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N-acetyltransferase 2 (NAT2) catalyzes the acetylation of isoniazid to N-acetylisoniazid. NAT2 polymorphism ex-
plains 88% of isoniazid clearance variability in adults. We examined the effects of clinical and genetic factors on
Michaelis-Menten reaction kinetic constants of maximum velocity (Vmax) and affinity (Km) in children 0–
10 years old. We measured the rates of isoniazid elimination and N-acetylisoniazid production in the blood of
30 children. Since maturation effects could be non-linear, we utilized a pharmacometric approach and the artifi-
cial intelligence method, multivariate adaptive regression splines (MARS), to identify factors predicting NAT2
Vmax and Km by examining clinical, genetic, and laboratory factors in toto. Isoniazid concentration predicted
both Vmax and Km and superseded the contribution of NAT2 genotype. Age non-linearlymodified theNAT2 geno-
type contribution until maturation at ≥5.3 years. Thus, enzyme efficiency was constrained by substrate concen-
tration, genes, and age. Since MARS output is in the form of basis functions and equations, it allows multiscale
systemsmodeling from the level of cellular chemical reactions to whole body physiological parameters, by auto-
matic selection of significant predictors by the algorithm.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Isoniazid is a first line antituberculosis agent recommended for
treatment of children with tuberculosis (TB). Its conversion is catalyzed
by arylamineN-acetyltransferase (NAT) isoenzyme 2 (NAT2) in phase II
xenobiotic metabolism. NAT2 is central to detoxifying many environ-
mental-, industrial-, and food-based arylamines and hydrazines. NAT2
catalyzes the reaction of acetyl-CoA and isoniazid (substrates) to pro-
duce CoA andN-acetylisoniazid.NAT2 single nucleotide polymorphisms
(SNPs) identified in adults led to classification of individuals as slow and
rapid acetylators. Specific SNPs could be associated with changes in en-
zyme catalytic activity, as defined by enzyme reaction kinetic constants
in liver tissue (Blum et al., 1991; Fretland et al., 2001). The elimination
of isoniazid from the body is a combination of NAT2metabolism and di-
rect elimination of parent compound, with parent isoniazid elimination
in urine of up to 37%. However, in adult patients 88% of systemic clear-
ance variability has been linked to NAT2 SNPs (Kinzig-Schippers et al.,
ses Research and Experimental
Dallas, TX 75204, USA.
. Gumbo).
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2005). While the ontogeny of phase I enzymes is well established, the
age-dependent maturation changes in phase II enzymes such as NAT2
are still poorly understood. This is important since isoniazid peak con-
centrations and 0–24 h area under the concentration-time curves
(AUC0–24) are major determinants of cure rates, speed of sterilizing ef-
fect, and acquired drug-resistance, in TB patients (Chigutsa et al.,
2015; Pasipanodya et al., 2013, 2012; Pasipanodya and Gumbo, 2011;
Gumbo et al., 2014; Dheda et al., 2014). There could be an age-depen-
dent difference in systemic clearance of isoniazid in children, however,
the effect of maturation, or other pediatric factors, on NAT2 enzyme ki-
netics has hitherto not been investigated (Jeena et al., 2011; Rey et al.,
2001). Here, we identified the rate of production of N-acetylisoniazid
and the rate of elimination of isoniazid in children enrolled in the pro-
spective PHATISA study (Hiruy et al., 2015) and investigated the possi-
ble effects of NAT2 SNPs, measures of body-size, age, and nutrition
status, in altering NAT2 reaction kinetics and isoniazid elimination
rate constants.

Human growth and physiological maturation are non-linear pro-
cesses, with discordant changes that have direct effect on drug pharma-
cokinetics (Kearns et al., 2003). Indeed, in recent years it has become
evident that even in adults the relationships between different
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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pharmacokinetic parameters and covariates such as age and weight
are not only non-linear, but have high order interactions, with data
zones of discontinuity in the relationships (Hall et al., 2011, 2013;
Jain et al., 2013). Thus, standard statistical analyses could be limited
on several fronts, including reliance on linear analyses and the re-
strictive normality, collinearity and sampling assumptions needed
for valid inference. In 2012, Kiser et al. used standard statistical and
pharmacokinetic approaches and identified that NAT2 genotype
and child's age were associated with isoniazid clearance in South Af-
rican infants. With the slow acetylator genotype, weight adjusted
clearance was unchanged from week 0 to week 12 but increased
28% in week 84; while for rapid acetylators it increased 13% from
week 0 to week 12 but then decreased by 23% in week 84 (Kiser et al.,
2012). In other words, the changes were non-linear. Isoniazid elimina-
tion is from a combination of NAT2metabolism and loss of parent com-
pound in urine, which could account for the complex picture observed.
Here, we used non-linear science to identify the role of maturation,
weight, and NAT2 SNPs on xenobiotic metabolism in children
(Campbell, 1987; Campbell et al., 1985; Dokoumetzidis et al., 2002).
We applied artificial intelligence (AI)-based non-linear analyses to in-
vestigate NAT2 maximum velocity (Vmax) and affinity (Km) during the
first decade of life in children with TB. We were interested in determin-
ing relationships that could be used to scale from the level of enzyme-
based chemical reactions to the whole organism (patient) in the clinic,
to allow for direct translation.

Machine learning is a branch of AI-based methods that we have ap-
plied to examine pathophysiological and clinical parameters as well as
therapeutic outcomes in the past, whereby it outperformed standard
statistical inference with datasets of as little as 28 patients (Chigutsa
et al., 2015; Gumbo et al., 2014; Modongo et al., 2015, 2016; Jain et al.,
2013; Pasipanodya et al., 2013, 2015). One method, multivariate adap-
tive regression splines (MARS), was introduced by Friedman (1991).
MARS has been utilized by several groups for a variety of purposes,
with both large and small clinical sample sizes for a larger number of
predictors (Brasier et al., 2012; George and Chang, 2014; Lee et al.,
2014; Lin et al., 2008; Liu et al., 2015; Ju et al., 2014). Studies included
examination of concentrations of 8 proteins as potential predictors in
30 patients for helicobacter infection, RNA-sequencing data to differen-
tiate genes with low and high expression in the entire human genome
from sample sizes as low as four per group, and an examination of 419
plasma protein concentrations as potential predictors of dengue fever
in 55 patients. MARS uses an optimization procedure that employs
basis functions (BF) to examine candidates for both main and interac-
tion effects in a piecewise manner. BFs are flexible mathematical linear
spline functions that describe relationship between variables in short
segments of dataspace, which allows fit of both nonlinear and linear re-
lationships as well as their interactions simultaneously. A backward
elimination step is used to select a set of BFs that minimizes mean-
square errors, after which multifold cross validation procedure is
employed for model validation. The general cross-validation (GCV)
step gives ameasure of howwell themodelwill performon an indepen-
dent dataset. In AI, an interaction is encountered when one predictor
modifies another predictor's effect on the outcome (say Vmax). In the
same model, MARS identifies inflection thresholds (termed “hinges”),
where relationship between predictor and target changes or even
ceases to exist within specific and well-defined data-space. This essen-
tially allows the slope of the relationship between target and predictor
to be different for different data ranges of the same predictor variable,
and allows for discontinuity of relationships in some data spaces. Final-
ly, the variable importance score is used for ranking and selecting pre-
dictors, especially important when the number of predictors is
relatively large compared to the number of observations (as was the
case in our study) and when many of the predictors could be co-linear
(Breiman, 2001). Here, we applied MARS to data obtained from an ex-
perimental clinical design to identify predictors of NAT2 Vmax and Km

in South African children with TB.
The philosophy and purpose of AImethods such asMARS differ from
standard statistical inferences (Breiman, 2001; Hastie et al., 2009). The
underlying scientific philosophy in standard statistical inference is re-
jection of a pre-specified null hypothesis. Comparison of distributions
and the measures of central tendency (or hazard rates) between two
or more groups are often the main way to test hypotheses, with tests
of significance designed to make sure that differences observed are
not due to chance. The purpose of MARS is not for hypothesis testing,
but rather for hypothesis generation. Since these algorithms are distri-
bution free, measures of central tendency are not the issue. Moreover,
MARS algorithm uses non-parametric regression: in other words, pre-
dictors do not take a pre-specified form but are derived from the data.
The main objective of MARS is prediction and pattern recognition,
based on present data. Thus, there is no test of significance. Rather, the
algorithms determine how likely the prediction is likely to be true
with different datasets. During the GCV-step, the algorithms randomly
split the dataset into different sized smaller sets and calculate a GCV
score, which tells us how well predictors will perform on an entirely
new data-set. When predictors and their interactions are identified
with these approaches, they becomehypotheses to be tested using stan-
dard statistical inference.

2. Methods

2.1. PHATISA Study Design

The study design, regulatory approvals, and the summary pharma-
cokinetic parameter results of the PHATISA study have been published
in the past (Hiruy et al., 2015). Clinical and demographic factors were
recorded. Malnutrition was measured using Z scores for height-for-
age, weight-for-age, and weight-for-height, and mid-upper arm cir-
cumference (MUAC), since it has been proposed that isoniazid elimina-
tion could be affected by malnutrition. The nutrition measures such as
MUAC and Z-scores were interpreted based on WHO criteria (http://
whqlibdoc.who.int/hq/1997/WHO_NUT_97.4.pdf). The children had
blood draws after directly observed therapy between the fourth and
twelfth day after initiation of anti-TB therapy. In order maximize exper-
imental design and limit the number of samples drawn, and to reduce
the number of children under study, times for blood draw were specif-
ically identified using optimal sampling theory (Reed, 1999; Wang and
Endrenyi, 1992).We drew blood for concentration of both isoniazid and
its metabolite, N-acetylisoniazid at 0, 0.42, 1.76, 3.37, 10.31 and 24 h
after an isoniazid dose. Blood was processed for extraction of isoniazid
and N-acetylisoniazid, as well as for DNA extraction.

2.2. Isoniazid and N-acetylisoniazid Concentration Measurement Assays

N-acetylisoniazid was synthesized from isoniazid standard using
acetic anhydride and a previously published method. Following sample
preparation using an acetonitrile-based protein precipitation process,
measurement of drug and metabolite concentrations was carried out
by liquid chromatography-tandem mass spectrometry on an AB Sciex
5500 Q-trap mass spectrometer coupled to an Agilent 1200 UPLC sys-
tem. An Exterra 2.1 mm × 50 mm C18 column and a mobile phase of
water with 0.1% formic acid at a flow rate of 200 μL/min was used for
separation. The mass spectrometer was operated in the positive ion
mode and the following transitions monitored: Isoniazid:
138.1 → 51.9 and 138.1 → 66, N-acetyl isoniazid: 180 → 66 and
180 → 78.6 and 6-aminonicotinic acid (internal control): 138.7 → 51
Analyst® 1.5 software version 1.5.1 was used for quantitation.

2.3. NAT2 Genotyping

DNAwas extracted from buffy coats using the Qiagen Flexigene DNA
Kit. The entire NAT2 gene was amplified by PCR using the sense primer
(5′ GAC ATT GAA GCA TAT TTT GAA AG 3′) and the antisense primer (5′
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GAT GAA AGT ATT TGA TGT TTA GG 3′) primer pair (Hickman and Sim,
1991). Amplification conditions were as follows: an initial denaturation
of 5min at 95 °C, followed by 35 cycles of denaturation at 95 °C for 30 s;
annealing at 55 °C for 30 s; extension at 72 °C for 60 s, with a final exten-
sion of 5min at 72 °C. Sanger sequencing (performed by Inqaba Biotech-
nical Industries) was used to determine NAT2 genotypes. NAT2 alleles
were characterized by polymorphisms located at seven positions 191,
282, 341, 481, 590, 803, and 857, as described by the Database of
arylamine N-acetyltransferases (NATs) (http://nat.mbg.duth.gr;
McDonagh et al., 2014; Sabbagh et al., 2011). SNPs at these 7 positions
have a genotype/acetylation status prediction of accuracy of 98.4%
(Cascorbi et al., 1995; Hein and Doll, 2012).

2.4. Identification of Enzyme Kinetics and Pharmacokinetic Parameter
Estimates

We implemented two types of models from the ADAPT software of
D'Argenio et al. (2009). The parameter estimates for each child were es-
timated using the maximum-likelihood solution via the expectation-
maximization algorithm (MLEM). The changes in concentration of iso-
niazid (INH) and N-acetylisoniazid (ANIH) with time were utilized in
two types of pharmacometric models. The first was a pharmacokinetic
model for the plasma concentrations of parent drug and its metabolite,
with no assumptions of NAT2 saturability. The isoniazid elimination rate
(KINH) aswell as the fraction of isoniazidmetabolized (fINH) and the vol-
ume of distribution of metabolite VAINHwere used to calculate the elim-
ination ratio VAINH/fINH. In order to identify NAT2 Vmax (mg/h) and Km

(mg/L) for isoniazid metabolism in each child, we co-modeled the con-
centration versus timeof isoniazid andN-acetylisoniazid using a 2-com-
partment model, chosen based on our prior work with this drug (Hiruy
et al., 2015; Pasipanodya et al., 2013). A standard two-stage estimation
methodwas used to generate initial Km and Vmax values and other phar-
macokinetic parameter estimates. The parameters identified were then
used in subroutine POPINIT of ADAPT, and enzyme reaction kinetic con-
stants and pharmacokinetic parameter estimates for each child were
then identified using MLEM.

2.5. Frequentist Statistical Analysis

We employed the D'Agostino and Pearson omnibus normality test
and a p-value N0.05 for normality tests. Comparison between propor-
tions was made using the Fischer's exact or χ-square tests. Comparison
betweenmedians or means made via the Kruskal-Wallis test. All statis-
tical testing other than machine learning methods were performed
using STATA version 13 software (STATA Software, College Station,
Texas).

2.6. Machine Learning

MARS uses BFs to examine candidates for both main and interaction
effects, which gives MARS flexible and adaptive capabilities to fit non-
linear and linear relationships and interaction components simulta-
neously. Over fitting procedures were used to grow large models with
up to 15 BFs, which were then pruned back using GCV function during
the backward pass. Each variable was assigned a measure of predictive
importance byMARS, entailing bothmarginal and interaction effects in-
volving this variable. We examined for predictors of four target pheno-
typic responses: Vmax, Km, KINH and VAINH/fINH. The potential predictors
entered for each model for each of the four responses were each child's
NAT2 genotype, age in days, INH dose, observed peak concentration, HIV
status, gender, height, weight, body mass index (BMI) in kg/m2, Z-
scores for both height and weight, as well as MUAC. The coefficient of
determination (R2) values, variable importance measures and the
MARS equation for selected models are reported. All machine learning
modeling was performed on the SPM Salford Predictive Modeler® soft-
ware suite version 7.0 (SALFORD Software, San Diego, California).
Except for setting maximum allowable basis functions to 15, all other
settings were set to default for both the exploratory legacy mode and
in cross-validation.

3. Results

We enrolled children ≤ 10 years old who presented with TB to King
Edward VIII Hospital in Durban, South Africa, between May 2012 and
March 2013.We enrolled 19 boys and 11 girls, whose clinical character-
istics are shown in Fig. 1. The figure shows that most children were one
year-old or less. All children had chest X rays performed, 19 (63%) had
consolidation and 4 (13%) had cavitation, thus most children had pul-
monary TB. Fig. 2 shows Z-scores and demonstrates that up to 30% of
children were malnourished, though only one was severely malnour-
ished (Z-score standard deviation b −3).

Isoniazid acetylation follows a ping-pong Bi-Bi mechanism de-
scribed by the standard Michaelis-Menten relationship for enzyme
rate reaction rate (v) and substrate concentration [S] (Michaelis and
Menten, 1913; Weber and Cohen, 1968):

v ¼ V max � S½ �= Km þ S½ �ð Þ ð1Þ

We generated Km and Vmax values for each child in ADAPT based on
this relationship, with estimates shown in Fig. 3A–B. The mean popula-
tion estimate for Kmwas 1.69 mg/L, which translates to 0.012 μM,while
that of Vmax was 30.11 mg/h, which translates to 0.06 μM/s. Fig. 3A-B
show that Km was tightly distributed around the mean, but there was
greater variability in the Vmax. The isoniazid elimination rate (KINH) is
shown in Fig. 3C. Fig. 3D shows the elimination ratio VAINH/fINH, calculat-
ed using the fraction of isoniazid metabolized (fINH), and the volume of
distribution of metabolite VAINH.

NAT2 sequencing results, including the base pairs and SNP calls for
each allele, are shown in Extended Dataset 1. We identified 17 different
alleles, including four reference high-activity NAT2*4 alleles. The most
frequent genotypes were NAT2*5B/NAT2*5B encountered in 6/30 (20%)
children, and NAT2*5C/NAT2*12C encountered in 6/30 (20%) children;
the former genotype is commonly reported in literature to confer slow
acetylator status, while the latter is predicted to confer the intermediate
acetylator status (McDonagh et al., 2014). On the other hand, homozy-
gosity for the rapid acetylator NAT2*4 reference allele (NAT2*4/NAT2*4
genotype) was encountered in 2/30 (7%) of enrolled children (Table 1).

As a first step, we employed standard frequentist statistics to com-
pare the distributions of Km, Vmax, and elimination rate between differ-
ent inferred genotypes and predicted acetylation status. Table 2 shows
no significant differences in mean values. Compared the distributions
of the same enzyme function parameters, as well as measures of body
size, age, and dose by inferred acetylator status, shown in Table 2. The
only statistically significantfindingwas that the isoniazid dose adminis-
tered was lower among rapid acetylators.

Next, we used MARS algorithm in order to identify predictors of
Vmax. Table 3 shows that dose (BF1), genotype (BF5), isoniazid peak con-
centration (BF7), and age (BF10) were identified as the best predictors of
Vmax. The table illustrates the nature of MARS output, which is the form
of basis functions (BF). BF1 is a simple hinge function “max (0, Dose–
190)” which means that the value of the expression is zero for all
doses (mg) up to 190 (i.e., for all doses satisfying “Dose minus 190”
less than zero), as illustrated in Fig. 4A. The dose of 190 mg is at the
hinge. The variable importance score of 100% means that “Dose” is the
most important variable for Vmax. Isoniazid peak concentration was
also an important predictor (BF7), with a variable importance score of
90%, very close to that of “Dose”; thus both dose and peak concentration
likely reflect the same thing, which is effect of isoniazid concentration
on Vmax. BF7 means that isoniazid concentration had no effect on Vmax

until the peak concentration achieved the threshold value of 8.83 mg/
L, at the hinge. Table 3 shows that the peak concentration (BF7)
interacted with BF5 (genotype). However, the BF5 interaction with BF7

http://nat.mbg.duth.gr
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Fig. 1.Demographic and dosing characteristics in 30 children. The p-values shown in each graph are for the D'Agostino and Pearson omnibus normality test. A p-value N 0.05 is significant,
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only applied to NAT2 genotypes selected as subset 1, which means that
there is staggered or stratified effect so that relationship applied to some
genotypes and not others. Specifically, BF5 comprised NAT2 genotypes
that were grouped by MARS, which had a variable importance score of
90%, similar to that of isoniazid concentration. Of note, for MARS analy-
ses we did not pre-categorize different genotypes by acetylator status
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5.3 years) when it reaches a plateau, and remains flat into the next de-
cade. Overall, the relation between Vmax and these four predictors was
given by the equation:

Vmax mg=hrð Þ ¼ 31:297þ 0:030�BF1−1:025�BF7−0:001�BF10;R
2

¼ 0:89 ð2Þ

Thus, age (maturation) affects speed of isoniazid acetylation by
modifying effect of genotype, a non-linear interaction, however after
5.3 years the maturation is complete.

Table 4 shows the BFs for NAT2 affinity for isoniazid, or Km. A child's
height was the primary predictor and had the highest variable impor-
tance score. Height however could be substituted by age, given the
tight link between height and age (Pearson r = 0.917; p b 0.001), a
tightly linked relationship frequently used in the clinic. Thus age was
themain predictor of Km aswell; in fact, the coefficient of determination
(R2) value of age alone was 31%. However, MARS also identified that
Table 1
List of NAT2 genotypes and different phenotypes in 30 tuberculosis children.

NAT2 Genotype Inferred acetylation status
Number of children

Isoniazid pha

Isoniazid elim

*4/*4 Rapid 2 10.306 (0.00
*4/*5C Intermediate 1 10.307
*4/*14E Intermediate 2 10.306 (0.00
*5B/*5B Slow 6 10.311 (0.01
*5B/*5C Slow 2 10.308 (0.01
*5C/*5K Slow 1 10.306
*5C/*6N Slow 2 10.308 (0.00
*5C/*11A Intermediate 1 10.320
*5C/*12A Intermediate 1 10.308
*5C/*12C Intermediate 6 10.311 (0.01
*5C/*14E Slow 1 10.309
*5D/*11A Intermediate 1 10.311
*6A/*12A Intermediate 1 10.301
*6B/*6B Slow 1 10.304
*12A/*12B Rapid 1 10.292
*12A/*13A Rapid 1 10.317
isoniazid peak concentration and genotype as important predictors
(Table 4). Combined, these factors explained 80% of the variance in
NAT2 enzyme affinity, as given by equation for Km and its predictors:

Km mg=Lð Þ ¼ 1:721−0:001�BF1 þ 0:044�BF2−0:001�BF4
þ 0:045�BF6;R

2

¼ 0:80 ð3Þ

Table 4 shows that BF4 is a special type of a basis function, described
by an interaction of BF1 (age or height) and genotype. In other words,
age constrained the effect of genotype on enzyme affinity.

Table 5 shows the BFs for isoniazid elimination constant (KINH). The
elimination rate constant is a composite measure reflecting both acety-
lation and elimination of parent compound via loss in urine. The main
predictors were isoniazid dose and NAT2 genotype. In this case, howev-
er BF2was an interaction based on themodification of effect of genotype
on the effect of isoniazid dose (i.e., isoniazid concentration), an example
rmacokinetic parameter estimates NAT2 enzyme function

ination rate (KINH) Maximum velocity (Vmax) Affinity (Km)

6) 30.460 (0.335) 1.678 (0.010)
28.797 1.716

3) 29.919 (1.733) 1.699 (0.049)
6) 29.563 (3.679) 1.717 (0.067)
8) 30.349 (0.608) 1.687 (0.018)

29.640 1.699
6) 30.802 (1.578) 1.677 (0.043)

30.198 1.687
29.823 1.700

2) 30.233 (1.395) 1.683
30.163 1.690
30.864 1.670
30.864 1.670
28.231 1.758
31.690 1.652
31.881 1.646



Table 2
Distribution of demographic characteristics and measures of NAT2 enzyme function between inferred acetylation status groups.

Inferred acetylation status

Rapid (n = 3) Intermediate (n = 13) Slow (n = 14) P-valuea

Enzyme function
Isoniazid elimination 10.301 (0.010) 10.310 (0.010) 10.308 (0.012) 0.2945
Maximum velocity (Vmax) 30.870 (0.749) 30.206 (1.234) 29.853 (2.422) 0.273
Enzyme affinity (Km) 1.669 (0.017) 1.686 (0.028) 1.704 (0.049) 0.2122

Demographic characteristics
Age-in-days 1131.5 (867.3) 1151.4 (942.5) 1064.76 (1094.61) 0.7297
Weight (kg) 12.67 (5.13) 12.83 (5.25) 12.06 (6.01) 0.8655
Height (cm) 90 (18.35) 90.54 (16.68) 85.14 (20.85) 0.6456
Body mass index (kg/m2) 15.20 (2.29) 15.25 (2.65) 15.95 (4.04) 0.9462
Isoniazid dose (mg/kg) 6.29 (1.98) 15.80 (4.40) 11.39 (5.22) 0.099
Isoniazid total daily dose (mg) 73.33 (15.28) 147.69 (41.06) 130.71 (102.37) 0.017

a Based on K-Wallis test.
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of higher order interaction among predictors. This relationship is shown
in Eq. (4):

KINH ¼ 10:297þ 0:0003�BF1−0:0002�BF2;R
2 ¼ 0:64 ð4Þ

This was confirmed by standard regression methods, which showed
that for each unit increase in isoniazid dose above 40mg, KINH increased
by an additional 2.82 × 10−4 per hour for subset 1 versus 1.05 × 10−4

per hour for subset 2 genotypes, a 2.69-fold change in slope.
As regards to the ratio VAINH/fAINH, the R2 for the relationship was

only 0.55 in the best model. We thus considered that our potential pre-
dictors such as clinical and demographic factorswere not as explanatory
of this parameter, and thus no further explorations were made.

4. Discussion

In pharmacometrics, primary pharmacokinetic parameters are the
observed values such as elimination rate constant (KINH), volume of dis-
tribution (both central and peripheral), and in the current study also Km

and Vmax. These observations quantify rates and extents of underlying
physicochemical processes. In other words, these parameters, including
the enzyme reaction constants, are the biological phenotypes. On the
other hand, in pharmacogenomics, inferred acetylation status is com-
monly termed the “acetylation phenotype.” Acetylation phenotype is a
grouping of drug clearances (into 3 overlapping Gaussian curves).
Moreover, commonly in clinical practice, acetylation status is assigned
using 2-h post-dose isoniazid concentrations. However, the isoniazid
elimination rate itself is a product of at least two physicochemical pro-
cesses, acetylation and the loss of unmetabolised (parent) compound
in urine. “Phenotyping”methods such as the 2-h concentration or con-
centration-time profiles or AUC0–24 are even further removed from the
primary process of N-acetylation: they are products of several primary
biological processes, namely absorption rate constant (and closely relat-
ed time to maximum concentration), volume of distribution, and elim-
ination rate constants. Only the last of these is related to acetylation, and
only partially. The primary biological process of acetylation itself (i.e.,
the phenotype), sensu strictiore, is defined by Km and Vmax values,
which are the “observed” values based on calculations using the
Michaelis-Menten Eq. (1). These values are thus not inferred from
Table 3
Factors predictive of maximal velocity (Vmax) on MARS analysis.

Function

BF1 max (0, Dose −190)
BF5 Genotype subset 1
BF7 max (0, Peak isoniazid concentration −8.83)*BF5
BF10 max (0, 1934.5-Age)

NAT2 genotype subset #1: 5D/*11A, 5C/12C, 5C/*14E, *4/*4, *4/*5, *4/*5C, *5B/*5B, *5C/*12A, *5C/*
genotypes, but are the “observed”. Thus, effect of genotype should be in-
ferred based on these phenotypes, and not vice-versa. Here, we simply
asked: what are the physiological and clinical factors that could affect
these quantitativemeasures of phenotype, if at all, andwhich factors af-
fect them the most? In terms of the genes, what groupings of NAT2
genes categorize the phenotypes of isoniazid NAT2 affinity and maxi-
mum velocity in children, during periods of highest growth? MARS, in
which predictors do not take a pre-specified form or groupings (e.g. in-
ferred acetylation status), is excellent at such an agnostic function, and
utilizes only the presented data for its own categorization.

To answer these questions, we identified the Km and Vmax values for
each child from clinical data, based on a pharmacometric approach. The
meanpopulation estimates of 0.012 μMforKm for isoniazid. In biochem-
ical assays for measurement of Km that examined isoniazid acetylation
by human NAT2 from 2-h post-mortem liver homogenates of a rapid
acetylator in the laboratory, the Km values were 0.018 ± 0.004 μM
(Weber and Cohen, 1968). This means that the pharmacometric ap-
proach of using the rate of production of N-acetylisoniazid and disap-
pearance of isoniazid is a robust enough approach to calculate these
values for each child, and gives values similar to those from enzyme ki-
netic experiments of liver biopsy specimens. In other words, the mea-
surement of the phenotype was likely accurate. In the case of the
NAT2 alleles we identified in the children, genotypes such as NAT2∗4,
NAT2∗12A, NAT2∗12B, NAT2∗12C, and NAT2∗13 alleles, and the predomi-
nance of the NAT2*5 allele have been shown to be common in Black
South African adults (Dandara et al., 2003; Loktionov et al., 2002).
Thus, the distribution of the common alleles in our small pediatric co-
hort mirrors that in adults. Application of AI methods to these parame-
ter estimates and genotypes identified several important patterns
between the predictors and enzyme reaction kinetic constants. Our ap-
proach is tractable and follows steps that are easy to apply to any pedi-
atric drug whose metabolite is known for each child, and for a
population of children. Thus, our approach could be used to examine
the effects of maturation and drug doses on both compartmental phar-
macokinetic parameters and Michaelis-Menten relationships for other
phase II metabolism reactions, an unexplored pediatric space (Kearns
et al., 2003).

Second, a current problem in systems pharmacology is the difficulty
in scaling mathematical models from the level of chemical reactions
Units Variable importance score (%)

Dose in mg 100
Allele 1/Allele 2 90
mg/L 90
Age in days 42

5K, *6B/*6B.



Fig. 4. Contribution of dose and age onmaximum velocity. (A). Effect of dose on Vmax, shows lack of effect of dose below 190mg, after which dose has a positive relationship with Vmax. In
this case, dose is a surrogate of drug concentration. (B). Thefigure summarizes thehinge function “max (0, 1934.5-Age)”, a perfect example of theflexibility ofMARS inmodeling change in
relationship between predictor and outcome at a hinge, and thus non-linear. The figure shows that there is a large effect of age until 5.3 years when the contribution gets to a plateau,
suggesting the point of full maturation.
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inside the cell to the level of the individual patient, and to populations of
patients. The MARS equations output could allow this to be accom-
plished, starting with reaction kinetics at the level of a Michaelis-
Menten reaction to whole body physiological parameters in the child
(isoniazid elimination rate), based on relevant clinical and demographic
predictors automatically selected by the algorithm. Moreover, MARS
handles both linear and non-linear interactions simultaneously,
allowing for construction of non-linear models. Furthermore, MARS is
assumption anddistribution free and isflexible enough to identify inter-
actions without a prior falsifiable hypothesis to link reactions constants
to a predictor, as is the case of isoniazid concentration and Km. The find-
ings led to newhypotheses being generated,which can nowbe tested in
separate studies using standard statistical approaches. Thus, themathe-
matical relationships are identified first, and then physiological mean-
ings can be investigated further to improve the precision of the
estimates for better reproducibility.

Third, we found that the relationships between predictors such as
age, dose or isoniazid concentration, and NAT2 enzyme kinetics were
non-linear. In other words, several clinical and physiological factors af-
fected speed of isoniazid acetylation and affinity, and interacted with
each other. Of major importance was the effect of age on both speed
of acetylation and enzyme affinity. Age played a critical role inmodulat-
ing these enzyme activities, and age's contribution changedwith child's
age, with themaximal adult type of activity encountered after 5.3 years
old. This time period likely reflects the time to maturation of the NAT2
enzyme. On theother hand, the effect of dose anddrug concentration al-
ways superseded that of NAT2 genotype. The effect of dose and drug
concentration was persistent regardless of the enzyme reaction con-
stant examined, and was often the primary predictor, except in the
case of Km. The physiological and pharmacological basis for this remain
to be worked out, but the fact that the hinge was always encountered
beyond a certain concentration suggests a real concentration-depen-
dent effect, consistent with many pharmacological processes. The GCV
step identified R2 ≥ 80% on post-test sets, which means there is a high
likelihood of the same observations with future data-sets, so that the
Table 4
Factors predictive of enzyme affinity (Km) on MARS analysis.

Function

BF1 max (0, height-54)
BF2 Max (0, isoniazid peak concentration-11.7)
BF4 Genotypes subset 1*BF1
BF7 Genotypes in subset 2

NAT2 genotype subset 1: *5D/*11A, *5C/*12C, *4/*14, *4/*5, *4/*5C, *5B/*5B, *5B/*5C, *5C/*5K, *5C/
NAT2 genotype subset 2: *12A/*13A, *6A/*12A, *4/*4.
findings are likely valid. However, clearly nothing in our current under-
standing of Km and Vmax can explain how the pharmacological and clin-
ical factors we identified as predictors could affect both enzyme affinity
andmaximumvelocity for isoniazid acetylation. However, the historical
disaster of gray baby syndrome in children treated with the drug chlor-
amphenicol suggests that maturation has a major effect on enzyme
function (Glazer et al., 1980; Mulhall et al., 1983; Sutherland, 1959).
The functional deficiency in the UDP-glucuronyl transferase enzyme
system encountered in the first few weeks of life, especially in prema-
ture neonates, led to cardiovascular collapse when high concentrations
of the antibiotic were achieved in the children (Glazer et al., 1980;
Mulhall et al., 1983; Sutherland, 1959). However, we reiterate that,
the philosophy behindmachine learningmethods such as MARS is pre-
diction and pattern recognition, and not identification of causal path-
ways. Thus, the next step is to test the effect of age and isoniazid
concentration on NAT2 Km and Vmax using standard hypothesis testing
approaches, and if confirmed then a new understanding of NAT2 cata-
lyzed reaction kinetics should be sought.

Fourth, ourfindings could impact themostwidely used pharmacoki-
netic models of maturation as commonly recommended by regulatory
authorities (European Medicines Agency, 2007). Several methods are
used to examine the effect of maturation on pharmacokinetic parame-
ters, with the two most common being allometric scaling based on the
¾ fractal geometry law and physiologically-based pharmacokinetic
modeling (Hope et al., 2007). Thesemethods use specific drug clearance
rates derived in adults to estimate drug clearances in children, with on-
togeny effects scaled based on dry tissue weight of the organ clearing
the drug. The central assumption is that xenobiotic metabolism enzyme
reaction rates are the same between adults and children, and that what
varies is the quantity of the enzymes proportional to organ weight and
size. It is recognized in some cases, as for example sirolimus, that there
could be different fetal isoform enzymes that get replaced by others
after birth, thereby leading to altered clearance (Emoto et al., 2015);
nevertheless the reaction kinetic constants of each of the different iso-
forms are assumed fixed. Moreover, the development of clearance
Units Variable importance score (%)

centimeters 100
mg/L 53
Allele 1/Allele 2 26
Allele 1/Allele 2 26

*6N.



Table 5
Factors predictive of isoniazid elimination rate constant.

Function Units Variable importance score (%)

BF1 max (0, Dose −40) mg 100
BF2 Genotypes subset 1*BF1 Allele 1/Allele 2 19

NAT2 genotype subset 1: *5C/*12A, *12A/*13A, *5C/*12/, *5C/*14E, *5C/*12A, *5C/*6N, *6B/
*6B.
NAT2 genotype subset 2: *5C/*11A, *12A/*12B, *6A/*12A, *4/*4, *4/*5, *4/*5C, *5B/*5B, *5B/
*5C, *5C/*5K.
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with maturation is described by a single mathematical function. Our
data suggests that non-linear functions and analyses,with no a priori as-
sumptions, could be more accurate.

Finally, we found no quantitative relationship between severalmea-
sures of malnutrition such as Z-scores and isoniazid metabolism. In-
deed, no single model included Z-scores and MUAC as a predictor.
However, most children had moderate malnutrition, and it could be
that effects are encountered only with severe malnutrition. Thus, this
question remains unresolved.

Our study has several limitations. The first is the small number of
children enrolled. However, we deliberately optimized experimental
design to identify information rich pharmacokinetic sampling so that
the smaller numbers were deliberate. Moreover, MARS has successfully
identified predictors in smaller populations than these ones in several
studies by us and by others. Second, our findings lack physiological ex-
planations. Thesewill be subject of future studies. Third, the intent of AI
approaches we used is not hypothesis testing, but rather pattern recog-
nition. Thus, future studies in which our findings are tested as a falsifi-
able hypothesis are recommended.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2016.07.031.

Author Contributions

Conception and design: T. Gumbo, B.M., J. Pasipanodya, P. Jeena, W.
Bishai.

Development of methodology: Z. Rogers, H. Hiruy, J. G. Pasipanodya, J.
Adamson, P. Jeena, W. Bishai, T. Gumbo

Acquisition of data: Z. Rogers, H. Hiruy, C. Mbowane, J. Adamson, L.
Ngotho, F. Karim, P. Jeena, W. Bishai

Analysis and interpretation of data: Z. Rogers, J. Pasipanodya, P. Jeena,
W. Bishai, T. Gumbo

Writing, review and/or revision of the manuscript: Z. Rogers, H. Hiruy,
J. Pasipanodya, P. Jeena, W. Bishai, T. Gumbo

Study supervision: P. Jeena, W. Bishai

Conflict of Interest

All authors declare no conflict of interest.

Acknowledgements

The support of the Howard HughesMedical Institute and NIH grants
AI37856, AI36973, 97138, R56AI111985 is gratefully acknowledged.

References

Blum, M., Demierre, A., Grant, D.M., Heim, M., Meyer, U.A., 1991. Molecular mechanism of
slow acetylation of drugs and carcinogens in humans. Proc. Natl. Acad. Sci. U. S. A. 88,
5237–5241.

Brasier, A.R., Garcia, J., Wiktorowicz, J.E., Spratt, H.M., Comach, G., Ju, H., Recinos, A.,
Soman, K., Forshey, B.M., Halsey, E.S., Blair, P.J., Rocha, C., Bazan, I., Victor, S.S., Wu,
Z., Stafford, S., Watts, D., Morrison, A.C., Scott, T.W., Kochel, T.J., 2012. Venezuelan
Dengue Fever Working Group. Discovery proteomics and nonparametric modeling
pipeline in the development of a candidate biomarker panel for dengue hemorrhagic
fever. Clin. Transl. Sci 5, 8–20.

Breiman, L., 2001. Statistical modeling: the two cultures. Stat. Sci 16, 199–231.
Campbell, D.K., 1987. Nonlinear science: from paradigms to practicalities. Los Alamos Sci-

ence Special Issue, pp. 218–262.
Campbell, D., Farmer, D., Crutchfield, J., Jen, E., 1985. Experimental Mathematics: the Role
of Computation in Nonlinear Science. Communications of the ACM - Lecture notes in
computer science Vol. 28. Association for Computing Machinery, New York, NY,
pp. 374–384.

Cascorbi, I., Drakoulis, N., Brockmöller, J., Maurer, A., Sperling, K., Roots, I., 1995. Arylamine
N-acetyltransferase (NAT2)mutations and their allelic linkage in unrelated Caucasian
individuals: correlation with phenotypic activity. Am. J. Hum. Genet 57, 581–592.

Chigutsa, E., Pasipanodya, J.G., Visser, M.E., van Helden, P.D., Smith, P.J., Sirgel, F.A., Gumbo,
T., McIlleron, H., 2015. Impact of nonlinear interactions of pharmacokinetics andMICs
on sputum bacillary kill rates as a marker of sterilizing effect in tuberculosis.
Antimicrob. Agents Chemother 59, 38–45.

D'Argenio, D.Z., Schumitzky, A., Wang, X., 2009. ADAPT 5 User's Guide: Pharmacokinetic/
Pharmacodynamic Systems Analysis Software. Biomedical Simulations Resource, Los
Angeles.

Dandara, C., Masimirembwa, C.M., Magimba, A., Kaaya, S., Sayi, J., Sommers, D.K., Snyman,
J.R., Hasler, J.A., 2003. Arylamine N-acetyltransferase (NAT2) genotypes in Africans:
the identification of a new allele with nucleotide changes 481C N T and 590G N A.
Pharmacogenetics 13, 55–58.

Dheda, K., Gumbo, T., Gandhi, N.R., Murray, M., Theron, G., Udwadia, Z., Migliori, G.B.,
Warren, R., 2014. Global control of tuberculosis: from extensively drug-resistant to
untreatable tuberculosis. Lancet Respir. Med 2, 321–338.

Dokoumetzidis, A., Iliadis, A., Macheras, P., 2002. Nonlinear dynamics in clinical pharma-
cology: the paradigm of cortisol secretion and suppression. Br. J. Clin. Pharmacol 54,
21–29.

Emoto, C., Fukuda, T., Johnson, T.N., Adams, D.M., Vinks, A.A., 2015. Development of a pe-
diatric physiologically based pharmacokinetic model for sirolimus: applying princi-
ples of growth and maturation in neonates and infants. CPT Pharmacometrics Syst.
Pharmacol 4 (2), e17. http://dx.doi.org/10.1002/psp4.17 Epub 2015 Feb 4.

European Medicines Agency, 2007. ICH Topic E11 Clinical Investigation on Medicinal
Products in the Paediatric Population CPMP/ICH/2711/99.

Fretland, A.J., Leff, M.A., Doll, M.A., Hein, D.W., 2001. Functional characterization of human
N-acetyltransferase 2 (NAT2) single nucleotide polymorphisms. Pharmacogenetics
11, 207–215.

Friedman, J.H., 1991. Multivariate adaptive regression splines. Ann. Stat 19, 1–68.
George, N.I., Chang, C.W., 2014. DAFS: a data-adaptive flag method for RNA-sequencing

data to differentiate genes with low and high expression. BMC Bioinformatics 15,
92. http://dx.doi.org/10.1186/1471-2105-15-92.

Glazer, J.P., Danish, M.A., Plotkin, S.A., Yaffe, J.S., 1980. Disposition of chloramphenicol in
low birth weight infants. Pediatrics 66, 573–578.

Gumbo, T., Pasipanodya, J.G., Wash, P., Burger, A., McIlleron, H., 2014. Redefining multi-
drug-resistant tuberculosis based on clinical response to combination therapy.
Antimicrob. Agents Chemother 58, 6111–6115.

Hall, R.G., Swancutt, M.A., Gumbo, T., 2011. Fractal geometry and the pharmacometrics of
micafungin in overweight, obese, and extremely obese people. Antimicrob. Agents
Chemother 55, 5107–5112.

Hall, R.G., Swancutt, M.A., Meek, C., Leff, R., Gumbo, T., 2013. Weight drives caspofungin
pharmacokinetic variability in overweight and obese people: fractal power signa-
tures beyond two-thirds or three-fourths. Antimicrob. Agents Chemother 57,
2259–2264.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning: DataMin-
ing, Inference, and Prediction. second ed. NY, Springer-Verlag, New York.

Hein, D.W., Doll, M.A., 2012. Accuracy of various human NAT2 SNP genotyping panels to
infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics 13,
31–41.

Hickman, D., Sim, E., 1991. N-acetyltransferase polymorphism. Comparison of phenotype
and genotype in humans. Biochem. Pharmacol 42, 1007–1014.

Hiruy, H., Rogers, Z., Mbowane, C., Adamson, J., Ngotho, L., Karim, F., Gumbo, T., Bishai, W.,
Jeena, P., 2015. Subtherapeutic concentrations of first-line anti-TB drugs in South Af-
rican children treated according to current guidelines: the PHATISA study.
J. Antimicrob. Chemother 70, 1115–1123.

Hope,W.W., Seibel, N.L., Schwartz, C.L., Arrieta, A., Flynn, P., Shad, A., Albano, E., Keirns, J.J.,
Buell, D.N., Gumbo, T., Drusano, G.L., Walsh, T.J., 2007. Population pharmacokinetics
of micafungin in pediatric patients and implications for antifungal dosing.
Antimicrob. Agents Chemother 51, 3714–3719.

Jain, M.K., Pasipanodya, J.G., Alder, L., Lee, W.M., Gumbo, T., 2013. Pegylated interferon
fractal pharmacokinetics: individualized dosing for hepatitis C virus infection.
Antimicrob. Agents Chemother 57, 1115–1120.

Jeena, P.M., Bishai, W.R., Pasipanodya, J.G., Gumbo, T., 2011. In silico children and the glass
mouse model: clinical trial simulations to identify and individualize optimal isoniazid
doses in children with tuberculosis. Antimicrob. Agents Chemother 55, 539–545.

Ju, H., Brasier, A.R., Kurosky, A., Xu, B., Reyes, V.E., Graham, D.Y., 2014. Diagnostics for sta-
tistical variable selection methods for prediction of peptic ulcer disease in
Helicobacter pylori infection. J. Proteomics. Bioinformatics 7, 1000307.

Kearns, G.L., Abdel-Rahman, S.M., Alander, S.W., Blowey, D.L., Leeder, J.S., Kauffman, R.E.,
2003. Developmental pharmacology-drug disposition, action, and therapy in infants
and children. N. Engl. J. Med 349, 1157–1167.

Kinzig-Schippers, M., Tomalik-Scharte, D., Jetter, A., Scheidel, B., Jakob, V., Rodamer, M.,
Cascorbi, I., Doroshyenko, O., Sorgel, F., Fuhr, U., 2005. Should we use N-acetyltrans-
ferase type 2 genotyping to personalize isoniazid doses? Antimicrob. Agents
Chemother 49, 1733–1738.

Kiser, J.J., Zhu, R., DʼArgenio, D.Z., Cotton, M.F., Bobat, R., McSherry, G.D., Madhi, S.A., Carey,
V.J., Seifart, H.I., Werely, C.J., Fletcher, C.V., 2012. Isoniazid pharmacokinetics, pharma-
codynamics, and dosing in South African infants. Ther. Drug Monit 34, 446–451.

Lee, E., Levine, E.A., Franco, V.I., Allen, G.O., Gong, F., Zhang, Y., Hu, J.J., 2014. Combined ge-
netic and nutritional risk models of triple negative breast cancer. Nutr. Cancer 66,
955–963.

doi:10.1016/j.ebiom.2016.07.031
doi:10.1016/j.ebiom.2016.07.031
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0005
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0005
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0005
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0010
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0010
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0010
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0010
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0015
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0020
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0020
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0025
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0025
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0025
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0025
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0030
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0030
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0030
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0035
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0035
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0035
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0040
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0040
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0040
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0045
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0045
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0045
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0045
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0045
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0050
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0050
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0055
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0055
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0055
http://dx.doi.org/10.1002/psp4.17
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0065
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0065
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0070
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0070
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0070
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0075
http://dx.doi.org/10.1186/1471-2105-15-92
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0085
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0085
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0095
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0095
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0095
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0100
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0100
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0100
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0105
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0105
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0105
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0105
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0110
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0110
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0115
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0115
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0115
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0120
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0120
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0125
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0125
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0125
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0130
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0130
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0130
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0135
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0135
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0135
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0140
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0140
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0140
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0145
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0145
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0145
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0150
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0150
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0155
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0155
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0155
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0160
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0160
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0165
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0165
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0165


126 Z. Rogers et al. / EBioMedicine 11 (2016) 118–126
Lin, H.Y., Wang, W., Liu, Y.H., Soong, S.J., York, T.P., Myers, L., Hu, J.J., 2008. Comparison of
multivariate adaptive regression splines and logistic regression in detecting SNP-SNP
interactions and their application in prostate cancer. J. Hum. Genet 53, 802–811.

Liu, R., Li, X., Zhang, W., Zhou, H.H., 2015. Comparison of nine statistical model basedwar-
farin pharmacogenetic dosing algorithms using the racially diverse international war-
farin pharmacogenetic consortium cohort database. PLoS One 10, e0135784.

Loktionov, A., Moore, W., Spencer, S.P., Vorster, H., Nell, T., O'Neill, I.K., Bingham, S.A.,
Cummings, J.H., 2002. Differences in N-acetylation genotypes between Caucasians
and Black South Africans: implications for cancer prevention. Cancer Detect. Prev
26, 15–22.

McDonagh, E.M., Boukouvala, S., Aklillu, E., Hein, D.W., Altman, R.B., Klein, T.E., 2014.
PharmGKB summary: very important pharmacogene information for N-acetyltrans-
ferase 2. Pharmacogenet. Genomics 24, 409–425.

Michaelis, L., Menten, M.L., 1913. Die Kinetik der Invertinwirkung. Biochem. Z 49,
333–369.

Modongo, C., Pasipanodya, J.G., Zetola, N.M., Williams, S.M., Sirugo, G., Gumbo, T., 2015.
Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis
patients. Antimicrob. Agents Chemother 59, 6337–6343.

Modongo, C., Pasipanodya, J.G., Magazi, B.T., Srivastava, S., Zetola, N., Williams, S., Sirugo,
G., Gumbo, T., 2016. Artificial intelligence and amikacin exposures predictive of out-
come inmultidrug-resistant tuberculosis patients. Antimicrob. Agents Chemother ac-
cepted for publication.

Mulhall, A., de Louvois, J., Hurley, R., 1983. Chloramphenicol toxicity in neonates: its inci-
dence and prevention. Br. Med. J. (Clin. Res. Ed.) 287, 1424–1427.

Pasipanodya, J., Gumbo, T., 2011. An oracle: antituberculosis pharmacokinetics-pharma-
codynamics, clinical correlation, and clinical trial simulations to predict the future.
Antimicrob. Agents Chemother 55, 24–34.
Pasipanodya, J.G., Srivastava, S., Gumbo, T., 2012. Meta-analysis of clinical studies sup-
ports the pharmacokinetic variability hypothesis for acquired drug resistance and
failure of antituberculosis therapy. Clin. Infect. Dis 55, 169–177.

Pasipanodya, J.G., McIlleron, H., Burger, A., Wash, P.A., Smith, P., Gumbo, T., 2013. Serum
drug concentrations predictive of pulmonary tuberculosis outcomes. J. Infect. Dis
208, 1464–1473.

Pasipanodya, J.G., Mubanga, M., Ntsekhe, M., Pandie, S., Magazi, B.T., Gumedze, F., Myer, L.,
Gumbo, T., Mayosi, B.M., 2015. Tuberculous pericarditis is multibacillary and bacterial
burden drives high mortality. EBioMedicine 2, 1634–1639.

Reed, M.D., 1999. Optimal sampling theory: an overview of its application to pharmaco-
kinetic studies in infants and children. Pediatrics 104, 627–632.

Rey, E., Gendrel, D., Treluyer, J.M., Tran, A., Pariente-Khayat, A., d'Athis, P., Pons, G., 2001.
Isoniazid pharmacokinetics in children according to acetylator phenotype. Fundam.
Clin. Pharmacol 15, 355–359.

Sabbagh, A., Darlu, P., Crouau-Roy, B., Poloni, E.S., 2011. Arylamine N-acetyltransferase 2
(NAT2) genetic diversity and traditional subsistence: a worldwide population survey.
PLoS One 6, e18507.

Sutherland, J.M., 1959. Fatal cardiovascular collapse of infants receiving large amounts of
chloramphenicol. Am. J. Dis. Child 97, 761–767.

Wang, J., Endrenyi, L., 1992. A computationally efficient approach for the design of popu-
lation pharmacokinetic studies. J. Pharmacokinet. Biopharm 20, 279–294.

Weber, W.W., Cohen, S.N., 1968. The mechanism of isoniazid acetylation by human N-
acetyltransferase. Biochim. Biophys. Acta 151, 276–278.

World Health Organization, 2010. Treatment of Tuberculosis in Children.

http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0170
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0170
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0170
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0175
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0175
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0175
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0180
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0180
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0180
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0185
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0185
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0190
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0190
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0195
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0195
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0200
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0200
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0200
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0205
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0205
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0210
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0210
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0210
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0215
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0215
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0215
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0220
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0220
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0220
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0225
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0225
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0230
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0230
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0235
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0235
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0240
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0240
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0240
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0245
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0245
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0250
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0250
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0255
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0255
http://refhub.elsevier.com/S2352-3964(16)30341-3/rf0260

	The Non-�Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism
	1. Introduction
	2. Methods
	2.1. PHATISA Study Design
	2.2. Isoniazid and N-acetylisoniazid Concentration Measurement Assays
	2.3. NAT2 Genotyping
	2.4. Identification of Enzyme Kinetics and Pharmacokinetic Parameter Estimates
	2.5. Frequentist Statistical Analysis
	2.6. Machine Learning

	3. Results
	4. Discussion
	Author Contributions
	Conflict of Interest
	Acknowledgements
	References


