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Abstract

Although the potent anti-parkinsonian action of the atypical D1-like receptor agonist SKF83959 has been attributed to the
selective activation of phosphoinositol(PI)-linked D1 receptor, whereas the mechanism underlying its potent
neuroprotective effect is not fully understood. In the present study, the actions of SKF83959 on neuronal membrane
potential and neuronal excitability were investigated in CA1 pyramidal neurons of rat hippocampal slices. SKF83959 (10–
100 mM) caused a concentration-dependent depolarization, associated with a reduction of input resistance in CA1
pyramidal neurons. The depolarization was blocked neither by antagonists for D1, D2, 5-HT2A/2C receptors and a1-
adrenoceptor, nor by intracellular dialysis of GDP-b-S. However, the specific HCN channel blocker ZD7288 (10 mM)
antagonized both the depolarization and reduction of input resistance caused by SKF83959. In voltage-clamp experiments,
SKF83959 (10–100 mM) caused a concentration-dependent increase of Ih current in CA1 pyramidal neurons, which was
independent of D1 receptor activation. Moreover, SKF83959 (50 mM) caused a 6 mV positive shift in the activation curve of
Ih and significantly accelerated the activation of Ih current. In addition, SKF83959 also reduced the neuronal excitability of
CA1 pyramidal neurons, which was manifested by the decrease in the number and amplitude of action potentials evoked by
depolarizing currents, and by the increase of firing threshold and rhoebase current. The above results suggest that
SKF83959 increased Ih current through a D1 receptor-independent mechanism, which led to the depolarization of
hippocampal CA1 pyramidal neurons. These findings provide a novel mechanism for the drug’s neuroprotective effects,
which may contributes to its therapeutic benefits in Parkinson’s disease.
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Introduction

SKF83959 (3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]

-2,3,4,5-tetrahydro-1H-3- benzazepine) is a selective agonist for

the putative phosphatidylinositol (PI)-linked D1-like receptor

[1–3]. It has been demonstrated that SKF83959 produces no

cAMP formation in brain tissues but induces PI-hydrolysis via

activation of the PI-linked D1-like receptor/Gq protein/PLCb
signaling pathway[1–5]. In the primate and rodent models of

Parkinson’s disease, chronic or sub-chronic administration of

SKF83959 was found to produce potent therapeutic effects [6–8].

Moreover, chronic administration of this drug was found to

attenuate the L-DOPA-induced dyskinesia (LID) in 6-OH-DOPA-

lesioned rat models [6,9,10]. Although the anti-parkinsonian

action of SKF83959 has been attributed to activation of PI-linked

D1-like receptor [1,8,9,11], the exact mechanisms underlying the

action remain unclear.

Our previous work demonstrated that SKF83959 exerted a

potent neuroprotective action in rat pheochromocytoma cells

(PC12 cells) treated with H2O2 [12]. This action, however, was

only partially attributed to inhibition of glycogen synthase kinase-

3b (GSK3b) by SKF83959 via activation of D1-like receptor.

Therefore, other mechanisms independent of D1-like receptor may

be involved in the neuroprotection by SKF83959. Accumulating

evidence shows that enhanced delayed rectifier K+ channel

induces neuronal death, while blocking K+ outflow through the

K+ channel promotes the survival of neurons [13–15]. We have

shown recently that SKF83959 is a potent blocker of the delayed

rectifier K+ channels in rat hippocampal pyramidal neurons [16],

which may contribute to the non-receptor mechanisms of the

neuroprotection of the drug. The membrane properties and

excitability play critical roles in physiological and pathological

activity of brain neurons. It has been demonstrated that an

increased neuronal excitability in the pathological state of 6-OH-

DOPA-lesioned rat model for Parkinson’s disease [17–19].

Alongside our previous study [16], the present study was designed

to further explore the effects of SKF83959 on the neuronal

membrane properties and excitability in rat hippocampal

pyramidal neurons. The present results demonstrate that

SKF83959 not only induces membrane depolarization of CA1

pyramidal neurons via an enhancement of Ih current in a DA-

receptor-independent manner, but also reduces the neuronal
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excitability. These findings may provide a novel mechanism for

the drug’s neuroprotective effects and its anti-Parkinsonian

efficacy.

Results

Effects of SKF83959 on passive membrane properties of
hippocampal CA1 pyramidal neurons

Bath application of SKF83959 caused a reversible depolarizing

response of CA1 pyramidal neurons in rat hippocampal slices

(Fig. 1A). The maximal responses caused by SKF83959 at the

concentrations of 10, 50 and 100 mM were 2.560.4 mV (n = 5),

6.961.4 mV (n = 6) and 9.761.0 mV (n = 7), respectively. The

depolarization never led to spontaneous firing of the recorded

neuron even when the resting membrane potential was set to a

level close to the threshold of action potential firing by injecting

steady depolarizing current. The depolarization caused by

SKF83959 (50 mM) persisted, when TTX (0.5 mM) was included

in the perfusion medium (6.860.7 mV, n = 5, unpaired t test,

P.0.05 vs. SKF83959 alone, Fig.1B). Depolarizing responses were

also observed in acutely dissociated CA1 pyramidal neurons

(PND5–6). Superfusion of SKF83959 (50 mM) caused a depolar-

ization of 4.960.5 mV (n = 6) in dissociated single CA1 pyramidal

neurons. The results suggest that the depolarization effect of

SKF83959 was independent of synaptic connections.

SKF83959 is an atypical agonist of D1-like receptor, and also

exhibits moderate or weak affinity to D2 receptor, a1-adrenoceptor

and 5-HT2A/2C receptor [5]. We tested whether any of those

receptors are responsible for the effect of SKF83959. As shown in

Fig. 1B, the maximal depolarization caused by SKF83959 (50 mM)

in the presence of D1 receptor antagonist SCH23390 (10 mM) was

not significantly altered (SCH23390+SKF83959: 5.760.5 mV,

n = 8; SKF83959 alone: 6.961.4 mV, n = 6, unpaired t test,

P.0.05). Similar results were obtained in the presence of D2

receptor antagonist raclopride (10 mM, n = 5), 5-HT2A/2C receptor

antagonist mesulergine (10 mM, n = 5) or a1-adrenoceptor antag-

onist prazosin (10 mM, n = 5) (Fig. 1B). Furthermore, intracellular

dialysis of 0.5 mM GDP-b-S, a hydrolysis-resistant GDP analog

which blocked G-protein activation, was also found to produce no

significant effect on SKF83959-induced depolarizing response

(GDP-b-S +SKF83959: 6.161.4 mV, n = 6; SKF83959 alone:

6.961.4 mV, n = 6, unpaired t test, P.0.05). These results further

support the observation that SKF83959-induced depolarization

was not mediated through the activation of D1 receptor and other

related G-protein coupled receptors.

In a representative experiment shown in Fig. 1A, the membrane

potential was manually clamped to the control level during

SKF83959 application to monitor the change of input resistance of

the recorded neurons. The pooled data from the 10 neurons shows

that SKF83959 (50 mM) caused a small but statistically significant

reduction of the input resistance (from 143.5611.2 MV to

135.769.5 MV, paired t test, P,0.05, Fig. 1C). The results

suggest that SKF83959-induced membrane depolarization was

accompanied by a reduction of the input resistance.

Effects of SKF83959 on subthreshold responses of
hippocampal CA1 pyramidal neurons

The hyperpolarization-activated non-selective cation current

(Ih), which is mediated by the hyperpolarization-activated, cyclic-

Figure 1. SKF83959 induced depolarizing response in CA1 pyramidal neuron in hippocampal slices. A. Resting membrane potential
recorded in a representative neuron. The upper trace shows the membrane potential of the neuron. The resting potential was 260 mV, whereas the
input resistance change was monitored in the upper trace through injecting hyperpolarizing current pulses (400 ms, 250 pA, lower trace) every
10 sec (the downward deflections). The black bar denotes the perfusion with SKF83959 (50 mM). To exclude the change of input resistance caused
indirectly by depolarizing response, the membrane potential during SKF83959 application was manually clamped to the pre-drug level. Bicuculline
(5 mM) was added in ASCF to suppress the spontaneous IPSPs. B. Bar graphs showing the maximal depolarization caused by SKF83959 (50 mM) in the
presence of TTX (0.5 mM, n = 5), SCH (D1 receptor antagonist SCH23390, 10 mM, n = 5), Rac (D2 receptor antagonist raclopride, 10 mM, n = 5), Mes (5-
HT2A/2C receptor antagonist mesulergine, 10 mM, n = 5), Pra (Alpha1-adrenoceptor antagonist prazosin, 10 mM, n = 5), or following intracellular
dialysis of GDP-b-S (0.5 mM, n = 6). C. Bar graphs showing the input resistance in the control (Ctrl) and during perfusion with SKF83959 (SKF, 50 mM,
n = 10, *P,0.05).
doi:10.1371/journal.pone.0013118.g001

SKF83959 Augments Ih Current
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neucleotide gated (HCN) channels, plays a crucial role in setting

the resting membrane potential of neurons [20]. To explore the

mechanism underlying SKF83959-induced depolarization, we

examined the effect of SKF83959 on the voltage sag caused by

prolonged hyperpolarizing current pulse, which is a hallmark of Ih

activation [21]. In the presence of SKF83959 (50 mM), injecting

the hyperpolarizing current pulses produced more pronounced

voltage sags (Fig. 2A). In a group of neurons tested, the voltage sag

ratio was significantly increased from 1.460.03 to 1.560.03

(n = 10, paired t test, P,0.01, Fig. 2B).

In order to confirm the involvement of Ih in SKF83959-induced

depolarization, we pretreated the slice with ZD7288, a specific

HCN channel blocker, and found that ZD7288 (10 mM)

completely abolished the voltage sag either in the absence or in

the presence of SKF83959 (Fig. 2C). Furthermore, inhibition of Ih

by ZD7288 (10 mM) significantly antagonized both the depolar-

izing response and input resistance reduction caused by

SKF83959. As shown in Figs. 2D, 2E, the maximal depolarizing

response caused by SKF83959 (50 mM) alone was 6.961.4 mV

(n = 6), whereas SKF83959 induced depolarization response was

significantly reduced to 2.660.5 mV (n = 8, unpaired t test,

P,0.01) in the presence of ZD7288. Moreover, pretreatment

with ZD7288 (10 mM) drastically increased the input resistance of

the neurons tested to 276.3616.5 MV (n = 8). However, subse-

quent perfusion with SKF83959 failed to change the neuronal

input resistance in the presence of ZD7288 (n = 8,

282.4619.2 MV, paired t test, P.0.1). The above results suggest

that activation of Ih is responsible for SKF83959-induced

depolarization.

SKF83959 enhanced Ih current in hippocampal CA1
pyramidal neurons

The above data indicated that SKF83959 enhances the activity of

HCN channels. Consistently, perfusion with SKF83959 (50 mM)

markedly increase the amplitude of Ih of CA1 pyramidal neurons in

hippocampal slice at all the potentials tested (Fig. 3A). Plot of the

averaged current/voltage (I/V) relationship of Ih in the presence or

absence of SKF83959 reveals a down-shift of the I/V curve, and an

enhancement of the maximal steady-state current amplitude (from

270 to 2120 mV, Fig. 3B). The amplitude of Ih at 2120 mV was

increased from 336623 pA to 454663 pA (n = 6, paired t test,

P,0.05). Moreover, SKF83959-induced enhancement of Ih was

reversible (Fig. 3C) and in a dose-dependent manner (Fig. 3D). At

the concentrations of 10, 50, and 100 mM, SKF83959 increased the

amplitude of Ih by 18.962.0% (n = 5, ANOVA, P,0.05),

54.765.0% (n = 11, ANOVA, P,0.001) and 85.9610.6% (n = 6,

ANOVA, P,0.001), respectively.

In order to elucidate the mechanisms for the drug-mediated

enhancement of Ih, we first examined whether SKF83959

modulates the gating mechanisms of Ih channels. Perfusion with

SKF83959 (50 mM) caused a right shift of the activation curve of

Ih (Fig. 4A). In the control period, the half-activation potential for

Ih (V1/2) was 290.861.8 mV (n = 6), and the slop factor was

11.561.0 (n = 6). In the presence of SKF83959, the value of V1/2

changed to 284.261.7 mV (n = 6, paired t test, P,0.001), and the

slop factor to 14.161.1 (n = 6, paired t test, P,0.01). Furthermore,

SKF83959 accelerated the activation of Ih in steps to large

hyperpolarizing voltage steps (from 2120 to 2100 mV) (Fig. 4B).

The Ih current traces could be fitted with bi-exponential functions

Figure 2. Effects of SKF83959 on subthreshold response of CA1 pyramidal neurons. A. Superimposed responses to prolonged
hyperpolarizing current pulses (400 ms, 250 pA) recorded from a representative neuron before (black) and during (gray) the perfusion with
SKF83959 (50 mM), showing the enhanced voltage sag (arrow). The resting potential of the neuron was 260 mV, and the membrane potential was
manually clamped to compensate the SKF83959-induced depolarizing response. B. Bar graphs showing the voltage sag ratios in the presence and
absence of SKF83959 (50 mM). The voltage sag ratio was quantified as the peak voltage deflection divided by the steady-state voltage deflection. C.
The results were obtained from another neuron in the presence of ZD7288 (10 mM). The resting potential of the neuron was 266 mV. Note that
ZD7288 completely abolished the voltage sag. D. Bar graphs showing the maximal depolarizing response caused by SKF83959 (50 mM) in the
presence (n = 6) and absence (n = 8) of ZD7288 (10 mM). E. Bar graphs showing the input resistance of CA1 pyramidal neurons measured in the
presence of ZD7288 (10 mM) or in the presence of ZD7288 (10 mM) and SKF83959 (50 mM). n = 8 for each group. ** P,0.01. Ctrl, Control; SKF,
SKF83959; ZD, ZD7288.
doi:10.1371/journal.pone.0013118.g002

SKF83959 Augments Ih Current
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with a relatively stable fast component, which accounted for the

majority of Ih, followed by a variable slow component. The fast

activation time constant (tf) of Ih in steps to 2120, 2110 and

2100 mV in the control period were 29.561.8 ms, 35.262.1 ms

and 39.962.6 ms, respectively; whereas subsequent perfusion with

SKF83959 (50 mM), the values of tf were significantly reduced to

24.561.7 ms (n = 6, paired t test, P,0.01), 30.461.7 ms (n = 6,

paired t test, P,0.01) and 33.261.7 ms (n = 6, paired t test,

P,0.05), respectively.

We then examined whether the enhancement of Ih by

SKF83959 was mediated through activation of D1-like receptors.

As shown in Fig. 5A, in the presence of D1-like receptor antagonist

SCH23390 (10 mM), perfusion with SKF83959 (50 mM) increased

the amplitude of Ih by 62.9612.4% (n = 6, paired t test, P,0.05),

which was close to that obtained in the absence of SCH23390

(54.765.0%, unpaired t test, n = 11). Intracellular dialysis of GDP-

b-S did not prevent the enhancement of Ih by SKF83959 either

(Figs. 5B). With GDP-b-S (0.5 mM) present in the recording

pipettes, perfusion with SKF83959 (50 mM) increased the

amplitude of Ih by 81.9610.1% (n = 9, paired t test, P,0.001).

Similar result was obtained with intracellular dialysis of GppNHp,

a hydrolysis-resistant GTP analog, which uncoupled G-protein

(Figs. 5C). With GppNHp (0.5 mM) present in the recording

pipettes, perfusion with SKF83959 (50 mM) increased the

amplitude of Ih by 79.3610.8% (n = 6, paired t test, P,0.001).

It has been shown that the activation of Ih is facilitated by cAMP

in a direct, PKA-independent manner, and there is a cyclic

nucleotide-binding domain (CNDB) on the C-terminal of each

subunit of the channel [20]. However, intracellular dialysis of

cAMP (100 mM) or Rp-cAPM (100 mM), a hydrolysis-resistant

cAMP analog, did not occlude the enhancement of Ih by

SKF83959 (Figs. 5D, 5E), indicating that SKF83959-induced

enhancement of Ih current is independent of intracellular cAMP-

related mechanisms. With cAMP (100 mM) or Rp-cAPM

(100 mM) present in the recording pipettes, perfusion with

SKF83959 (50 mM) increased the amplitude of Ih by

70.7619.6% (n = 6, paired t test, P,0.01) or by 55.168.3%

(n = 6, paired t test, P,0.001), respectively.

Figure 3. SKF83959 increased Ih current in hippocampal CA1 pyramidal neurons. A. Current family of Ih recorded from a representative
neuron in the presence and absence of SKF83959 (50 mM). The neuron was hold at 220 mV and current traces were elicited with a series of 1.5-s
hyperpolarizing voltage steps from 220 mV to 2120 mV with increment of 10 mV followed by a voltage step to 280 mV to measure the tail
currents. B. Averaged current/voltage (I/V) relationship of Ih plotted in the presence and absence of SKF83959 (50 mM). C. Plot of the amplitude of Ih
against time in a representative neuron. The black bar denotes the perfusion with SKF83959 (50 mM). The neuron was hold at 245 mV, and Ih was
elicited with 1.5-s hyperpolarizing voltage steps to 2105 mV every 30 sec. The inset shows the superimposed current traces taken at the time
indicated by the two arrows. Scale bars: 0.5 s, 250 pA. D. Bar graphs showing the maximal steady-state amplitude of Ih in the presence of different
concentrations of SKF83959. *P,0.05, **P,0.01, ***P,0.001 vs. Control.
doi:10.1371/journal.pone.0013118.g003

SKF83959 Augments Ih Current
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Effects of SKF83959 on somatic excitability of
hippocampal CA1 pyramidal neurons

Repetitive discharge of CA1 pyramidal neurons was elicited by

injecting prolonged depolarizing current pulses. Comparing the

records prior to and after bath application of SKF83959 (50 mM)

reveals that the drug markedly reduced the number and the

amplitude of action potentials evoked by the depolarizing current

pulses (Figs. 6A, 6B), and increased the latency of the first spike

firing in the train (Fig. 6C). Furthermore, the rheobase current (the

minimum current to evoke a single action potential) was also

increased from 12267 pA to 13267 pA (n = 5, paired t test,

P,0.05) (Fig. 6D).

Figure 4. Effects of SKF83959 on the kinetic properties of Ih current. A. the activation curves of Ih plotted in control and in the presence of
SKF83959 (50 mM). The neurons were held at 220 mV. Ih currents were elicited with 1.5-sec hyperpolarizing steps to various potentials followed by a
voltage step to 280 mV to measure the tail currents. Normalized amplitude of the tail current was plotted as the function of the test potentials and
fitted with the Boltzmann equation: I/Imax = 1/[1+exp(V-V1/2)/s], where I/Imax is the normalized amplitude of the tail current, V is the test potential,
V1/2 is the half-activation potential, and s is the slope factor. B. Plot of the activation time constant (tf) of Ih against the test potentials. The trace of Ih
current was fitted with bi-exponential functions. n = 6 for each symbol. *P,0.05, **P,0.01 vs. Control.
doi:10.1371/journal.pone.0013118.g004

Figure 5. Increase of Ih by SKF83959 was independent of activation of D1-like receptors. The neurons were held at 245 mV, and Ih
current was elicited with 1.5-s hyperpolarizing voltage steps to 2105 mV every 30 sec. In each panel, the amplitude of Ih was plotted against time.
The black bars denotes the perfusion with SKF83959 (50 mM), whereas the gray bar denotes the application of various agents: A. perfusion with D1-
like receptor antagonist SCH23390 (10 mM), n = 11; B. Intracellular dialysis of GDP-beta-S (0.5 mM), n = 9; C. intracellular dialysis of GppNHp (0.5 mM),
n = 6; D. intracellular dialysis of high concentrations of cAMP (100 mM), n = 6; E. intracellular dialysis of Rp-cAPM (100 mM), n = 6.
doi:10.1371/journal.pone.0013118.g005

SKF83959 Augments Ih Current
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To further characterize the influence of SKF83959 on action

potential, single spike was elicited by injecting depolarizing current

pulse. Perfusion of SKF83959 (50 mM) slowed down both the

upstroke and repolarizing phases of the spike. As a result, the

action potential was broadened (Fig. 7A, 7C). Pooled data from 8

neurons showed that SKF83959 significantly reduced the

amplitudes of action potential (from 96.362.1 to 81.862.7 mV,

paired t test, P,0.001) and increased the half-width of the spikes

from 1.260.1 to 1.760.1 ms, paired t test, P,0.01) (Fig. 7C). In

addition, the threshold of action potential was also significantly

raised from 239.260.5 to 234.761.2 mV (P,0.01, paired t test,

Fig. 7D). All the above data indicated that the somatic excitability

of hippocampal CA1 pyramidal neurons was dramatically reduced

by SKF83959.

Discussion

In the present study we characterized the electrophysiological

effects of SKF83959, an atypical D1-like receptor agonist, on the

passive membrane properties and excitability of hippocampal CA1

pyramidal neurons. The major findings are summarized as

following: (1) SKF83959 caused depolarizing response associated

with a reduction of input resistance; (2) SKF83959-induced

depolarization was mediated mainly by an enhancement of Ih

via a D1-like receptor-independent mechanism. (3) SKF83959

reduced the neuronal excitability.

In the present study we demonstrate that SKF83959 causes a

concentration-dependent depolarizing response in rat hippocam-

pal CA1 pyramidal neurons. Furthermore, we found that the effect

was sensitive neither to bath application of TTX, SCH23390,

raclopride, mesulergine, prazosin, nor to intracellular dialysis of

GDP-b-S. Therefore, it is clear that the response of SKF83959 is

not mediated by interaction of SKF83959 with G-protein coupled

receptors. This implicates that the drug’s effect was mediated by

an action on ion channels responsible for setting the resting

membrane potential, such as TASK-1 channels, HCN channels,

etc.[20,22]. Indeed, in the current-clamp experiments we showed

that SKF83959 enhanced the voltage sag caused by prolonged

hyperpolarizing current pulse, which is a hallmark of HCN

channel activation [20]. In voltage-clamp experiments we

demonstrated that SKF83959 enhanced the Ih current. Further-

more, the enhancement of Ih by SKF83959 is also insensitive to

bath application of SCH2339 or intracellular dialysis of GDP-b-S

or GppNHp (Figs. 5A, 5B, 5C), suggesting that the effect was

Figure 6. SKF83959 suppressed the somatic excitability of CA1 pyramidal neurons in hippocampal slices. A. Train of action potentials
of a representative neuron in response to a prolonged depolarization current pulse (150 pA, 300 ms) prior to (a) and after (b) perfusion with
SKF83959 (50 mM). The resting potential was 269 mV in (a). The membrane potential was compensated by injecting steady hyperpolarizing current
in (b). The two traces were superimposed at the bottom (c). B. Plot of the number of action potentials against the current intensities in another
neuron. C. Plot of the latency of the first spike against the current intensities in the same neuron shown in B. The latency was defined as the time
between the onset of depolarizing current pulse and the time of threshold of the first spike. D. Bar graph showing the rheobase currents measured
prior to and after perfusion with SKF83959 (50 mM). *P,0.05 vs. Control.
doi:10.1371/journal.pone.0013118.g006
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independent of activation of D1-like receptors. Therefore, both the

results form current- and voltage-clamp experiments suggest that

SKF83959-induced depolarization mainly due to the enhance-

ment of Ih current via DA receptor-independent mechanisms.

There is a cyclic nucleotide-binding domain (CNDB) on the C-

terminal of each HCN channel subunit, and the binding of cAMP

directly facilitates activation of HCN channels [20]. In fact, the

effects of SKF83959 on Ih resemble those caused by cAMP: (1)

causing a right shift of the activation curve of Ih (Fig. 4A), and (2)

speeding up the activation kinetics (Fig. 4B). However, intracel-

lular dialysis of high concentrations of cAMP or Rp-cAPM did not

occlude the enhancement of Ih by SKF83959 (Figs. 5D, 5E),

suggesting that the compound’s effect was not mediated by

intracellular cAMP. At the present, several specific blockers of

HCN channels including ZD7288 are commercially available,

which have been developed as ‘‘heart rate-lowering’’ agents to

block a pacemaker current If in cardiomyocyte [23]. On the other

hand, few small molecule compounds other than cyclic nucleotides

were found thus far to enhance Ih current. The anticonvulsant

lamotriqine was reported to preferentially alter the dendritic

excitability of hippocampal CA1 pyramidal neurons through

increase of Ih current (Poolos et al. 2002). To our knowledge, our

study provides the first evidence that SKF83959 represents

another small molecule activator of Ih current. The molecular

target of SKF83959 on HCN channel, however, remains to be

identified.

Theoretically, a depolarizing response would increase the

spontaneous firing and the number of action potentials evoked

by depolarizing pulses. In the present study, spontaneous firing

was never observed during SKF83959-induced depolarization. In

contrast, we found that SKF83959 significantly reduced the

number (Figs. 6A, 6B)and amplitude (Figs. 7A, 7B) of action

potentials evoked by depolarizing current pulses, prolonged the

latency of the first spike (Fig. 6C) and increased the rheobase

current (Fig. 6D) as well as the threshold of action potential firing

(Fig. 7D). The somatic recordings demonstrate that SKF83959

suppress the excitability of postsynaptic CA1 pyramidal neurons.

However, the effects do not seem to be due to the increased Ih

current. A non-uniform gradient of HCN channel distribution has

been demonstrated in hippocampal CA1 pyramidal neuron with

the distal dendrites containing a much higher density of HCN

channels than that of the soma [24]. As a result, lamotriqine that

increased Ih current preferentially reduced dendritic excitability,

while minimally affecting the somatic excitability of CA1

pyramidal neuron [25]. We recently demonstrated that

SKF83959 exerted potent inhibition on voltage-activated Na+

current in acutely dissociated hippocampal pyramidal neurons

(data not shown), which may explain the reduction of overall

excitability of CA1 pyramidal neurons reported here. The

broadening of action potential (Fig. 7A, 7C) could be attributed

to the blockade of the delayed rectifier K+ current by SKF83959

[16], one of the outward currents responsible for the repolarization

of action potentials [26].

The inhibition of neuronal excitability by SKF83959 may

contribute to its therapeutic benefits in Parkinson’s disease (PD). It

was found that the spontaneous activity of striatal neurons in 6-

OHDA-lesioned PD rats was several folds higher than in control

animals [17–19]. Intracellular recording conducted in striatal slices

also demonstrated that dopamine-denervation increased neuronal

excitability [27]. The hyperactivity of striatal neurons in PD would

augment the GABAergic control over the output nucleus of basal

ganglia, which may associate with some motor symptoms observed

in the disease [28]. SKF83959 may reduce the hyperexcitability of

striatal neurons in PD, which, in turn, contributes to its

therapeutic effects, including the attenuation of the development

of dyskinesia. In addition, inhibition of neuronal excitability by

Figure 7. Effect of SKF83959 on action potentials of CA1 pyramidal neurons in hippocampal slices. A. Superimposed action potentials
elicited in a representative neuron prior to and after perfusion with SKF83959 (50 mM). For comparison, the membrane potential was compensated. B.
Bar graph showing the amplitude of action potentials prior to and after perfusion with SKF83959 (50 mM). The amplitude was defined as the voltage
difference between the threshold and peak of the action potential. C. Bar graph showing the half-width of action potentials prior to and after
perfusion with SKF83959. The half-width was measured as the width of half-maximal spike amplitude. D. Bar graph showing the threshold of action
potentials prior to and after perfusion with SKF83959 (50 mM). The threshold was defined as the first point on the upstroke of action potential with a
rising rate exceeded 50 mV/ms. In B, C, D, n = 8, **P,0.01 vs. Control.
doi:10.1371/journal.pone.0013118.g007
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SKF83959 may also improve neuronal survival and contribute to

its neuroprotective effect. In the context of PD, neuroprotective

effect is important for slowing down the progressive loss of

dopamine neurons. It is noted that the present data were obtained

from hippocampal pyramidal neurons, whereas Parkinson’s

disease is more relevant to striatal MSN neurons or DA neurons

in SNC. However, hippocampal pyramidal neurons are the most

widely studied cell in the central nervous system and serve as

excellent models for the general neuronal activity seen in other

parts of the nervous system. We believe that the effects found in

the present study should occur in other brain regions, such as in

striatum where Ih channel also widely expressed [29]. Regardless,

these receptor-independent mechanisms provide a novel insight

for the drug’s potent neuroprotective action.

Materials and Methods

Ethics Statement
All experimental protocols were approved by the Institutional

Animal Care and Use Committees of Shanghai Institute of M

ateria Medica,Chinese Academy of Sciences (SIMM-AE-2007-

0020) and were in compliance with the Guidelines for the Care

and Use of Laboratory Animals (National Research Council,

People’s Republic of China, 1996).

Electrophysiological recordings from hippocampal
pyramidal neurons

Male Sprague-Dawley rats (2–3 weeks of age) were anesthetized

with 10% chloral hydrate (400 mg/kg, i.p.) and decapitated. The

brain was rapidly removed and placed in an ice-cold ACSF

containing the following (in mmol/L): NaCl 119, KCl 2.5, CaCl2
2.5, MgSO4 1.3, NaH2PO4 1, NaHCO3 26.2, and glucose 11,

bubbled with a gas mixture (95%O2 and 5%CO2). Transverse

hippocampal slices (350 mm) were cut using a M752 vibroslice

(Campden Instruments Ltd., UK), and incubated in the ACSF at

room temperature. After equilibration for at least 1 hour, one

piece of the slices was transferred to recording chamber and

perfused with oxygenated ACSF at a rate of 2–3 ml/min.

Whole-cell recordings of CA1 pyramidal neurons were made

under a DIC upright microscope (BX51WI, Olympus, Japan)

using a MultiClamp 700A amplifier. The recording electrodes (a

tip resistance of 3–5 MV) were pulled from borosilicate glass

pipettes (Sutter Instrument, USA) using a Flaming/Brown

micropipette puller (model P-97, Sutter Instrument, USA), and

filled with a pipette solution containing (in mmol/L): K-gluconate

140, CaCl2 0.1, MgCl2 2, HEPES 10, ATP?K2 2, GTP?Na3 0.1,

and EGTA 1 (pH 7.25 with KOH). Current-clamp recording was

performed at 32–34uC as previously described [30]. For recording

Ih current, the slice was perfused with a modified ACSF containing

(in mmol/L): NaCl 110, KCl 5, NaHCO3 24, MgCl2 1, Glucose

10, TEA-Cl 10, AP-4 5, TTX 0.5, CdCl2 1, BaCl2 0.5, which

blocked all the other voltage-activated currents. Ih current was

elicited every 30 s with a series of 1.5-s hyperpolarizing voltage

steps from a holding potential of 245 mV to 2105 mV. Leakage

and capacitive currents were subtracted digitally off-line by scaling

the trace evoked by voltage steps from 220 to 230 mV. Signals

were filtered at 2210 kHz and sampled at frequencies of

10240 kHz using pClamp 9.2 software (Molecular Device,

Sunnyvale, CA) via a DigiData-1322A interface (Molecular

Device, Sunnyvale, CA), and stored in an IBM compatible

computer.

Data acquisition and analysis
Data are presented as mean6S.E.M. Statistical significance was

assessed using paired or unpaired Student’s t test or ANOVA, and

P,0.05 was considered to be significant. Data analyses were

performed using the software Excel 2003 (Microsoft) and Origin

8.0.

Drug application
(6)-SKF83959, R-(+)-SCH23390 hydrochloride, S(2)-raclo-

pride (+)-tartrate salt, prazosin hydrochloride, mesulergine hydro-

chloride, GDP-b-S, GppNHp, (2)-bicuculline methiodide and

tetrodotoxin were purchased from Sigma-Aldrich China Inc.

ZD7288 was purchased from Tocris Bioscience.

For preparing stock solutions, SKF83959 and prazosin were

dissolved in dimethylsulfoxide (DMSO), other drugs in distilled

water. The solutions were stored at 220uC, and diluted in ACSF

to desired concentrations before use. DMSO with a final

concentration less than 0.1% had no detectable effect on the

membrane properties and Ih current of the recorded neurons, nor

did the receptor antagonists at desired concentrations. Most drugs

were delivered to the slice through perfusion, expect GDP-b-S,

GppNHp, cAMP and Rp-cAMP, which were added in the pipette

solution, and dialyzed into the neurons recorded.
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