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Risk Prediction Modeling of 
Sequencing Data Using a Forward 
Random Field Method
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With the advance in high-throughput sequencing technology, it is feasible to investigate the role of 
common and rare variants in disease risk prediction. While the new technology holds great promise to 
improve disease prediction, the massive amount of data and low frequency of rare variants pose great 
analytical challenges on risk prediction modeling. In this paper, we develop a forward random field 
method (FRF) for risk prediction modeling using sequencing data. In FRF, subjects’ phenotypes are 
treated as stochastic realizations of a random field on a genetic space formed by subjects’ genotypes, 
and an individual’s phenotype can be predicted by adjacent subjects with similar genotypes. The FRF 
method allows for multiple similarity measures and candidate genes in the model, and adaptively 
chooses the optimal similarity measure and disease-associated genes to reflect the underlying disease 
model. It also avoids the specification of the threshold of rare variants and allows for different directions 
and magnitudes of genetic effects. Through simulations, we demonstrate the FRF method attains 
higher or comparable accuracy over commonly used support vector machine based methods under 
various disease models. We further illustrate the FRF method with an application to the sequencing data 
obtained from the Dallas Heart Study.

Benefiting from the new technologies, great progress has been made through genome-wide association studies 
(GWAS) in identifying common variants associated with complex diseases1. With the emerging genetic findings, 
studies have been conducted to assess the role of disease-associated genetic markers in early disease prediction. 
However, risk prediction models formed to date have low utility for clinical use2–5. The poor performance could 
be due to the use of only a limited number of common variants, with significant but often small marginal effects2. 
Because the majority of genetic markers, especially rare variants, have not yet been fully studied in recent risk 
prediction studies, the natural next step will be to study the role of additional genetic variants, including rare 
variants, in disease prediction. Recent studies suggest that rare variants can play an important role in the genetic 
etiology of complex diseases. For example, it has been shown that rare variants were associated with autisms, ath-
erosclerosis and mental retardation6–9. Evolutionary theory also suggests that recent rare variants could be more 
deleterious than common variants because they are under less negative selective pressures.

Although promising, incorporating rare variants into risk prediction models remains great challenges. The 
conventional statistical methods are subject to poor performance because of the large number and the low fre-
quency of rare variants. Recently, gene-based approaches have been developed for genetic association analysis 
of sequencing data. It has been argued by Neale and Sham that gene-based approaches have several advantages 
over single-locus approaches10,11, as it is well known that gene is a functional unit of the human genome10. 
Furthermore, by jointly evaluating all single nucleotide variants (SNVs) within a putative gene, gene-based 
approaches are capable of aggregating association signals from multiple SNVs, reducing the number of tests, and 
incorporating rare variants into the analysis12,13. The same idea can be applied to risk prediction analysis, where 
the cumulative effect of SNVs within a gene can be evaluated. In addition, it is important to consider multiple 
genes and to select the disease-associated genes while building a risk prediction model. It has been shown by 
Byrnes et al. that in the absence of good annotation, variable selection algorithms could substantially improve the 
performance of the model14.
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Many gene-based approaches can be extended for risk prediction modeling. Among those, random field based 
methods have been shown to have nice properties and have been popularly used in spatial analysis and imaging 
analysis for prediction purposes15. Nevertheless, it has not been used for high dimensional genetic risk prediction. 
In this study, we develop a forward random field (FRF) method for risk prediction modeling of sequencing data. 
The FRF method adopted a forward selection algorithm to search for the disease-associated genes, and estimated 
the effects of the selected genes through solving generalized estimating equations. The proposed method was 
compared to support vector machine (SVM) based methods, which aimed at building risk prediction models 
with consideration of both common and rare variants4. We further illustrated the proposed method through an 
application to a sequencing dataset from the Dallas Heart Study (DHS).

Method
The FRF method is motivated by the general idea in spatial statistic that the adjacent points in the space share 
similar outcomes16–18. In the FRF method, we assume that the adjacent individuals with similar genotypes have 
more similar phenotypes than distant individuals, where the distance between two individuals is gauged based 
on a pre-defined distance function. Under this assumption, the phenotype of an individual is modelled as a linear 
function of the other subjects’ phenotypes weighted by the genetic similarities of their genes. When multiple 
genes with different magnitudes and directions of effects are considered, the weights will be determined by the 
genetic similarities of each gene.

Consider a case-control study of N individuals and a total of L SNVs located on K genes, where each gene has 
mk SNVs, i.e., ∑ == m Lk
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If the kth gene is associated with the phenotype, the genetic similarity measured by the mk SNVs within the 

kth gene between two subjects would lead to their phenotypic similarity. Therefore, the phenotype of the ith indi-
vidual could be predicted by those individuals carrying similar genetic variants within the kth gene. Using the 
random field framework, we model the phenotype of the ith individual as a linear function of the other individual’s 
phenotypes,
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between genotypes of individual i and individual j at marker l (Table 1).
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∑µ γ µ( ) = + ( − ), ( )− ∈E Y Y S Y 2k K k k

where Sk is an N ×  N the similarity matrix with zeros on the diagonal and ,si j
k  on the ith row and the jth column. The 

parameters γk in equation 2 can be estimated by solving the following unbiased estimating equations:

∑

β γ

β γ β

( , ) =
∂ ( )
∂

′ − ( )

= ( − ( ))′ ( − )( − ( )) = , ∀ ∈

,

( )

γ
γ

−
−

∈

U
E Y Y

Y E Y Y

Y f X S I S Y f X k C

[ ] [ ]

0 3

k

k k C k k

k
k

where the regression coefficients (β) are usually unknown, and can be estimated from the generalized linear 
model under the assumption of γ = , ∀ ∈k C0k . Given the estimates of β and γk, the predicted value of a new 
subject’s phenotype is
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Table 1.  Four weight functions considered in our study.
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The accuracy of the risk prediction model can then be estimated using the area under the receiver operating 
characteristic curve (AUC),
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In genetic studies of complex diseases, the underlying genetic causes are unknown in advance. Therefore, 
it is quite likely a significant proportion of genes included in the study are not disease-related. Even for the 
disease-related genes, the underlying disease model is not clear. For instance, we have limited knowledge of 
whether the common variants or rare variants in genes play a more important role in disease development. 
Therefore, it is difficult for us to pre-specify a weight function to reflect the importance of variants. To account 
for the unknown disease model and to reduce the effect of noise genes, we propose a computationally feasible 
method, the forward selection algorithm, to simultaneously select the disease-related genes and the correspond-
ing weight functions for the risk prediction model. The details of the algorithm are illustrated in Fig. S1. The 
algorithm starts from a null model and gradually adds each gene with the optimal weight function into the model. 
In step one, we evaluate each gene and all possible weight functions, and fit each model based on equation 4. For 
each model, we evaluate the classification accuracy (i.e., AUC) of the models using equation 5. The gene and its 
corresponding weight that attain the maximum AUC are selected into the model. In step two, based on the model 
selected from step one, we further evaluate the remaining gene and all possible weight functions, and select 
the second gene and the corresponding weight function with the maximum AUC into the model. The process 
continues until a parsimonious model with optimum number of genes, which is determined through a K-fold 
cross-validation procedure, is obtained.

Results
Simulations. Simulation studies were conducted to evaluate the performance of the proposed method and 
compared it with two existing methods, a SVM method and a modified SVM method (MSVM)4 for sequencing 
data. The MSVM method first conducts an association test for each common variant using the Fisher’s exact test, 
and includes those common variants with p-value less than a pre-specified threshold (e.g., p-value =  0.001) for 
further analysis. Using SVM, the MSVM builds a risk prediction model with the pre-selected common variants 
and rare variants (MAF <  0.05) collapsed based on the CMC method19.

The AUCs of three methods were compared based on 1000 replicates under various disease models, causal/
non-causal SNV ratios, and the number of non-causal genes. In all the simulations described below, the genotype 
data were drawn from the 1000 genome project20. In particular, we randomly selected a 2 Mb region from the 
genome (i.e. chr1: 9411243–11411242) and randomly chose 20 kb segments (approximately 200 SNVs) from 
the 2 Mb regions for each replicate. The minor allele frequencies (MAF) distributed highly skewed towards rare 
variants (Fig. S2). The phenotype information was simulated based on all causal genetic markers. Among 1092 
individuals available from the 1000 genome project, we randomly chose 750 individuals to build the risk predic-
tion models and used the remaining 342 subjects to evaluate the performance of the models.

Scenario I: The Impact of Different Weights on Methods’ Performance. In this set of simulations, we simulated two 
disease-associated genes (i.e. we selected 2 non-overlapped 20 kb segments from the genome), on which 33% of 
SNVs were causal. We further simulated three genes, none of which carried any causal SNVs. The phenotypes 
were simulated based on causal variants under additive model, µ β( ( = )) = + ∑ ∑= = ,logistic p y g1i j k

C
jk i k

j
1

2
1

j , 
where 

,gi k
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number of causal SNVs on the jth gene, and βjk is the effect size for the kth causal SNVs on the jth gene, ≤ ≤k C1 j.
We simulated four disease scenarios by varying the effect sizes (i.e. βjk). Specifically, in the first disease model 

(S1), the effect sizes of causal SNVs were all equal (i.e. βjk =  βj). In the second disease model (S2), the effect sizes 
of causal SNVs were proportional to beta weights (i.e. β β= × ( , , )dbeta MAF 1 25jk j jk

2, where MAFjk is the 
MAF for SNV k on jth gene). In the third disease model (S3), the effect sizes were proportional to the weighted 
sum statistics type of weights (i.e. 

)(
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). In the last disease model (S4), the effect sizes of causal 

SNVs were proportional to the weights in a log functional form (i.e. β β= ( )log MAFjk j jk10 ).
Given four disease models with different emphasis on common or rare variants, it was apparent that the 

accuracy of the risk prediction models could be affected by the pre-specified weight, which represented the rel-
ative contribution of the causal SNVs to the risk of disease. In the analysis, we considered four types of weights 
(Table 1), corresponding to the weights used in four disease models. We evaluated the performance of FRF with 
the incorporated weight selection algorithm and those without weight selection (i.e. using a pre-specified weight). 
We further compared its performance to those of SVM and MSVM.

Scenario II: The Impact of Causal/Noise SNV Ratios on Methods’ Performance. In this set of simulations, we eval-
uated the performance of the three methods by varying the percentage of causal variants in each gene. Same as 
Scenario I, we considered four disease models (i.e. S1–S4) with two causal genes and three non-causal genes. For 
each disease model, we started with the case where all SNVs in two disease-associated genes were causal. We then 
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gradually increased the proportion of non-causal variants on the two genes by varying causal/non-causal ratio 
on the two segments from1/1, 1/2, 1/4 to1/6. While applying the proposed method, we considered four weights 
(Table 1) for each gene. The AUCs of our method were then compared to those of SVM and MSVM.

Scenario III: The Impact of Number of Non-causal Genes on Methods’ Performance. In this set of simulations, we 
evaluated the performance of the three methods by gradually increasing the number of non-causal genes. Similar 
to Scenario I, we randomly simulated two causal genes, on which half of variants were causal. The phenotypic val-
ues were simulated according to the four disease models (i.e. S1–S4) described above. The number of non-causal 
genes was then increased from 3, 5, 7 to 9. Similar to the above scenarios, we considered four weights (Table 1) in 
the proposed method, and compared AUCs of our method to those of SVM and MSVM.

Simulation results. Scenario I: The Impact of Different Weights on Methods’ Performance. The simulation 
results are illustrated in Fig. 1. Given different underlying disease models, the accuracy could be affected by the 
pre-specified weight. As expected, the weights that represented the underlying contribution of the variants per-
formed the best. Ideally, the proposed method should adopt the weight that reflected the true effects of causal var-
iants. However, in practice the relative contribution of common and rare variants were not known in advance. It 
is therefore necessary to allow for the flexibility of different weights in the method, which makes it robust against 
different underlying disease models. As shown in Fig. 1, although the FRF method did not always attain the high-
est accuracy for all scenarios, its performance was close to that of the best model. On average, about 91% of the 
times the FRF method could select the right weight. In practice, unless we have decent knowledge of the disease 
model, a good strategy is to consider multiple weights and let the data to determine the best weight. To further 
evaluate the performance of FRF method, we calculated the probability of correctly identifying non-causal genes. 
On average, there was 94.5% chance that our method could at least tease out one non-causal gene. Because the 
FRF method was capable of excluding non-causal gene, it reduced the effect of noise variants and hence increased 
the accuracy and robustness of the prediction model. The FRF method outperformed both SVM and MSVM as 
shown in Fig. 1. Regarding the computational time, on average FRF took 8 mins to analyze each replicate.

Figure 1. The impact of different weights on methods’ performance under various disease models. 
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Scenario II: The Impact of Causal/Noise SNV Ratios on Methods’ Performance. The simulation results are illus-
trated in Fig. 2. For disease models S2–S4, the AUCs of all three methods decreased as the number of noise SNVs 
increased. With regard to the prediction accuracy, our method performed consistently better than MSVM under 
disease models S2–S4, except for the case when all the markers in the genes were causal. Although the prediction 
accuracy for both MSVM and FRF decreased as the number of noise SNVs increased, the FRF method was less 
sensitive to the noise SNVs. On average, the AUCs dropped from 0.814 to 0.786 for FRF as the noise/causal ratio 
increased, while the AUCs dropped from 0.830 to 0.633 for MSVM (Table 2). Although most of the non-causal 
common variants could be excluded using the pre-selection scheme employed by the MSVM, the substantial 
amount of noise in rare variants may greatly influence the performance of the CMC method, leading to reduction 
in prediction accuracy. This especially holds when rare variants play an important role in the disease prediction. 
For S1 model in which all the variants had similar effects, our method outperformed the MSVM. While the 
performance of our method decreased with the increase in the number of noise loci, the performance of MSVM 
increased in the S1 model. This could be explained by the fact that when the disease was caused by common 
variants, the MSVM method benefited substantially by applying the pre-selection procedure on the common var-
iants. When all SNVs were causal, the pre-selection scheme in MSVM could mistakenly exclude a small number 
of causal common SNVs with small to moderate effect sizes, resulting in the reduction of prediction accuracy. 
On the other hand, when the number of common noise SNVs was substantial, the pre-selection scheme helped 
to reduce the noise SNVs, which led to an improvement in the prediction accuracy. This was especially the case 
under disease model S1 where rare variants played a less important role in the disease risk and the disease risk was 
essentially determined by common variants.

Compared to the original SVM method, although the AUCs of FRF decreased with the increasing number of 
noise loci, FRF showed consistently higher accuracy than SVM under all simulated scenarios. This can be mainly 
explained by the fact that our method could exclude non-causal genes, which efficiently reduced noise loci.

Figure 2. The impact of causal/non-causal SNVs ratio on methods’ performance under various disease 
models. 
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Disease Model
% of causal 

markers FRF MSVM SVM Probability*

Equal 100 0.863 0.658 0.717 0.941

50 0.842 0.680 0.700 0.940

25 0.810 0.730 0.671 0.951

16.7 0.784 0.747 0.653 0.944

Beta 100 0.837 0.895 0.730 0.947

50 0.836 0.760 0.723 0.950

25 0.843 0.674 0.718 0.945

16.7 0.841 0.635 0.714 0.936

WSS 100 0.798 0.784 0.697 0.951

50 0.796 0.708 0.696 0.954

25 0.766 0.632 0.676 0.947

16.7 0.738 0.593 0.655 0.945

LOG 100 0.808 0.811 0.730 0.945

50 0.801 0.705 0.724 0.944

25 0.789 0.673 0.710 0.950

16.7 0.780 0.669 0.700 0.938

Table 2.  The impact of varied causal/non-causal SNVs ratio on the performance of three methods under 
different disease models. *The probability of excluding at least one non-disease-related gene.

Figure 3. The impact of the number of non-causal genes on methods’ performance under various disease 
models. 
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Similar to simulation one, we further calculated the probability of correctly identifying noise genes. Although 
the AUCs decreased with the increase of noise to signal ratio, the probability of excluding at least one non-causal 
gene remained stable (Table 2) with an averaged value of 94.4%. Regarding the computational time, on average 
FRF took 9 mins to analyze each replicate.

Scenario III: The Impact of Number of Non-causal Genes on Methods’ Performance. The simulation results were 
illustrated in Fig. 3. While the AUCs of SVM decreased with the increasing number of non-causal genes (i.e. those 
with no causal SNVs), the AUCs of MSVM and FRF remained stable, indicating that both FRM and MSVM were 
robust against the number of noise genes included in the model. Although the selection procedures adopted 
by the FRF and MSVM methods differ in details, both of them aimed at reducing the effects of noise genes. It 
is worth noting that while the increase in the proportion of noise SNVs influenced the performances of both 
FRF and MSVM at a various degree (Scenario II), the increase in the number of noise genes rarely affected the 
prediction accuracy. This is because the FRF method focused on the gene-level analysis and the noise genes are 
likely to be excluded through the selection procedure. For MSVM, the majority of the non-causal common SNVs 
could be eliminated from the pre-selection procedure. Since rare variants are collapsed based on genes, the noise 
rare variants locate on noise gene would have little effect on risk prediction. With 50% of SNVs being causal for 
disease-associated genes, the FRF method outperformed the MSVM method (Scenario II). The trend preserved 
as the number of noise genes increased (Fig. 3). Regarding the SVM method, as expected, the prediction accuracy 
decreased with the increased number of noise genes. Except for a few cases in which the number of non-causal 
genes was small, SVM performed the worst among the three methods. Regarding the computational time, on 
average FRF took 8 mins, 13 mins, 22 mins and 32 mins to analyze each replicate when the number of noise genes 
are 3, 5, 7, and 9, respectively.

Application to the sequence data from Dallas Heart Study (DHS). We applied the FRF, MSVM and 
SVM methods to a sequencing dataset from the Dallas Heart Study21. The dataset comprised of four candidate 
genes, ANGPTL3, ANGPTL4, ANGPTL5 and ANGPTL6, all of which belonged to the ANGPTL family22. We 
were interested in studying the role of these four genes in predicting the high-density lipoprotein (HDL). We first 
re-assessed the quality of the data. We eliminated seven individuals without HDL measured, and also excluded 
genetic variants and individuals with a high missing rate. We further excluded variants with MAF equal to zero. 
After the quality control, 283 variants (72, 76, 72, and 63 variants were from ANGPTL3, ANGPTL4, ANGPTL5 
and ANGPTL6, respectively) and 2591 individuals were included in the final analysis. The distributions of MAFs 
for the four genes are plotted in Fig. S3, which were highly skewed to the rare variants with the majority of the 
variants (87%) having MAF <  1%. We categorized the HDL into two levels, with HDL < =  40 being in the low 
HDL level (N =  704) and HDL >  40 being in the median to high HDL level (N =  1887)23.

To evaluate the three methods, we randomly selected 75% of samples to train the model and used the remain-
ing samples to evaluate the model. The FRF method selected ANGPTL4, ANGPTL5 and ANGPTL6 into the final 
model, and AUC of the proposed method was 0.572. We further applied the MSVM method and the SVM method 
to the data, and the AUCs are 0.529 and 0.535, respectively. The receiver operating characteristic (ROC) curves 
generated by the three methods are plotted in Fig. 4. From this figure, we can easily visualize that the risk predic-
tion model built by FRF attained higher accuracy than the models from the rest two methods. To avoid the chance 
finding due to randomly splitting of the data, we repeated the process 100 times. The mean AUCs and the standard 
errors are summarized in Table 3. While the three methods had a comparable standard error (around 0.02), the 
FRF method achieved the highest AUCs (0.570). As the prediction models built by SVM based methods were 
hard for interpretation, we only focused on interpreting the prediction model built by the FRF method. Among 
100 repeats, ANGPTL4, ANGPTL5 and ANGPTL6 were selected 99, 91 and 89 times, respectively. More than 80% 
of times the Beta and WSS weights were selected for ANGPTL4, ANGPTL5 and ANGPTL6, which indicated that 
the rare variants in these three genes played a substantial role in the HDL prediction.

Discussion
A random field is a generalization of a stochastic process that takes multidimensional points with specific struc-
ture. The theory in random field has been extensively studied and the methods using random field have been 
widely used in spatial analysis16–18. The general idea of random field methods is to predict the outcome at a given 
point through a weighted average outcome based on its surrounding points24. Despite its wide application in 
spatial statistics, random field has been rarely used for high dimensional genetic risk prediction research. In this 
paper, we proposed a FRF method within the random field framework for risk prediction using sequencing data. 
FRF method is built based upon the idea that the similarities in genetic profiles would lead to the similarities in 
the phenotypes. In FRF, each individual can be mapped into a space based on the individual’s genotypic profile, 
and the distance of the individual to other individuals in the space can be measured with pre-specified distance 
functions. Based on this geometric structure, we can predict the individual’s phenotype based on a weighted aver-
age of phenotypes from nearby individuals, where the weight is determined by the distance of two individuals.

Rare variants play an important role in the underlying mechanism of human disease, and hold great promise 
to further improve the accuracy of the prediction model6–9,25. However, due to the large number, low frequencies, 
and unknown effects of rare variants on diseases, the conventional method can hardly capture the effects of rare 
variants, making it hard to incorporate rare variants into risk prediction models. In the analysis of sequencing 
data, a variety of weight/kernel functions have been proposed to adjust for various effects of rare variants, but 
none of them performed uniformly better than the others26. Both our simulations and previous studies have 
shown that the performance of a weight function was determined by the underlying disease model26. The ideal 
choice of weights should be those that reflect the underlying disease model, however, in practice it is usually 
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unknown. Instead of pre-specifying a specific weight function, the FRF method allows for various weight func-
tions, and then uses a forward selection algorithm to select a weight function best measuring the genetic simi-
larities of individuals. Through simulations, we have demonstrated that the FRF method performed close to the 
model in which the underlying weight was specified. This suggests that the FRF method can adaptively choose 
the optimal weight for the similarity measure, and make the formed risk prediction model robust against different 
underlying disease models. Although the method was illustrated with weight selection, it could be easily extended 
to similarity function selection. Instead of pre-specifying a similarity function for a gene, we could evaluate vari-
ous functions and let the algorithm to adaptively select the best function.

Different genes could have different effects on the disease mechanism. Some genes serve as protective roles to 
prevent the disease onset, while the others increase disease risk and accelerate the disease progression27,28. Genes 
may also have no contribution to disease, especially for large studies with many measured genes. In such a case, 
including these non-disease-associated genes may add a substantial amount of noise and reduce the accuracy of 
the prediction model. To address this issue, the proposed method allows for multiple genes with different effect 
sizes to be simultaneously considered, and jointly estimates the effect of each gene by controlling the effects of 
the others. The FRF method also adopts a computationally efficient forward selection algorithm, which makes 
it possible to reduce the effects of noise genes and be applied to the genome-wide data. Through simulations, we 
have demonstrated that ruling out the noise genes improved the performance of the risk prediction model, and 
made the method less sensitive to the noise genes. Compared with the SVM based methods, the findings from the 
FRF method can be easily interpreted, as it selects predictors and predicts the phenotypes at the gene-level. The 
genes that are selected by the FRF method could be treated as the functional units that predict phenotype, which 
facilitates future studies to confirm and further explore the properties (e.g., predictiveness) of the risk prediction 
model.

Although the proposed method allows for both gene and weight selection, it cannot remove noise markers 
located on disease-associated genes. Methods that are capable of selecting variants within a gene can be further 
developed to improve the accuracy of a prediction model. Nevertheless, as shown from the simulations FRF was 
generally robust to the presence of noise SNVs as compared with the other SVM based methods.

In the empirical study of DHS, we applied the FRF method to four genes to predict HDL. We randomly chose 
75% of the samples to serve as the training set, and used the remaining samples to assess the performance of the 
formed prediction model. The FRF selected three genes into the model, and the AUC on the testing dataset was 
0.572. It has been shown that genes in the ANGPTL family were regulators of lipoprotein metabolism in humans, 

Figure 4. ROC curves of three prediction models formed by FRF, SVM and MSVM using the DHS 
sequencing data. 

FRF SVM MSVM

Mean 0.570 0.528 0.529

Standard Error 0.022 0.021 0.024

Table 3.  The AUC values of the three prediction models formed by FRF, SVM and MSVM using the DHS 
sequencing data.
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and the rare loss-of-function mutations in ANGPTL family members may contribute to HDL21,22,29. However, so 
far there is limited knowledge on how rare variants contribute to HDL prediction. Additional studies are needed 
to validate this preliminary finding and further evaluate the role of rare variants in HDL prediction.
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