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The coevolution of viruses and their hosts led to the repeated emergence of cellular alert 
signals and viral strategies to counteract them. The herpesvirus family of viruses displays 
the most sophisticated repertoire of immune escape mechanisms enabling infected cells 
to evade immune recognition and thereby maintain infection. The herpesvirus family 
consists of nine viruses that are capable of infecting humans: herpes simplex virus 1 
and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), Epstein–Barr virus (EBV), human 
cytomegalovirus (HCMV), roseoloviruses (HHV-6A, HHV-6B, and HHV-7), and Kaposi’s-
sarcoma-associated herpesvirus (KSHV). Most of these viruses are highly prevalent and 
infect a vast majority of the human population worldwide. Notably, research over the 
past 15 years has revealed that cellular ligands for the activating receptor natural-killer 
group 2, member D (NKG2D)—which is primarily expressed on natural killer (NK) cells—
are common targets suppressed during viral infection, i.e., their surface expression is 
reduced in virtually all lytic herpesvirus infections by diverse mechanisms. Here, we 
review the viral mechanisms by which all herpesviruses known to date to downmodulate 
the expression of the NKG2D ligands. Also, in light of recent findings, we speculate 
about the importance of the emergence of eight different NKG2D ligands in humans and 
further allelic diversification during host and virus coevolution.

Keywords: nKG2D ligands, stress-induced ligands, nKG2D, herpesvirus, host-pathogen interaction, immune 
evasion, coevolution

HeRPeSviRUSeS—COnSTAnT COMPAniOnS DURinG HUMAn 
LiFe AnD evOLUTiOn

Herpesviruses have accompanied humankind since the dawn of evolution. Herpesvirus infections 
date back at least 6 million years, even before evolutionary split between hominids and chimpanzees 
(1). From that time on, viral strategies to ensure survival and dissemination coevolved together with 
the immune system that continuously developed new measures to clear viral infections.

To date, nine different herpesviruses capable of infecting humans have been identified: HSV-1, 
HSV-2, varicella zoster virus (VZV), Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), 
HHV-6A, HHV-6B, HHV-7, and Kaposi’s-sarcoma-associated herpesvirus (KSHV) (2).

Despite their different life cycle and growth properties, cellular tropisms and although they 
cause different diseases, all herpesviruses share common features. They are enveloped and contain 
a linear, double-stranded DNA genome, ranging from 125 kb (for VZV) to 235 kb (for HCMV) (2). 
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Furthermore, all have the ability not only to infect lytically but 
also to establish life-long infection in their host, a status called 
latency, which is a dormant infection lacking pathology and viral 
replication (2, 3).

Most herpesviruses are widely spread in human popula-
tions. Serological tests reveal that HSV-1, VZV, EBV, HHV-6, 
and HHV-7 have the highest prevalence of the herpesvirus 
family and infect about 90% of the adult population (4–10). 
Notably, the prevalence of herpesviruses varies geographically 
and is influenced by socioeconomic status (2, 11, 12). HCMV 
prevalence can therefore vary between 50 and 100% dependent 
on the population studied (13). Some herpesviruses reactivate 
symptomatically and frequently in healthy individuals for as 
yet unknown reasons, while others only cause symptomatic 
reactivation in immunodeficient patients (3). However, research 
over the past few years revealed that all herpesviruses use 
common strategies during primary infection, reactivation, and 
sometimes even during latency, in order to evade the immune 
surveillance during the different phases of herpesvirus life cycle. 
The interactions between adaptive immunity and herpesviruses 
are described elsewhere (14–17). In this review, we will focus 
on the interaction of herpesviruses and natural-killer group 2, 
member D (NKG2D)-expressing immune cells. The human-
activating receptor NKG2D is expressed on all natural killer 
(NK) cells as well as on most T cells including γδ T cells and NK 
T  cells (18). Its importance was shown for tumor surveillance 
(19) and inflammatory diseases (20). The significance of NK cells 
in herpesvirus immune surveillance becomes clear by looking at 
NK cell-deficient individuals who suffer from recurrent, severe, 
potentially life-threatening herpesvirus infections (21, 22).

GeneTiCS OF nKG2D LiGAnDS

In the course of human evolution, eight different, functional 
ligands for the NKG2D receptor emerged: MHC class I polypep-
tide-related sequence A and B (MICA and MICB, respectively) 
and the unique long 16 binding protein 1–6 (ULBP1–6) (23). 
Also known as “stress-induced ligands,” they are barely found 
on healthy cells in order to avoid auto-reactivity toward normal 
tissues. These ligands, however, are upregulated and expressed 
on the cell surface following various stresses including genotoxic 
stress, oncogene activation or hypoxia that are commonly seen in 
tumorigenesis, or following viral infection (24, 25).

All NKG2D ligands belong to the MHC class I-like protein 
family. ULBP family members have an α1/α2 domain structure, 
whereas the MIC proteins possess an α1/α2/α3 domain structure 
(26). Interestingly, classical MHC class I proteins serve mainly 
as inhibitory ligands for NK cells, whereas the NKG2D ligands 
activate NK cells (27, 28).

Up until now, 16 different allelic variants were identified for 
the 6 members of the ULBP family (29). More than 100 different 
MICA alleles and more than 40 MICB alleles were identified to 
date; a finding that demonstrates the striking superior evolutionary 
plasticity of the MIC family [http://hla.alleles.org/alleles/classo.
html; (30)] (Figure 1). The reason behind this enormous diversity 
of the MIC family is still unknown. MIC genes lack hypervari-
able regions; point mutations and genetic shuffles occur over all 

three domains (31). Comparing amino acid sequence homology, 
MICA and MICB are very similar (about 85% identity), whereas 
the similarity to ULBP family proteins is comparatively low (only 
about 20–25% identity between MIC and ULBP proteins). ULBP 
family members shares about 60% amino acid sequence identity 
with each other (32–34). Interestingly, MICA, MICB, ULBP4, 
and ULBP5 contain a transmembrane domain and a cytoplasmic 
tail, whereas ULBP1, ULBP2, ULBP3, ULBP6, and one particular 
allelic variant of MICA (allele *008) are glycosylphosphatidylino-
sitol (GPI) anchored (30).

Only recently, post-transcriptional cellular mechanisms 
that control stress-induced ligand expression by RNA-binding 
proteins (35–37) and microRNAs (miRNAs) (38, 39) began to 
be unraveled; however, the regulatory circuits and expression 
patterns in normal cells remain incompletely understood. By 
contrast, much information was gathered about the suppression 
of NKG2D ligands during herpesvirus infection, emphasizing the 
importance of the receptor NKG2D for anti-viral immunity.

ALL HeRPeSviRUSeS SUPPReSS 
eXPReSSiOn OF STReSS-inDUCeD 
LiGAnDS DURinG inFeCTiOn

HSv-1 and -2—HHv-1 and -2
Herpes simplex virus 1 and 2 can cause orofacial and genital 
infections in elsewise healthy individuals with a competent 
immune system (40). Reactivation is believed to be triggered by 
stress, sunlight, fever, or skin traumas, e.g., caused by surgery 
(40, 41).

The effects of HSV-1 infection on the expression of NKG2D 
ligands were first studied by Schepis et  al. [(42); Figure  1; 
Table 1]. Both ULBP2 and MICA surface expression levels were 
found to be decreased following infection with HSV-1 strain F. 
Concurrent with a loss of surface expression, MICA messenger 
RNA (mRNA) levels were decreased. Since MICA downregula-
tion was abrogated by inhibiting the viral DNA polymerase, the 
authors concluded that a late viral gene is responsible for the 
reduction of MICA expression. However, in this study, none of 
the cell lines tested expressed other ligands besides MICA and 
ULBP2. Another study, performed by Campbell et al., confirmed 
the decrease in MICA and ULBP2, but could additionally show a 
downregulation of ULBP1 and ULBP3 (43). Interestingly, MICA, 
ULBP2, and ULBP3 were shown to be reduced at the overall pro-
tein level, whereas ULBP1 was retained intracellularly, proving 
that different mechanisms act on these ligands (43).

In a subsequent study, Enk et al. added some mechanistic detail 
about the regulation of ULBP2 and ULBP3 (44). They reported 
that the viral miRNA miR-H8 interferes with the generation of 
GPI-anchored proteins by targeting PIGT, a key protein in the 
GPI-anchoring process (45, 46). Consequently, both ULBP2 
and ULBP3 levels were reduced in miR-H8 overexpressing cells. 
Interestingly, ULBP1 is also GPI anchored but not affected by this 
pathway, explaining the necessity for another mechanism of down-
regulation—intracellular retention. However, since both MICA 
(except the allele MICA*008) and MICB are transmembrane 
proteins and were not affected by the miR-H8 overexpression, 
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FiGURe 1 | The human genome encodes for eight functional stress-induced ligands, subdivided in the MiC and ULBP family. MICA, MICB, ULBP4, and 
ULBP5 contain a transmembrane domain, whereas ULBP1, 2, and 3 and one particular allele of MICA, MICA*008, are GPI-anchored. Interestingly, MICA and MICB, 
genes having a high evolutionary plasticity as reflected by the number of allelic variants, seem to be targeted more frequently by viral immune evasion mechanisms.
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the viral mechanism responsible for these downregulations are 
still unknown.

vZv—HHv-3
Varicella zoster virus is the causative agent of varicella (chick-
enpox) in primary infection (47). In the elderly or immunosup-
pressed patients, VZV can reactivate and cause herpes zoster 
(shingles), which is characterized by painful skin lesions as well 
as neurological and ocular disorders (47, 48).

By infecting retinal epithelial cells with a clinical VZV 
strain, Campbell et  al. revealed a down-modulation of the 
surface expression of the NKG2D ligands ULBP2 and ULBP3 
[(43); Figure 1; Table 1]. By contrast, MICA surface expression 
increased during the course of VZV infection; ULBP1 and MICB 
were not expressed in the studied cells. Due to the overall reduc-
tion of surface expression of NKG2D ligands, reduced activation 
of NK cells in the presence of VZV-infected cells as compared to 
mock infected cells was observed. Interestingly, the total protein 
levels of ULBP2 and ULBP3 were not reduced in infected cells 
(43), indicating intracellular retention of these ligands by a yet 
unknown viral factor.

eBv—HHv-4
Epstein–Barr virus is usually acquired asymptomatically in child-
hood (2, 49). Infection during adolescence can lead to infectious 
mononucleosis (in about 50% of primary infections), a weakening 
and sometimes painful but self-limiting disease associated with 
the occurrence of atypical lymphocytes in the blood stream (2, 
49). Reactivation can occur in immunocompromised individuals 
and is, among others, linked not only to lympho-proliferative 

diseases such as Burkitt’s and Hodgkin’s lymphoma but also to 
nasopharyngeal carcinoma (50, 51).

A sensitization of EBV-infected cells switching from latent 
to lytic infection to NK cell killing was reported by Pappworth 
et al. (52). They showed the induction of ULBP1 following this 
switch in a Burkitt’s lymphoma-derived cell line, whereas all other 
NKG2D ligands were absent from the cell surface. Later on, an 
overexpression study performed by Nachmani et al. revealed that 
the latency-associated viral miRNA miR-BART2-5p is capable 
of binding MICB mRNA and suppressing its translation [(53); 
Figure 1; Table 1]. Interestingly, they showed that the binding 
site in the MICA mRNA sequence was mutated in such a way that 
prevented the miRNA from suppressing MICA as well.

Remarkably, to the best of our knowledge, there are no immune 
evasion mechanisms regarding NKG2D ligands during lytic EBV 
infection described to date. This phenomenon might be explained 
by a study published by Song et al. (54). They showed that EBV-
transformed B cells produce and release the tryptophan-derived 
metabolite l-kynurenine that downmodulates NKG2D receptor 
expression on by-stander NK cells. Therefore, the suppression of 
NKG2D ligands on infected cells might be of little importance if 
the effector cells themselves are effectively disarmed.

HCMv—HHv-5
While being a harmless pathogen for immunocompetent indi-
viduals, HCMV constitutes a major risk for the elderly, patients 
after organ transplantation and AIDS patients (55). Additionally, 
primary infection in pregnant women can cause miscarriage, 
stillbirth, or developmental retardation of the child (55). HCMV 
possesses the largest genome of all HHVs of about 235 kb (2). 
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TABLe 1 | Overview of known suppression mechanisms for nKG2D ligands by HHvs.

viral effector Ligand Mechanism Reference

HSV-1 ? MICA ? (42, 43)
? ULBP1 Intracellular retention (43)
miR-H8 ULBP2 Interferes with protein maturation (42–44)
miR-H8 ULBP3 Interferes with protein maturation (43, 44)

HSV-2 ? ? ? ?
Varicella zoster virus ? ULBP2 Intracellular retention (43)

? ULBP3 Intracellular retention
Epstein–Barr virus miR-BART2-5p MICB Translational repression (53)
Human cytomegalovirus miR-UL112 MICB Translation repression (56)

UL16 MICB Intracellular retention (60)
ULBP1 Intracellular retention (32, 57)
ULBP2 Intracellular retention (32, 57)
ULBP6 Intracellular retention (61)

UL142 MICA Intracellular retention (62)
ULBP3 Intracellular retention (63)

US18/US20 MICA Lysosomal degradation (64)
US9 MICA*008 Proteasomal degradation (68)

HHV-6A ? ? ? ?
HHV-6B ? MICB Proteasomal degradation (71)

? ULBP1 Proteasomal degradation
? ULBP3 Proteasomal degradation

HHV-7 U21 MICA ? (72)
MICB ?
ULBP1 Lysosomal degradation

Kaposi’s-sarcoma-associated herpesvirus K5 MICA Ubiquitinylation/intracellular retention (75)
MICB Ubiquitinylation/intracellular retention (75)

miR-K12-7 MICB Translational repression (53)

?, no published data available.
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Therefore, it might not be surprising that HCMV has the greatest 
number of viral mechanisms dedicated to the immune evasion by 
manipulating NKG2D ligands described to date.

The first viral miRNA identified to target immune molecules 
in general and NKG2D ligands in particular was miR-UL112, 
discovered by Stern-Ginossar et al. [(56); Figure 1; Table 1]. By 
binding to the 3′-UTR of the MICB mRNA, it represses transla-
tion, and surface levels are rapidly reduced, leading to decreased 
NK cell activation. UL16 was the first HCMV viral protein found 
to bind and retain ULBP1, ULBP2, ULBP6, and MICB intracel-
lularly (“ULBPs” were named for being UL16-binding proteins) 
(32, 57–61). Later, UL142 was shown to sequester both MICA 
and ULBP3 intracellularly, they colocalized with markers of the 
cis-Golgi apparatus inside infected cells (62, 63).

Fielding et  al. showed that the viral proteins US18 and 
US20 are capable of both independently and synergistically 
downregulating MICA expression by targeting it for lysosomal 
degradation (64).

Notably, the GPI-anchored allele MICA*008 was not found 
to be targeted by the abovementioned viral mechanisms and was 
therefore considered as HCMV-resistant escape variant. Since 
the MICA*008 allele is a highly prevalent in human populations 
worldwide, the hypothesis was formed that its prevalence is the 
result of viral selective pressure (65–67). However, Seidel et al. 
showed that this supposed escape variant is specifically targeted 
by the HCMV protein US9 during its maturation process, prior to 
its egress from the ER, instead forcing MICA*008 to proteasomal 
degradation (68).

Roseoloviruses—HHv-6A, HHv-6B, 
and HHv-7
HHV-6A, -6B, and -7 have long been neglected in research. 
Only in the past years have these viruses gained attention since 
it became obvious that they not only cause a common chil-
dren’s disease (roseola infantum) but might also be involved in 
severe illnesses, especially in immunoincompetent individu-
als like neuroinflammatory diseases (HHV-6A), transplant 
rejection, myocarditis (HHV-6B), or encephalitis (HHV-6A, 
-6B, and HHV-7) (69, 70). For this reason, immunomodula-
tory features of these viruses were studied only relatively  
recently.

We showed that HHV-6B strain Z29 is capable of suppressing 
the surface expression of the NKG2D ligands ULBP1, ULBP3, 
and MICB, but not MICA or ULBP2 [(71); Figure 1; Table 1]. 
This was true both in primary T cells and in T cell lines. As a 
cellular response to the viral infection, mRNA levels of all 
stress-induced ligands rise following infection; however, the 
virus suppresses the three abovementioned ligands on protein 
level and degrades them rapidly in a proteasome-dependent 
pathway shortly after the start of infection. Also, we showed that 
the degradation of the three ligands is mediated by at least two 
different viral proteins.

As for HHV-7, Schneider et al. showed that U21, which was 
previously shown to target HLA class I for lysosomal degrada-
tion, also causes lysosomal degradation of ULBP1 resulting in 
a mild downregulation. Additionally, they observed a major 
downregulation of MICA and MICB (72). These findings were 
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established using the overexpression of the viral protein U21. 
However, the exact mechanism for MIC proteins degrada-
tion remained unclear. Probably, U21 interferes with proper 
protein glycosylation rendering the MIC proteins unstable 
and causing them to be targeted for cellular degradation. Due 
to the mild loss of ULBP1, this degradation was proposed to 
be the result of a “side-effect” of U21-mediated HLA class 
I degradation, since these related proteins were targeted to 
lysosomal degradation with higher affinity and to a greater 
extent.

However, since the study was limited to overexpression of a 
single gene and no studies were conducted using an actual infec-
tion model, it is possible that additional stress-induced ligands 
are affected by HHV-7 or that additional mechanisms targeting 
the same ligands exist.

KSHv—HHv-8
Kaposi’s-sarcoma-associated herpesvirus is the human her-
pesvirus with the lowest seroprevalence in the Western world 
with only about 1–3% of individuals infected (73). Still, this 
virus is a significant cause of cancer, primarily in AIDS patients, 
whereas immunocompetent individuals do not experience KSHV 
reactivation (73, 74). In developing countries, seroprevalence is 
substantially higher (73).

During lytic infection, KSHV evades NK  cell recognition 
by expressing the viral E3 ligase K5. Thomas et al. showed that 
K5 modifies lysine residues within the cytoplasmic tails of both 
MICA and MICB with ubiquitin. Consequently, these molecules 
are internalized from the cell membrane and intracellularly 
sequestered, but not degraded [(75); Figure 1; Table 1]. Notably, 
the fact that the MICA allele *008 as well as ULBP1, ULBP2, 
and ULBP3 are GPI anchored and therefore lack a cytoplasmic 
tail, render them resistant to K5-mediated ubiquitinylation. 
Additionally, Nachmani et al. reported that the viral miRNA miR-
K12-7 specifically represses the translation of MICB by binding 
to the 3′-UTR of its mRNA (53). Interestingly, MICA mRNA 
was shown not to be targeted by miR-K12-7 since the 3′-UTR 
is significantly shorter than the MICB equivalent and does not 
contain the binding site (53).

eiGHT LiGAnDS, FURTHeR ALLeLiC 
DiveRSiFiCATiOn: HOST–PATHOGen 
evOLUTiOn AT FULL SPeeD

As emphasized above, herpesvirus family members developed 
numerous mechanisms to interfere with the expression of 
the stress-induced ligands. However, most of these studies 
still leave unanswered questions. More mechanisms and viral 
effectors are still waiting to be discovered. The viral protein 
repertoire is probably much larger than currently known; by 
using ribosome profiling of HCMV and KSHV, numerous new 
open reading frames (ORFs) have been identified (76, 77). The 
functions of many viral proteins and ORFs are yet unknown 
and we are just on the verge of understanding the importance 
of viral non-coding RNAs, including long non-coding RNAs 
(78, 79).

While the NKG2D receptor itself is conserved among species, 
its ligands are not. Interestingly, having eight functional ligands 
of two different families (MIC and ULBP) and various alleles, 
the human NKG2D ligand repertoire is more complex than 
that of other species. Mice possess even nine functional ligands 
(MULT1, Raet1α–ε, H60a–c) (80). However, their domain struc-
ture reveals them to be ULBP family homologs with low allelic 
diversity. Non-human primates were shown to have homologs of 
the MIC proteins (81, 82). Still, compared to humans with more 
than 100 allelic variants, even great apes seem to possess lower 
allelic variation (83).

Herpesviruses might be a major driving force for diversifica-
tion of stress-induced ligands and further mutagenesis within 
alleles leading to allelic variations. None of the described viral 
mechanisms is capable of eliminating the expression of all 
stress-induced ligands, the evolutionary pressure rendered these 
ligands so diverse that no single viral protein or RNA is sufficient 
to regulate all of them.

As described earlier, viral miRNAs of HCMV, EBV, and 
KSHV target MICB mRNA at different sites of its 3′-UTR and 
suppress protein translation (53, 56). Despite the high degree of 
sequence homology in their 3′-UTRs, MICA is not targeted by 
any of these miRNAs. The binding sites for the viral miRNAs of 
HCMV (miR-UL112) and EBV (miR-BART2-5p) are modified 
by a single-nucleotide insertion, thus abolishing miRNA-induced 
translation repression. The sequence that is targeted by the KSHV 
encoded miR-K12-7 is completely absent due to a major deletion 
in the MICA 3′-UTR.

A similar mutagenesis apparently occurred in the MICA 
protein to escape UL16 binding. UL16 binds to an α-helical 
structure in the α2 domain of MICB. By substituting single amino 
acid residues in MICB with their MICA equivalents, Spreu et al. 
could show that a single substitution (at two different positions) 
is sufficient to abolish UL16 binding (84); hence, MICA is spared 
from UL16-mediated intracellular retention by virtue of very 
few mutations. Additionally, Klumkrathok et al. suggested that 
even different allelic variants of MICB are bound with different  
affinities by UL16 due to amino acid substitutions in the α2 
domain (85).

A third piece of evidence for a herpesvirus-driven coevolution 
is the emergence of MICA*008, a highly prevalent, GPI-anchored 
MICA variant. MICA*008 is not targeted by UL142, by US18, or 
by US20. Only recently, it was discovered that the evolutionary 
relatively novel US9 is capable of targeting solely this distinct 
allele, but none of the full-length alleles containing a transmem-
brane domain (68).

These few examples illustrate well the human capability to 
adjust to viral immune evasion strategies. Accordingly, this strong 
selective, coevolutionary pressure necessitates modification of 
viral effector molecules targeting the immune surveillance sys-
tem as well. By comparing different isolates from HCMV-infected 
individuals, Renzette et al. and Sijmons et al. indeed showed on 
a global level that genes involved in immune evasion within the 
HCMV genome are strongly diversified and contain high numbers 
of single-nucleotide polymorphisms (86, 87). Among others, one 
particular mutable gene was found to be UL142, which interacts 
with NKG2D ligands as pointed out before (87).
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DiveRSiFiCATiOn: An evOLUTiOnARY 
neCeSSiTY?

It seems obvious to conclude that herpesviruses and ligands 
for NKG2D continuously shape each other during coevolution, 
whereas the NKG2D receptor itself remains conserved.

Particularly MICA took the lead in this race on the human 
side, its 3′-UTR became shortened and modified and numerous 
allelic variations emerged to withstand herpesvirus infection. 
The diversity of MICA alleles might thereby even create a “popu-
lation level resistance” by making it difficult for newly emerging 
viral mechanisms to successfully target  all MICA variants at 
once.

However, in contradiction to this theory and the supposed 
importance of stress–ligand evolution, several reports showed 
a wide distribution of a MICA–MICB null haplotype (also 
described as MICA-del–MICB-null), a phenotype that occurs 
mainly, but not exclusively, in East Asia (88–91), apparently with 
no major evolutionary disadvantage or clinical manifestations.  

In fact, there are several known MICA-null alleles also independ-
ent of this haplotype. If and how MICA and MICB functions 
are compensated in these individuals, e.g., by the redundancy 
of the other NKG2D ligands that are still present, has yet to be 
elucidated; however, this phenomenon teaches us that we are still 
far from a complete understanding of the complex families of 
NKG2D ligands.
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