forensic community. As body
site drives the microbial community composition more than
any other factor (Pechal et al., 2018), comparisons to other
body sites may be limited. For example, body sites sampled
for the internal organs and blood (Javan et al., 2016) or
skin microbiome (Kodama et al., 2019) could harbor different
microbial communities than the ones included in this study,
and provide different predictive power using this modeling
approach. Beta-dispersion among all body sites was significantly
different, but mouth, nose, and ears from this data set showed
the most potential for downstream forensic applications. This is
due to beta-dispersion from these body sites being significant
covariates in logistic regression models, but also because these
body sites are exposed to the environment and can potentially
be affected by ambient conditions (Dewhirst et al., 2010).
Dysbiosis of the oral cavity (nose, mouth, ears) has also
been linked to systemic diseases such as cardiovascular disease
(Seymour et al., 2007), and could link to the results we
report here with higher beta-dispersion in cardiovascular disease
and natural deaths.
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FIGURE 3 | Logistic regression models of the best performing pair-wise comparisons. Nose samples were selected, as well as beta-dispersion from full
communities. (A–C) Logistic regression models with a 95% confidence interval of beta-dispersion on the x-axis and the binary classification on the y-axis.
(A) Accident: 0, natural: 1. (B) Cardiovascular disease: 0, drug-related: 1. (C) Disease: 0, non-diseased: 1. (D–F) Principal coordinate analysis (PCoA) plots of
microbial samples included in the logistic regression model. Colors correspond with the M/COD, while shape indicates if the sample was correctly classified by the
model. (D) Natural vs. accidental deaths. (E) Drug-related vs. cardiovascular disease deaths. (F) Diseased vs. non-diseased deaths.

TABLE 2 | Summary of binary logistic regression models classifying natural vs. accident, cardiovascular vs. drug-use, and disease vs. non-diseased state.

Comparison Beta-dispersion community profile Significant demographic data McFadden R2 Degrees of freedom χ2 P Accuracy

Natural – Accident Full community (n = 120) Race + event location + age 0.314 6 51.9 << 0.05 0.783

Random forest indicators (n = 117) Event location + age 0.388 5 62.5 << 0.05 0.829

Cardio – Drug Full community (n = 107) BMI + event location + PMI + age 0.399 5 56.9 << 0.05 0.804

Random forest indicators (n = 100) BMI + age 0.356 3 47.6 << 0.05 0.820

Disease – Non Full community (n = 172) BMI + race + event location + age 0.328 5 70.3 << 0.05 0.779

Random forest indicators (n = 163) BMI + race + event location + age 0.364 7 73.1 << 0.05 0.859

Significance of the model was determined by the p. For model comparisons, the McFadden R2 and model accuracy (correct classifications/total number of samples)
were considered within each body site.

This work revealed that beta-dispersion has potential to
inform the M/COD decision making process during death
determination. Accidental deaths, which were predominately
drug related deaths in this dataset, had overall lower beta-
dispersion than natural deaths, mirroring the dysbiosis found
in non-forensic studies (Meckel and Kiraly, 2019). Accidental
deaths and homicides were not distinguishable by beta-
dispersion. While we hypothesized that high-stress lifestyle
associated with homicidal deaths would increase beta-dispersion
(Pearson et al., 2019), homicides had the lowest beta-dispersion
among MODs. The antemortem link of high-stress lifestyle
was not as strong as antemortem disease status in this study,
compared to previous results that indicated higher microbial

diversity associated with neighborhood blight and vacancy
(Pearson et al., 2019). This may be because those decedents
who were victims of homicide lived relatively healthy lifestyles
and were, overall, younger when compared to decedents with a
disease status. However, we do not have access to that specific
information, as we were constrained to the contents of the
autopsy reports.

In suicides, postmortem microbiomes of the nose, while
representing the lowest sample size, had similar beta-dispersion
to natural deaths, which was similar to other antemortem studies
(Naseribafrouei et al., 2014; Liang et al., 2018). Microbiomes
of suicidal people in living populations have higher diversity
than healthy controls, specifically increased taxa associated with

Frontiers in Microbiology | www.frontiersin.org 9 September 2020 | Volume 11 | Article 555347

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-555347 September 3, 2020 Time: 17:19 # 10

Kaszubinski et al. Beta-Dispersion Reflects Forensic Death Determination

FIGURE 4 | Proposed workflow with suicide matched-design case study. Left
column indicates potential steps researchers and practitioners can follow for
future studies. Right column provides results from the matched-design case
study, following the workflow. Twenty-three suicide cases were matched by
age, sex, and race with other deaths (natural, homicide, and accidental), and
nose samples were included in the analyses. Indicator taxa were identified by
Boruta, while beta-dispersion was calculated using UniFrac distances and
tested with PERMANOVA. A logistic regression model of beta-dispersion was
constructed to classify suicide vs. non-suicide deaths.

inflammation (Naseribafrouei et al., 2014). Therefore, there is
a potential link between high microbial beta-dispersion and
mental health that would be a promising area of future research.
Previous work documented the association of postmortem
microbiome diversity and other metrics to heart disease (Pechal
et al., 2018). In the current research, cardiovascular disease had
significantly higher beta-dispersion than any other type of death.
Dysbiosis in the microbiomes of people with cardiovascular
disease has been documented, as there may be a microbiome
link to disease pathogenesis (Wilson Tang and Hazen, 2017).
Based on our results, some deaths may benefit from microbial
evidence more than others. Specifically, drug-related deaths,
cardiovascular disease, and suicides prompt further investigation
with the postmortem microbiome. It is important to note
that other MOD/CODs may not preclude the decedent from
having cardiovascular disease antemortem (i.e., a homicide
victim could have cardiovascular disease), which could in turn
affect the microbiome. In future studies, it would be pertinent
to explore the interaction between cardiovascular disease and
other MODs/CODs.

We chose multinomial logistic regression as a simple model
that is often used in clinical settings (de Jong et al., 2019).
However, multinomial logistic regression has limitations, and
biases toward classifying categories with larger sample sizes
(de Jong et al., 2019); thus, future modeling approaches
may provide improved predictive ability for forensic use.
We achieved marginal improvement of classification in these
models with random forest indicator taxa compared to models
using the full microbial community data set. This result was
not entirely unexpected, as random forest model error rates
ranged from: 53.1–64.4% (Supplementary Table S15). Random
forest indicators derived from random forest models with
high error (>50% error rate) did not improve multinomial

regression models classifying M/COD. This illustrates that beta-
dispersion can be calculated in a variety of ways, which has
downstream effects on distinguishing categories of interest.
Therefore, an objective approach to selecting beta-dispersion
calculation should be used, as outlined in this study.

Instead, binary logistic regression models were most effective
at improving model success. The categories with the highest
classification success also had the largest sample size (natural
deaths/accidents; cardiovascular disease/drug-related deaths),
and were highly correlated, as most natural deaths were
cardiovascular disease (42/57) and most accidents were drug-
related deaths (59/71). There was some overlap in pathology
among cardiovascular disease deaths and drug-related deaths
(Molina et al., 2020), showcasing how our best performing
logistic regression models have potential applications in forensic
death determination. While our case studies would benefit from
further exploration with larger datasets, we provided strong
evidence that other comparisons differentiating MOD, such as
suicide vs. non-suicides, could also prove useful for forensic
death determination. Additionally, future research efforts may
involve novel approaches to model parameterization better
informed by the specific M/COD and underlying case context and
characteristics.

While not the first study to classify M/COD from microbial
communities (Pechal et al., 2018; Kaszubinski et al., 2019;
Zhang et al., 2019), this is the first study to compare random
forest classification and logistic regression performance using
beta-dispersion. MOD classification success with microbial
community random forest indicators alone (Kaszubinski et al.,
2019) were comparable to multinomial logistic regression
models built with only beta-dispersion (∼40%). Inclusion
of case demographic data improved multinomial logistic
regression model, which was consistent with previous random
forest regression model accuracy of ears and nose body site
communities (>60%) (Zhang et al., 2019). A strength of the
MLR approach, is that it does not depend on specific indicator
postmortem microbial taxa, which can vary across studies (Pechal
et al., 2018; Kaszubinski et al., 2019). Furthermore, we suggest
that microbial community information, either taxon dependent
(e.g., indicator taxa) or not (e.g., beta-dispersion), could be
an additional piece of evidence in M/COD determination. We
wanted to identify if demographic data were indicative of certain
M/CODs (e.g., age significantly higher in natural deaths or for
cardiovascular disease) and were useful to supplement beta-
dispersion in downstream modeling. We chose a slightly less
conservative p-value so that potentially important demographic
data were not prematurely removed. By including demographic
data into our models, successful classification was improved
rather than using microbial data alone, which is something to
consider in future death investigation.

CONCLUSION

Microbial community metrics, such as beta-dispersion, have
potential forensic use in contributing to classification of M/COD
during death investigation. This reflection is due to the
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antemortem link to the postmortem microbiome. We showed
beta-dispersion increased based on disease status (cardiovascular
disease) according to AKP, and beta-dispersion reflected M/COD,
especially for cardiovascular disease and drug related deaths.
While random forest is a useful tool for these types of datasets,
MLR with beta-dispersion produced comparable results without
reliance on specific microbial indicator taxa. Furthermore, we
demonstrated circumstances where beta-dispersion could be
used to distinguish MOD using two case studies; however, low
and uneven sample size was an issue for all case studies. Despite
the reduced power of these case studies, this workflow may
be useful for other forensic practitioners to test within their
own sample set, that encompass new locations and demographic
data, to strengthen the antemortem link to the postmortem
microbiome. As sample sizes increase for postmortem microbial
studies, it may be necessary for large databases, or geographically
and demographically specific data to train models with high
success rates for practical use in forensic contexts. The methods
outlined in this study serve as a guide to developing non-
taxonomic indicator microbiome tools for other researchers
and medical examiners in different geographic locations and
investigation contexts. Ultimately, modeling beta-dispersion with
case demographic data is a potential tool that could be useful
for medical examiners during death investigation to combine
with other methods of M/COD determination. The future of
using postmortem microbiomes in forensic sciences continues
to show promise.
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