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Abstract

Cancer stem cells (CSCs) are a subpopulation of cancer cells within tumors that exhibit stem-like properties and represent a potentially
effective therapeutic target toward long-term remission by means of differentiation induction. By leveraging an artificial intelligence
approach solely based on transcriptomics data, this study scored a large library of small molecules based on their predicted ability to
induce differentiation in stem-like cells. In particular, a deep neural network model was trained using publicly available single-cell RNA-
Seq data obtained from untreated human-induced pluripotent stem cells at various differentiation stages and subsequently utilized
to screen drug-induced gene expression profiles from the Library of Integrated Network-based Cellular Signatures (LINCS) database.
The challenge of adapting such different data domains was tackled by devising an adversarial learning approach that was able to
effectively identify and remove domain-specific bias during the training phase. Experimental validation in MDA-MB-231 and MCF7
cells demonstrated the efficacy of five out of six tested molecules among those scored highest by the model. In particular, the efficacy
of triptolide, OTS-167, quinacrine, granisetron and A-443654 offer a potential avenue for targeted therapies against breast CSCs.

Keywords: artificial intelligence; domain adaptation; transcriptomics; drug repurposing; cancer stem cells; breast cancer

INTRODUCTION
Cancer stem cells (CSCs) are a subpopulation of cancer cells
within tumors that exhibit stem-like properties, including the
ability to undergo self-renewal and asymmetric division giving
rise to copies of themselves and the mature progeny of non-stem
cells through differentiation. CSCs may mediate tumor metastasis
and relapse, thus representing a potentially effective therapeutic
target toward long-term remission by means of differentiation
induction [1]. It has been noted that even partial success of dif-
ferentiation therapy could improve the prognosis of most patients
by decades [2]. Differentiation therapy represents a paradigm case

in acute myeloid leukemia (AML), where terminal differentiation
of CSCs has been shown to produce significant clinical benefits
[3]. Although it has been proposed that such benefits in AML
are not exclusively due to differentiation of CSCs, differentiation
therapy still holds tremendous therapeutic hope, also for solid
tumors [4–7]. In fact, CSCs have been identified in a broad spec-
trum of solid tumors [8], including breast cancer (BC) [9]. It has
also been demonstrated that despite the fact that prolonged in
vitro culturing is thought to result in loss of crucial stemness
properties, established BC cell lines possess a small fraction of
self-renewing tumorigenic cells with the capacity to differentiate
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into phenotypically diverse progeny. BC stem cell (BCSC) con-
tent varies greatly among BC cell lines and breast carcinomas
[10, 11]. Triple-negative BCs (TNBCs) contain large numbers of
BCSCs, while luminal breast tumors have lower stem cell contents
[12, 13]. Consistently, the MCF7 luminal BC cell line has a low
percentage (0.7–1.4%) of BCSCs, while the MDA-MB-231 TNBC cell
line exhibits low or null CD24 expression and high percentage
(more than 90%) of CD44+ cells [14]. BCSCs are able to undergo
self-renewal, give rise to phenotypically diverse progeny and sur-
vive chemotherapy, thereby constituting an excellent model for
CSCs [14]. Moreover, supporting evidence for a hierarchical CSC-
based model of metastasis initiation has been provided through
single-cell analysis of human metastatic BC cells [15]. Stemness
properties were also identified by analyzing transcriptomic data
of BC cells from patients [16].

Given the potential of differentiation therapy and the evidence
of CSCs in a broad spectrum of tumors, searching for small
molecules that can target CSCs is an active area of research. For
example, histone deacetylase inhibitors have been investigated
for differentiation therapy in AML on the basis of their epige-
netic effects [17]. In general, multiple methodologies have been
proposed that leverage small-molecule treatment to augment cell
conversion [18]. These encompass numerous applications for cell
reprogramming or trans-differentiation, including but not limited
to, neurons [19], endothelial cells [20], pancreatic-like cells [21],
cardiomyocytes [22], hepatocytes [23] and other types of cells [24–
26]. However, a relatively poor understanding of differentiation
mechanisms [2] has prevented a systematic rational approach to
the discovery of novel effective molecules. It is therefore unsur-
prising that, in the context of CSCs targeting, one of the major
studies involved a high-throughput screening (HCS) approach,
through which the ability of salinomycin in selectively killing
BCSCs was discovered [27]. All these investigations underscore
the potential of drug-enhanced cell type conversion, although
they often require extensive experimentation and/or prior under-
standing of biological targets, making the screening of large small-
molecule libraries a remarkably challenging task. In contrast,
computational methods can provide practical shortcuts to iden-
tify small sets of promising candidates for subsequent validations.
While a large number of target-aware computational methods for
clinical applications have been proposed [28], including integrated
approaches exploiting heterogeneous data types [29–31], we have
recently introduced a general target-agnostic method for priori-
tizing small molecules in diverse cell conversion scenarios solely
based on drug-induced transcriptional data, termed ‘DECCODE’
[32]. The method’s efficacy was validated in a cell reprogramming
protocol, showing promising results as a tool for differentiation
studies as well. In particular, it was used to screen the LINCS [33]
database to search for stemness signatures among ∼20 000 drug-
induced gene expression profiles (GEPs).

While the DECCODE approach is based on classical statis-
tics to match a single target profile, a large number of sam-
ples representing the desired transcriptional profile would allow
for the application of more advanced machine learning models,
which are likely to yield improved accuracy. This advancement
in accuracy, coupled with the potential benefits of differentiation
therapy in BC, underpins the main motivation for the present
study (overviewed in Figure 1). Exploiting publicly available single-
cell RNA-Seq (scRNA-Seq) data from human-induced pluripo-
tent stem cells (hiPSCs) labeled according to four differentiation
stages, we devised an artificial intelligence (AI) approach to learn
the corresponding expression patterns and subsequently priori-
tize drugs based on their ability to induce similar features. This

approach allows for completely data-driven drug-prioritization,
not relying on known specific targets or in general any prior
knowledge about the biological mechanisms involved. On the
other hand, it poses the significant challenge of training an artifi-
cial neural network from an scRNA-Seq dataset of untreated cells
and using it to evaluate drug-induced profiles from the LINCS
L1000-based collection, i.e. two completely different platforms
and cellular contexts. We tackled the problem by developing
‘DREDDA’ (‘Drug Repositioning through Expression Data Domain
Adaptation’), a domain-adaptive adversarial architecture that was
able to learn and remove most of the domain-specific information
from the two datasets while simultaneously solving the main task
of identifying differentiation patterns. In particular, the technique
allowed the model to learn domain-specific features (adversarial
task) during the training phase and simultaneously avoid their
use during differentiation stage classification (main task). Domain
adaptation was first widely explored in visual recognition tasks,
where it aims to apply visual recognition models trained in one
domain (e.g. photos) to another domain (e.g. paintings) [34–36].
Along the same principles, DREDDA was designed to learn cell
differentiation patterns from the scRNA-Seq dataset and use
such acquired knowledge to predict the differentiation-induction
ability of each drug from the LINCS collection. Finally, six of the
most interesting hits from the resulting drug prioritization were
experimentally validated, demonstrating the efficacy of five of
them in reducing CSCs in MCF7 and MDA-MB-231 cell lines.

RESULTS
Model development
With the aim of identifying BCSC differentiation-inducing
molecules, we designed an AI approach completely based on
transcriptional data (see Supplemental Methods section). The
fundamental idea was to use a machine learning model in two
steps: (1) learn transcriptional patterns that can discriminate
stem cells from differentiated cells and (2) use the trained
model to identify small molecules inducing similar patterns in
treated cells. Toward this aim, we correspondingly exploited two
different datasets: (1) an scRNA-seq dataset of hiPSCs including
information about the differentiation stage of each cell and (2)
a database of drug-induced transcriptional profiles obtained
after the treatment of different cell lines. In particular, the
scRNA-seq dataset we selected includes 18 787 hiPSCs obtained
from WTC-CRISPRi [37] cells. After sequencing, each cell was
assigned one of four differentiation stages based on unsupervised
clustering and biomarker analysis. As for the second dataset,
we used drug-induced transcriptional profiles obtained from the
LINCS dataset available at the Gene Expression Omnibus (GEO:
GSE70138), including 107 404 differential GEPs corresponding to
the transcriptional responses of 41 cell lines to 1768 different
small molecules spanning different concentrations and time
points [33].

Since the model needs to be trained with the first dataset
and provide predictions for the second one, the main challenge
in its development was to effectively adapt the two domains,
both of which are affected by biological and technical biases.
The main source of biological bias came from the different cell
types involved in both datasets. Although the cellular context
represents an obviously relevant biological variable, it also acts as
a severe limiting factor to the applicability of large drug-induced
gene expression datasets. For this reason, methods treating cell
type variability as biological bias have been proposed with the
aim of maximizing drug prioritization performances from the
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Figure 1. Overview of the study. Single-cell GEPs of hiPSCs at various differentiation stages and drug-induced GEPs were fed to an adversarial learning
model, which simultaneously learned differentiation features to be used in subsequent predictions (main task) and dataset-specific features to be
avoided (adversarial task). The trained model was then used to score all the drug-induced profiles. A selection of six drugs among the top-scoring ones
was experimentally validated.

available data [38]. The rationale is that the treatment effects
observed in the available transcriptional data even after correct-
ing for cell types should not be bound to a specific cellular context.
Concerning technical biases, the two datasets were produced with
remarkably different technologies, i.e. scRNA-Seq and L1000, the
latter being specifically designed within the LINCS project. In
order to reduce such sources of misleading signals, we devised an
adversarial domain adaptation approach (Figure 2a and Supple-
mental Methods section), in which a single deep learning model
was trained to solve two competing tasks: (1) the main task,
i.e. identifying the differentiation stage of each cell from the
hiPSCs dataset and (2) the adversarial task, i.e. to discriminate
between hiPSCs profiles and LINCS profiles (regardless of the
treated cell line). In particular, the model was trained to maximize
the performance of the main task and simultaneously minimize
the performance of the second task. In this way, the extracted
transcriptional features allowed the prediction of differentiation
stages without relying on domain-specific information. During
the training phase, the hiPSC dataset alone was used for the
main task, while both datasets were used for the adversarial
task. In particular, the training phase of DREDDA aimed for a
steady increase of the main task classification performance and
a steady decrease of the adversarial domain classification per-
formance (Figure 2B). Indeed, the main task on the hiPSC dataset
achieved 86.7% accuracy at the end of the training, significantly
improving from the initial low performance. On the other hand,
the adversarial task accuracy started at 100%, highlighting a
severe dataset-dependent bias, but reached a ∼50% performance
by the end of the training (Figure 2B), indicating near- complete
inability to distinguish between hiPSC and LINCS profiles. In other
words, the information extracted by the model was sufficient
to perform the main task, although largely irrelevant to the
adversarial task. The internal representation of the data defined
by the model after domain adaptation is visualized in Figure 2C
together with a representation of the original data space. By
comparing the two representations, it is evident how the clusters
of cells belonging to each of the four differentiation stages appear
significantly more separated after domain adaptation. On the
other hand, the LINCS profiles, which mostly clustered together
before adaptation, appear widely spread after adaptation, making
them hardly separable from hiPSC profiles. We also quantified

this effect by counting the percentage of hiPSC profiles falling
in the 30 nearest neighbors of each LINCS profile before and
after adaptation, showing a dramatic shift in the corresponding
distributions (Figure 2D).

Top hits validation and characterization
After training, the model was finally used to perform the main
task on each of the LINCS profiles and thus predict the effective-
ness of the corresponding treatment to induce the transcriptional
features learned from the hiPSC dataset. In particular, we used
the scores assigned by the model as a prioritization measure
to rank all LINCS profiles. In order to validate the prioritization
based on prior knowledge, we collected DECCODE scores for all the
drugs in the list of DREDDA predictions. DECCODE is a measure
of stemness based on biomarker identification from time series
gene expression data obtained through ad hoc cell reprogramming
experiments that we defined and validated in a previous study
[32]. Given its meaning, we expected to observe a tendency of
DECCODE scores to induce opposite predictions as compared to
DREDDA scores. To verify this tendency, we applied two commonly
used information retrieval (IR) metrics: (1) mean reciprocal rank
(MRR) and (2) normalized discounted cumulative gain (nDCG,
computed at four different cutoffs: 50, 100, 150, 200). In particular,
we first ranked the drugs in the LINCS database according to
the scores assigned by the DREDDA model and then computed
MRR and nDCG for the set of 10 drugs with the lowest DECCODE
scores (see Supplemental Methods). Moreover, we repeated the
same analysis after ranking the drugs according to five additional
prediction methods: (1) random, (2) average cosine similarity of
LINCS GEPs to the GEP signatures of the hiPSC clusters (‘GEP +
Cos Similarity’), (3) analogous approach using the Jaccard sim-
ilarity (‘GEP + Jaccard Similarity’), (4) average cosine similarity
of pathway activations (PAs) [39], which compares profiles at
the pathway level (‘PA + Cosine Similarity’) and (5) DREDDA
without domain adaptation (‘DREDDA w/o DA’) (see Supplemental
Methods). DREDDA consistently and significantly outperformed
the other methods. The remarkable improvement after including
domain adaptation underlines the fundamental importance of
this harmonization step in integrating highly heterogeneous tran-
scriptomics data (Figure 3A). Consistent with previous literature
[39], such effect of the harmonization is also observed during the
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Figure 2. Model development. (A) The DREDDA model architecture includes one encoder for each dataset and a shared decoder; the resulting profiles
from the source domain are sent to the main task classifier (positively weighted in the overall loss function), while both source and target domain profiles
are sent to the adversarial classifier (negatively weighted). (B) During training, the main task accuracy increases, while the adversarial task accuracy
decreases. (C) Comparison between the embedding before (left) and after (right) domain adaptation shows that cells at the various differentiation
stages tend to cluster together more, while LINCS drug-induced profiles tend to spread across the source domain. (D) The neighborhood of untreated
cell profiles tends to be more enriched for LINCS profiles after domain adaptation (curve peaking to the right) as compared to before (curve peaking to
the left).

conversion of GEPs to PAs as it strongly boosted the performance
of cosine similarity. Additionally, we also observed statistically sig-
nificant low (high) DECCODE scores in the top- (bottom-) 10 drugs
(Figure 3B), which appear coherent with differentiation (stem-
ness) features. We also observed a general negative correlation
between the DREDDA score and the DECCODE score (Figure S1).

Apart from the validation of DREDDA’s prediction with
the previous computational methods, we also specifically
tested its consistency with previously published experimental
results on a collection of 45 drugs, including 25 with high
DECCODE scores and 20 with low DECCODE scores [32]. Briefly,
these drugs were tested for pluripotency induction in human
inducible fibroblast-like cells by means of colony formation
assays. Following each treatment, the count and size (% of
plate area covered) of the forming colonies were used to
measure the efficacy of pluripotency induction. Additionally,
a combined measure was obtained by calculating the average
percent increase in both colony count and size relative to
untreated cells. For the present study, we selected the 10 drugs
with the smallest combined measure and computed the IR
metrics for all the methods as previously described. Also in this
case, DREDDA outperformed the other methods in terms of MRR
and nDCG (Figure 3C). In contrast, none of the 10 drugs were
selected among the top 50 or 100 drugs as ranked by three of

alternative methods (random prediction, GEP + Cos similarity,
GEP + Jaccard similarity), resulting in the corresponding null
scores. We also sorted the list of 45 drugs according to their
DREDDA scores and observed that the 10 drugs with the highest
DREDDA scores generally induced low colony count and colony-
covered area in the DECCODE-related experiments, thus providing
one of the first experimental evidence of the effects induced by
such drugs on cell stemness (Figure 3D). Finally, we evaluated an
additional important parameter for all the methods, i.e. prediction
diversity (Figure 3E and Supplemental Methods), which may
explain the higher performance of DREDDA in terms of lower
prediction bias.

Among the top 30 drugs prioritized by DREDDA (Table S1),
many molecules belong to chemotherapeutic agents in the class
of kinase inhibitors, including CDK inhibitors, MELK inhibitors
and JNK inhibitors. Other molecules specifically target DNA
replication, including topoisomerase inhibitors and pyrimidine
synthesis inhibitors. In order to further explore their common
molecular features, we took advantage of the corresponding
LINCS profiles. We first extracted the 30 most dysregulated
genes from each of the top 30 profiles. As expected from the
inhibitory nature of many drugs in the set, the dysregulated genes
appeared to be mostly down-regulated (Figure S2). Specifically,
the same 19 genes were commonly down-regulated by more

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae207#supplementary-data
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Figure 3. Validation and characterization of the top hits. (A) The performance of DREDDA and the other five tested methods as measured by the MRR and
the nDCG at four different thresholds (@50, 100, 150, 200) of the bottom 10 drugs with the lowest DECCODE scores (see Supplemental Methods for the
detailed descriptions). Error bars displayed for DREDDA, DREDDA w/o DA and Random Prediction based on five independent runs. (B) Top (bottom) drugs
as prioritized by DREDDA have low (high) DECCODE scores, which predict stemness features (C) Similar to (A) but using the top 10 drugs which resulted
in the highest colony area and counts. (D) Drugs previously tested for inducing stemness tend to be ranked lower by DREDDA based on experimental
evidence including stem cells’ colony count and size. (E) The classification diversity of the LINCS profiles by DREDDA and the five other comparing
methods into the four states of hiPSCs (F, G) Summary of the positive and negative enrichments for pathways among the top levels of the ‘Biological
Process’ and ‘Cellular Component’ Gene Ontology categories that are significantly dysregulated by the top 30 drugs. (H) Same analysis as in (F, G), but
focused on the ‘Cell cycle’ and ‘Differentiation’ levels in the ‘Biological Process’ category.
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than 10 drugs, but only the 7 same genes were commonly up-
regulated by more than 10 drugs (Figure S2). Many of the 19
down-regulated genes are related to the cell cycle. For example,
the expression of the proliferating cell nuclear antigen (PCNA),
essential for DNA replication, appeared reduced by 22 drugs in the
list, while Cyclin B2 (CCNB2) appeared down-regulated by 23 drugs
(Table S2). This was better assessed by an enrichment analysis
performed through the DAVID tool [40], which not only confirmed
a clear enrichment of cell-cycle-related pathways but also
highlighted the presence of two differentiation related pathways
(Table S3). However, in order to directly and systematically
investigate the common pathways affected by the top 30 drugs,
we resorted to a specific tool, i.e. the Drug Set Enrichment
Analysis (DSEA) [41], using the ‘Biological Process’ and ‘Cellular
component’ categories of the Gene Ontology (GO) collection
(Tables S4 and S5). The most significant resulting pathways
with a negative score included many that are associated with
the cell cycle process (such as cell cycle G2-M phase transition,
positive regulation of cyclin-dependent protein kinase activity
and telomerase RNA localization) and structures involved in it
(including nuclear envelope, spindle pole and centrosome). On
the other hand, the most significant pathways with a positive
enrichment score mostly concerned cell communication (e.g.
regulation of calcium ion transmembrane transport; regulation
of hormone levels; organic anion transport) or differentiation
(pattern specification process; regionalization; photoreceptor
cell differentiation). Next, in order to obtain a more high-level
overview of the most recurrent cellular activities impacted
by the drug set, we systematically investigated the up- and
down-regulation of pathways falling within larger families of
biological processes and cellular components. In particular, we
quantified how many negatively and positively DSEA-enriched
pathways fell below each one of the top terms in the GO hierarchy
(Figure 3F). Notably, most pathways in the families of cell cycle
(i.e. cell cycle, cell cycle checkpoint and cell cycle process) and
cell division (i.e. cell division, chromosome segregation, actin
filament–based process and cellular metabolic process) were
negatively enriched, suggesting a general inhibition of the cell
cycle progression under the treatment of the top 30 drugs. In
contrast, most pathways within families that are possibly related
to cell differentiation (i.e. cell adhesion, cell communication
and cellular developmental process) were positively enriched.
Consistently, the same analysis on top-level pathways in the
Cellular Component category showed that most cell cycle–
related cellular structures were negatively enriched (e.g. spindle
pole, nucleoplasm and chromatin), while those possibly related
with differentiation through cell communication were positively
enriched (to cell junction, cell projection and cell periphery)
(Figure 3G). All such results were obtained by blindly investigating
pathways and families of pathways without using any prior
information. However, given the known desired effects that the
drugs were prioritized for by DREDDA, we further investigated
the enrichment of pathways below the cell cycle and cell
differentiation levels in the GO hierarchy (Figure 3H). All of the
three levels below cell cycle (i.e. cell cycle process; mitotic cell
cycle; regulation of cell cycle) were highly enriched by negatively
regulated pathways. On the other hand, most levels below the cell
differentiation term appeared positively enriched.

In vitro biological evaluation: effects of the
molecules on general BC cell viability
Computational results were validated through in vitro
experiments using the MCF7 (luminal triple-positive BC) and

MDA-MB-231 (mesenchymal-like triple-negative BC) cell lines,
chosen as models of BC with low and high percentages of CSCs,
respectively [42]. Six small molecules (Table 1), out of the top 50,
were selected based on their availability and interest. In particular,
in order to obtain a small but diverse set of candidates, two drugs
were selected solely based on their ranks (first and second in
the prioritization), two other drugs for being already approved
in oncological applications, one drug for being approved in an
unrelated context and one small molecule with no approved
clinical application (see Discussion for further considerations).
From a preliminary exploration concerning their common mode
of action, we observed that quinacrine, triptolide and A-443654
target different components of the AKT pathway (Figure S3).
On the other hand, triptolide and quinacrine both target the
NF-κB pathway, albeit through different mechanisms [43, 44].
OTS-167 and A-443654 both affect cell cycle regulation, with OTS-
167 targeting PLK1 and A-443654 targeting AKT, which influences
cell cycle progression [45, 46]. Triptolide, OTS-167, A-443654 and
quinacrine all have anti-neoplastic properties, although they
target different pathways involved in cancer cell growth and
survival. The six molecules were first tested for cell viability using
increasing drug concentrations to establish the IC50 (Figure S4).
According to the MTT findings, triptolide and OTS-167 were highly
cytotoxic in both cell lines with IC50 at nanomolar concentrations.
A-443654 showed similar IC50 as compared to OTS-167 only on
MCF7 cells, while it was less effective on the more staminal and
therefore chemo-resistant MDA-MB-231 cell line. Granisetron and
leflunomide were better tolerated by both cell lines, resulting in
IC50 at micromolar concentrations. Finally, quinacrine showed
an intermediate IC50 in the low micromolar for both cell lines.
Based on these findings we chose the working concentrations to
be used for each molecule in the following assays targeting CSCs.
Two significantly different effective dosages were used for all the
molecules, as detailed in Table S6.

Validation of molecule efficacy on BCSCs
To evaluate the effects of each drug on BCSCs, we first treated
adherent cells for 24 h; then, we washed out the drug and seeded
the surviving cells in stem cell medium on ultra-low attachment
plates to let only BCSCs growing as mammospheres. The analysis
of mammosphere-forming efficiency (MFE), growth ability and
self-renewal showed that three drugs, triptolide, OTS-167 and
quinacrine, effectively suppressed the growth of BCSCs in both
cell lines (Figure 4A and B). In more detail, triptolide decreased
the MFE of both MDA-MB-231 and MCF7 cells in a dose-dependent
manner. It also reduced mammosphere growth ability and self-
renewal for both cell lines by nearly 80% and 90% at the highest
dose. OTS-167 inhibited MFE and self-renewal activity of MDA-
MB-231 cells in a dose-dependent manner, while their growth
ability was significantly inhibited only at the highest dose. OTS-
167 also decreased MFE and growth of MCF7 cells in a dose-
dependent manner, while self-renewal was highly reduced at both
doses without significant differences between them. Quinacrine
showed a significant effect on the reduction of MFE and self-
renewal (dose-dependent only for MFE) of MCF7 cells, while its
effect on MDA-MB-231 cells was only a significant reduction of
mammosphere growing ability and a trend for a reduced MFE
(Figure 4B). Other two drugs, granisetron and A-443654, inhibited
MFE, mammosphere growth and self-renewal of either MCF7 or
MDA-MB-231, respectively (Figure 4C–E). For granisetron, only the
lower dose (300 μM) showed a significant effect. Finally, lefluno-
mide did not show any significant effect on BCSC availability and
growth of both cell lines (Figure 4E).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae207#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae207#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae207#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae207#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae207#supplementary-data
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Table 1: Small molecules selected for experimental validation from the top hits in the prioritization list

Drug 2D structure Targets Clinical trials and approvals

Triptolide EGFR, HSP70 heat-shock proteins,
NFKB1, NFKB2, RELA, RELB, REL,
Myc, γ -secretase complex

Autoimmune diabetes, Autosomal Dominant
Polycystic Disease (Phase 3)
Psoriasis (Approved)

OTS-167 MELK Relapsed/Refractory Locally Advanced or Metastatic
Breast Cancer and Triple Negative Breast Cancer
(Phase 1)
Chronic Myelogenous Leukemia, Myelodysplastic
Syndromes, Acute Lymphoblastic Leukemia, Acute
Myeloid Leukemia (Phase 2)

A-443654 AKT1
AKT2
AKT3

N/A

Leflunomide Malaria DHOdehase PTEN-null Advanced Solid Malignancies (Phase 1)
Arthritis (Approved)
Multiple sclerosis (Approved)

Granisetron 5HT3R Nausea and vomiting (Approved)

Quinacrine PLA2G1B
p53
NFkB

Advanced Renal Cell Carcinoma, Prostate cancer
(Phase 2)
Giardiasis, Leishmaniasis, Malaria, Systemic Lupus
Erythematosus (Approved)

Induction of BCSC differentiation
BCSCs are classically defined by CD44 (Cluster of Differentiation
antigen-44) positive and low or absent levels of CD24 (Cluster
of Differentiation antigen-24) expression (CD44+/CD24−/low) on
their surface [47] and recent clinical evidence has established
that tumorigenic BC cells with high expression of CD44 and low
expression of CD24 are resistant to chemotherapy [48]. To evaluate
whether the effect of the drugs on the availability and growth
capacity of BCSCs was due to the induction of their differenti-
ation, as predicted by the AI algorithm, we analyzed CD44 and
CD24 expression by fluorescence-activating cell sorting (FACS),
on adherent MDA-MB-231 and MCF7 cells treated for 24 h with
each of the molecules that showed significant effects in the mam-
mosphere assay. Quinacrine was found to be the most effective
drug in inducing BCSC differentiation in both MCF7 and MDA-MB-
231 cells, as assessed by the large dose-dependent decrease and
simultaneous increase of the CD44+/CD24− and CD44−/CD24+

subpopulations, respectively, in the MDA-MB-231 cells and sig-
nificant dose-dependent increase of the CD44-/CD24+ subpop-
ulation in the MCF7 cells (Figure 5A and B). However, triptolide
and OTS-167 also showed significant differentiating effects on
both MCF7 and MDA-MB-231 cells (Figure 5B), while granisetron
and A-443654 showed significant differentiating effects only on
MCF7 or MDA-MB-231, respectively (Figure 5C and D), consistently
with the mammosphere assay. These results confirm that the
effects of the selected drugs on the availability, growth capacity
and self-renewal of BCSCs are due to the induction of their
differentiation.

DISCUSSION
BC is a complex disease characterized by cellular heterogeneity
among which the presence of CSCs has been identified as a
key factor contributing to tumor initiation, progression and
therapy resistance, thereby indicating an important therapeutic
target. In this study, an AI approach was employed to identify
potential differentiating agents targeting BCSCs. The utilization
of AI offered a powerful tool for screening a large library of
compounds and identifying molecules with desired properties.
Previous studies have demonstrated that drug-induced gene
expression data, regardless of its known technical limitations
and biological context dependency, can be effectively used to
prioritize molecules facilitating cell-type conversion based on
a specific target expression profile. In this study, for the first
time we showed how the same idea could be extended to an
even more agnostic case, in which the target differential profile
itself is not defined a priori, but learned from data, exploiting
domain adaptation across GEPs of treated and untreated
cells for improved comparability. In particular, this was made
possible by a machine learning approach that automatically
extracted relevant transcriptional features from scRNA-seq
data. Indeed, from a computational perspective, single-cell
transcriptomics proved to be an effective platform to obtain
sizable datasets that are suitable for the training and testing of
machine learning algorithms across diverse domains, despite the
severe biases involved. With the aim of ameliorating such bias,
possibly relevant cell-specific features were likely removed during
the training phase, which may represent the major drawback of
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Figure 4. Mammosphere assay in drug-treated BC cells. (A) Representative images of MCF7 and MDA-MB-231 cells pre-treated for 24 h with increasing
doses of the indicated molecules and then cultured for 7 days as mammospheres in stem cell medium after the washing out of the drug. (B) Average
number of mammospheres, their diameter and self-renewal capacity in three independent experiments. For MDA-MB-231 treated with triptolide and
OTS-167, the number of single cells composing the mammospheres, as a measure of their growth, is reported instead of the mammosphere diameter.
(C, D) Representative images of MCF7 and MDA-MB-231 cells pre-treated for 24 h with increasing doses of each molecule and then cultured for 7 days
as mammospheres in stem cell medium after the washing out of the drug. (D) For granisetron, only the lower dose (300 μM) and its relative control
(CTRL1) were shown. (E) Average number of mammospheres, their diameter and self-renewal capacity in three independent experiments. CTRL = DMSO
0.1%; CTRL1 = DMSO 0.6%; ∗, P < 0.05; ∗∗, P < 0.01; ∗∗∗, P < 0.001; ∗∗∗∗, P < 0.0001; ns, not significant.
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Figure 5. FACS profiling of CD44 and CD24 expression in MDA-MB-231 and MCF7 cells treated with quinacrine, triptolide, OTS-167, granisetron and A-
443654. (A) Representative dot plots for quinacrine-treated cells. (B) The mean values +/− SE of the CD44+/CD24- (blue bars), CD44+/CD24+ (green bars)
and CD44-/CD24+ (orange bars) subpopulations were reported as a ratio relative to control (CTRL: DMSO 0.1%) for all treatments. (C) Representative
dot plots of granisetron-treated MCF7 and A-443654-treated MDA-MB-231 cells. GNS, granisetron; A-44, A-443654. (D) The mean values +/− SE of the
CD44+/CD24- (blue bars), CD44+/CD24+ (green bars) and CD44-/CD24+ (orange bars) subpopulations were reported as a ratio relative to control (CTRL:
DMSO 0.1% for A-443654; DMSO 0.6% for granisetron) for all treatments. ∗, P < 0.05; ∗∗, P < 0.01; ∗∗∗∗, P < 0.0001.

this approach. Nonetheless, this strategy is necessary to deal
with the limited availability of consistent drug-induced GEP
datasets, another significant challenge for this type of data-driven
discovery algorithms.

Following the AI-based screening, the study experimentally
validated the efficacy of five out of six selected molecules, namely,
triptolide, OTS-167, quinacrine, granisetron and A-443654, in
targeting BCSCs by inducing them to differentiate. Two commonly
studied BC cell lines, MCF7 and MDA-MB-231, were used to assess

the impact of these compounds on BCSCs, showing effective
suppression of mammosphere-forming efficiency, growth and
self-renewal. The differentiation induction was confirmed by
an altered protein expression associated with stemness and
differentiation. Indeed, the CD44+/CD24− subpopulation was
reduced in MDA-MB-231, while CD24+ cells were increased in
both MDA-MB-231 and MCF7 cells.

In several previous studies, triptolide, a natural compound
(diterpenoid tri-epoxide) derived from the Chinese herb
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Tripterygium wilfordii, has been found to exhibit potent anti-cancer
properties, including anti-proliferative, anti-metastatic and
pro-apoptotic effects in various cancer types [49–52]. Some of
these studies explored the potential of triptolide in targeting
BCSCs, showing it inhibits multiple signaling pathways involved
in self-renewal and maintenance of BCSCs, including c-Myc,
Wnt/β-catenin and Notch pathways [53–55]. Consistent with our
results, Li et al. [56] demonstrated that triptolide inhibited self-
renewal and induced a more differentiated phenotype in BCSCs,
leading to reduced tumor growth and metastasis.

Similarly, there have been studies investigating the role of
quinacrine, a well-known antimalarial drug, in targeting CSCs
[57]. Specifically, quinacrine treatment effectively inhibited cell
proliferation, migration, invasion and representative metastasis
markers of BCSCs [58, 59]. However, no studies have so far shown
a direct role of this agent on CSC properties in BC or other tumor
models.

OTS-167, also known as OTSSP167, is an orally available MELK
(Maternal embryonic leucine zipper kinase) inhibitor that is
currently in phase I/II clinical trials for various tumors [60].
MELK induces carcinogenesis effects and is tightly associated
with extended survival and accelerated proliferation of CSCs in
various tumors, including glioblastoma and BC [61]. Consistently,
MELK inhibition by OTS-167 treatment significantly suppresses
the proliferation and neurosphere formation in glioblastoma stem
cells, in which MELK expression is enriched [62]. However, there
is limited research specifically focused on the role of OTS-167
in BCSCs. Only Chung et al. [63], in their pioneer study on the
development of this compound, investigated its direct impact on
BCSCs, demonstrating its efficacy in suppressing mammosphere
formation and tumor growth in xenograft studies. Here, we
confirmed its efficacy in reducing BCSC availability, growth
and self-renewal by mammosphere assays, also showing that
it induces their differentiation.

Granisetron, a selective serotonin receptor (5-HT3) antag-
onist, is primarily used as an antiemetic medication to pre-
vent chemotherapy-induced nausea and vomiting [64]. While
granisetron has been extensively studied in the context of
managing chemotherapy-related symptoms, its specific role in
directly targeting CSCs has not been investigated yet. Some
studies have suggested that certain 5-HT3 receptor antagonists,
including granisetron, may possess anti-CSC properties. These
studies indicate that 5-HT3 receptor antagonists can modulate
signaling pathways of CSCs [65, 66]. Here, for the first time, we
demonstrated that a specific dosage of granisetron (300 μM)
effectively inhibits BCSC properties in MCF7 cells and induces
them to increase expression of the epithelial differentiation
marker CD24, suggesting it acts as a differentiating agent in these
cells.

A-443654 is a small molecule inhibitor that primarily targets
AKT kinases, a protein family involved in multiple cellular sig-
naling pathways regulating cell survival, proliferation and growth,
the dysregulation of which has been implicated in various types
of cancer [67]. Importantly, A-443654 has been shown to inhibit
glioblastoma stem-like cells with similar efficacy compared with
traditionally cultured glioblastoma cell lines [68], but there was
still no research on its effects on BCSCs. In our study, we showed
that it is effective in targeting MDA-MB-231-derived BCSCs with a
weak differentiating effect.

Overall, the current study has important implications for the
development of targeted therapies against BCSCs. The AI-driven
identification of potential CSC differentiating agents expands the
repertoire of molecules available for therapeutic interventions.

The whole process is completely agnostic, eliminating the require-
ment for previous knowledge of specific molecular mechanisms
to be targeted. Moreover, it highlights the power of AI in accel-
erating drug discovery and repurposing efforts, specifically in
identifying molecules capable of targeting CSCs. By inducing CSC
differentiation, these molecules hold the promise of reducing
tumor heterogeneity, inhibiting self-renewal and sensitizing CSCs
to conventional therapies. Nonetheless, in order to understand the
potential impact on clinical applications of our study, some impor-
tant limitations must be taken into account: (i) in vitro studies
may not fully represent the complex and dynamic conditions of
a living organism; (ii) cell lines might not accurately recapitulate
the complexity of the original tumor; and (iii) in vitro studies often
have short experimental durations, which may not capture the
long-term effects of the drug or the development of drug resis-
tance in CSCs over time. Concerning technical limitations, deep
learning algorithms often pose significant computational chal-
lenges. DREDDA exhibited longer run times compared to alter-
native methods when the training process was performed from
scratch (Table S7). Nonetheless, DREDDA’s pre-training phase is
notably quicker than PA + cosine similarity, which necessitates
dataset pre-transformation. Overall, given that both training and
inference with DREDDA for the present application could be
finished within minutes on a standard workstation, the involved
computational burden should not hinder its practical use also
on larger datasets. Finally, although the presented methodology
is conceived to be applied to any biological context in which a
target signature can be learned from single-cell data, its actual
performance needs to be assessed in each specific application.

Future perspectives of this work involve the translation of these
findings into preclinical and clinical studies. In vivo models and
patient-derived xenograft models should be employed to assess
the therapeutic efficacy, safety and pharmacokinetics of these
compounds. Most of these molecules have already been tested
on humans and considered safe, which constitutes an obvious
advantage in terms of possible clinical translation. Additionally,
further investigations are needed to elucidate the underlying
molecular mechanisms by which these compounds induce CSC
differentiation.

In conclusion, the integration of AI-driven screening and exper-
imental validation provides a valuable approach to identifying
molecules capable of differentiating BCSCs. The findings of this
study, including the efficacy of triptolide, OTS-167, quinacrine,
granisetron and A-443654, offer potential avenues for targeted
therapies against BCSCs. This work lays the foundation for further
research and development, bringing us closer to more effective
and personalized treatments for BC patients.

METHODS
Gene expression data
A single-cell RNA-seq dataset consisting of 18 787 WTC-CRISPRi
[37] hiPSCs was obtained from a previous study [37], in which each
cell was assigned one of four pluripotency stages (core pluripo-
tent, proliferative, early primed for differentiation, late primed
for differentiation). The gene expression counts appeared both
sparsely and skewly distributed, which may interfere with the
artificial neural network model’s convergence. Therefore, a zero-
inflated negative binomial (ZINB) autoencoder model [69] was
used for normalization and denoising. Since it is an unsupervised
method, the ZINB-based model was trained using both the source
and the target datasets and the estimated mean parameter (M

_
)

of the model was used as the denoised version of the expression

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae207#supplementary-data


AI for differentiation therapy in cancer | 11

count matrix. The denoised count matrix was then transformed
with the mapping x → log (x + ε), where ε was set to 1.0 × 10−5 to
avoid undefined output values. Feature selection was performed
on the source dataset by calculating the mutual information (MI)
between each feature (gene) and the cluster labels. The top 1000
genes with the highest MI values were selected for subsequent
analyses.

Concerning LINCS drug-induced profiles, the last release was
obtained from GEO (ID: GSE70138). It includes 118 050 profiles
obtained after treatment of 41 cell lines with 1796 small-molecule
compounds. In this study, the level-5 data of the LINCS database
were downloaded from the GEO website (GSE70138). CMAPPy2
(version 4.0.1) was used to access the GCTX data format. In
particular, population-control normalized differential profiles
included in the level-5 distribution were used. Finally, only genes
included both in the LINCS profiles and in the set selected
from the hiPSC data were used to train the computational
model.

Neural network model
The DREDDA architecture is a three-module composite deep neu-
ral network consisting of (1) a domain-specific autoencoder (green
part of Figure 2A in the main text); (2) the main task classifier
(blue part in Figure 2A); and (3) an adversarial domain classifier
(red part in Figure 2A). The domain-specific autoencoder is an
autoencoder with two independent encoders, one for each input
dataset, and a shared decoder. The output of the decoder is
sent to subsequent modules. The task classifier is a multi-layer
perceptron providing classification probability for each of the four
pluripotency stages. Its training is performed only on the source
domain (hiPSC data) based on a cross-entropy loss function Lcls.
The adversarial domain classifier receives the same input as the
main classifier. However, it aims to provide a binary decision on
whether such input comes from the source domain (hiPSCs) or
the target domain (LINCS). Therefore, it is trained using both the
source and target domain data with a binary cross-entropy loss
function (Ladv). Inspired by the Deep Domain Confusion frame-
work [36], a third objective was introduced to enforce the simi-
larity of intermediate network values between the source domain
and the target domain examples by minimizing a Maximum Mean
Discrepancy [70] (Ldc). The whole model was trained to simulta-
neously optimize the three mentioned functions according to the
composite loss function: Lcls−Ladv+λLdc. The details of the network
architecture and hyperparameters are listed in Table S8, shown in
Figure S5 and described in Supplemental Methods.

Model training was performed with a two-phase update
per training step: phase 1 updates the minimization objective
parameters (parameters of the source domain encoder, the target
domain encoder, the shared decoder and the task classifier), while
phase 2 updates the maximization objective parameters (the
adversarial domain classifier). For each training step, an equal
number of source domain and target domain examples were
sampled. The model was implemented using PyTorch 1.8 [71]
deep learning framework and requires an NVIDIA CUDA-capable
GPU with ≥10GB of memory.

Performance evaluation
We evaluated the performance of DREDDA and three other alter-
native approaches through two commonly-used IR metrics: (1)
the MRR and 2) the nDCG at four different thresholds (@50, 100,
150, 200). For a given ordered list of drugs (l), e.g. the LINCS drugs
ordered by the algorithm, and a target set (s) of interest, e.g. the

drugs with lowest DECCODE scores, the MRR is defined as:

MRR = 1
| s |

|s|∑
i=1

1
rank [l, s [i]]

where rank [l, s [i]] is the ranking of the ith drug of the target
set s in the ordered list l. The MRR metric is higher when a
particular method prioritizes the drugs in the target set toward
the beginning of the ordered list. The discounted cumulative gain
(DCG@K) metric is defined as:

DCG@K =
K∑

i=1

‖ [l [i] in s]
log 2

(
i + 1

)

where K is a certain predefined threshold. The ideal discounted
cumulative gain

(
iDCG@K

)
is defined as:

DCG@K =
K∑

i=1

‖
[
l [i] in s

]

log 2
(
i + 1

)

where l is the reordered version of list lwhen all items in set
s are located in the first positions. Finally, the normalized
discounted cumulative gain (nDCG@K) is defined as the ratio
DCG@K/iDCG@K.

Alongside DREDDA, we evaluated the following methods as
comparisons:

• Random prediction. LINCS profiles were randomly assigned a
score that is uniformly distributed. The drug prioritizations
is directly performed by ranking the random scores.

• GEP + cosine similarity. This strategy classifies the LINCS GEPs
according to their average cosine similarity to the gene
expression signature of the four hiPSC types.

• PA + cosine similarity. Following the same strategy as Golriz
et al. [39], the LINCS profiles were converted to PAs using the
Single-Sample Gene Set Enrichment Analysis [72, 73] and the
cosine similarity was used on top of it for prediction.

• GEP + Jaccard similarity. Following a similar strategy as Engler
et al. [74], the average similarity of LINCS GEPs to the gene
expression signatures of the four hiPSC types was evaluated
by the Jaccard similarity of the top 50 differentially expressed
genes.

• DREDDA w/o DA. An ablated version of DREDDA, where
domain adaptation mechanisms (including both adversarial
training and domain confusion) were disabled.

Finally, we evaluated the diversity of each method. In our case,
the prediction diversity of a particular method is defined as the
entropy of the predicted label frequencies on the LINCS dataset
normalized by the maximum entropy of a four-class categorial
distribution.

Key Points

• AI predicts the ability of drugs to induce differentiation
of CSCs using transcriptomics data.

• Domain adaptation allowed training on untreated cells
and performing predictions on treated cells.

• Five molecules induced inhibition of CSCs in two BC cell
lines, showing promising therapeutic potential.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae207#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae207#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae207#supplementary-data
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