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Abstract: Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm  
is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA 
undergoes a series of processing steps, including capping at the 5' ends, splicing and 
cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a 
wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. 
Association with factors involved in nuclear export also occurs during transcription and 
processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling 
between mRNA maturation and nuclear export is an important mechanism for providing 
only fully functional and competent mRNA to the cytoplasmic translational machinery, 
thereby ensuring accuracy and swiftness of gene expression. This review describes the 
molecular mechanism of nuclear mRNA export mediated by the principal transport factors, 
including Tap-p15 and the TREX complex. 

Keywords: nucleo-cytoplasmic transport; Nxf1-Nxt1; mRNA; TREX complex 
 

1. Introduction 

Eukaryotic cells consist of various organelles that execute different activities to sustain a range of 
cellular functions. The largest among them is the cell nucleus, which is surrounded by the nuclear 
envelope (NE) and stores genetic information in the form of chromatin. Transcription of genes, 
processing of various RNAs and replication and repair of DNA occur in the nucleus, whereas translation 
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of proteins exclusively takes place on the ribosomes in the cytoplasm. Due to this physical separation, 
messenger RNAs (mRNAs) must be exported to the cytoplasm where they direct protein synthesis, 
whereas proteins participate in the nuclear activities are imported into the nucleus. In addition, some types 
of RNAs reenter to the nucleus after being exported to the cytoplasm [1]. Therefore, nucleo-cytoplasmic 
transport of RNAs and proteins is essential for eukaryotic gene expression.  

Among the various RNA species, mRNA is the most divergent in sequence, length, and structure.  
In addition, as recently demonstrated by proteomic analysis [2–4], mRNAs are associated with a myriad 
of proteins and exist as messenger ribonucleoprotein (mRNP) particles throughout their life [5,6].  
The compositional complexity and the size of mRNPs are in contrast to those of other comparably small 
and simple RNAs, such as transfer RNAs (tRNAs) and microRNAs (miRNAs). Moreover, in the 
nucleus, precursor mRNAs (pre-mRNAs) undergo extensive processing including capping at the 5' end, 
splicing and polyadenylation at the 3' end, before being transported to the cytoplasm. Partially due to 
this unusual intricacy as transport cargoes, the nuclear export mechanism of mRNA is unique and distinct 
from those of the other small non-coding RNAs. 

2. Nuclear Export of mRNA: A Brief Overview 

Nuclear pore complexes (NPCs), which perforate the NE, are the main gateways through which 
RNAs and proteins are delivered to their proper destinations. The NPC is composed of approximately 
30 distinct proteins that are collectively known as nucleoporins [7–10]. A subset of nucleoporins  
that line the central transport channel contains phenylalanine-glycine (FG)-repeat sequences, which 
emanate to the inside of the channel and form a dense hydrophobic meshwork that functions as a barrier 
limiting the improper exchange of soluble macromolecules between the nucleus and the cytoplasm [7,8]. 
Thus, nucleo-cytoplasmic transport of RNAs and proteins requires specific transport receptors to break 
this barrier. 

The importin/karyopherin-� family of proteins comprise the prototypical transport receptor family 
that mediates nucleo-cytoplasmic movement of most proteins and small non-coding RNAs, such as 
tRNA, uridine-rich small nuclear RNA (UsnRNA), and miRNA [11–15]. These family members interact 
with the FG-repeats and various transport signals that are harbored in their cognate cargoes and direct 
them to the correct compartment. The small nuclear GTPase Ran dictates the direction of the transport 
mediated by the importin/karyopherin-� family of transport receptors by regulating the association and 
dissociation of the cargo-transport receptor complexes [11–16].  

Nuclear export of mRNAs is a unique process that does not directly rely on the functions of the 
importin/karyopherin-� transport receptor family and Ran. Instead, it requires the evolutionarily 
conserved heterodimeric transport receptors Tap-p15 (also called Nxf1-Nxt1) in metazoans and  
Mex67-Mtr2 in yeast (Figure 1) [12,17]. A thermo sensitive mutant of mex67 accumulates poly (A)+ 
RNA in the nucleus under the non-permissive temperature [18]. Human Tap and its orthologues from 
various metazoan species are also essential for cell viability, and nuclear accumulation of poly (A)+ RNA 
was observed upon down regulation of these genes in various organisms [19–22]. Although metazoan 
species harbor several Tap paralog genes, they are expressed only in specific tissues. Moreover, some 
of these proteins seem to have evolved to play other functional roles [23–30]. Thus, in general, 
structurally diverse mRNAs are exported by a single transport receptor. 
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Figure 1. A brief overview of mRNA nuclear export. During transcription, protein factors 
required for capping, splicing and cleavage/polyadenylation are recruited to the nascent 
transcript, forming an mRNP. The 5' end of the mRNA is capped early in this process via an 
interaction between the capping enzyme and RNA polymerase II (RNAPII). Factors 
involved in splicing and cleavage/polyadenylation are also co-transcriptionally loaded onto 
the pre-mRNA (see also Figure 3). Measurement of the transcript length by the hnRNP C 
tetramer, which is important for allocating the transcript to the mRNA-specific processing 
and export pathway, could occur early during transcription. The TREX complex and a subset 
of the SR proteins, which are engaged in nuclear export, are recruited to the nascent mRNA 
via interactions with the transcription and processing factors. The nuclear export receptor 
Tap-p15 (Mex67-Mtr2 in yeast) in turn gains access to the mRNA via interactions with these 
factors as adaptors. The nuclear export receptor heterodimer facilitates the translocation of 
mRNPs through its interaction with FG-repeat containing nucleoporins. During the process 
of the nuclear mRNA biogenesis, the structure and the composition of the mRNP change 
drastically (see also Figure 4), and these alterations in the physicochemical properties also 
help the mRNP translocate through the NPC. The mRNA export factors are then dissociated 
from the mRNP by factors associated with the NPC to prevent the return of the mRNP to the 
nucleus. The exported mRNA then directs protein translation in the cytoplasm. 

Both Tap-p15 and Mex67-Mtr2 are RNA binding proteins, but they bind nonspecifically to RNA
in vitro and are not able to distinguish different RNAs on their own [18,31,32]. To circumvent this 
problem, a series of mRNA-binding proteins participate in this process. The conserved transcription-export 
(TREX) complex, which consists of the THO subcomplex (composed of hHpr1, Thoc2, Thoc7,  
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Thoc5, Thoc6 and hTex1 in mammals and Hpr1, Tho2, Mft1, Thp2 and Tex1 in yeast), Uap56 (Sub2 in 
yeast) and Aly/REF (Yra1 in yeast) plays an important role in selection of mRNAs by Tap-p15 and  
Mex67-Mtr2 [12,33–37]. The RNA-binding components of the TREX complex, including yeast Yra1 
and mammalian Aly/REF, directly interact with the export receptor heterodimers, thereby functioning 
as adaptors (Figure 2A) [38,39]. In addition, in yeast, the serine-arginine rich (SR) proteins Npl3, Gbp2 
and Hrb1, the latter two of which are associated with the TREX complex [40], and the mRNA binding 
protein Nab2 also interact with Mex67-Mtr2 and probably function as adaptors [41–44]. In mammalian 
cells, the SR proteins 9G8 and SRp20 [45], as well as numerous mRNA-binding proteins, have been 
proposed to play a similar role (Figure 2A) [22,46–49]. 

 
A 

B 

Figure 2. Structure and function of the principal mRNA export receptor Tap-p15. (A) Tap 
consists of an RNA recognition motif (RRM), leucine-rich repeat (LRR), nuclear transport 
factor 2-like (NTF2L) and ubiquitin-associated (UBA) domains. These domains are 
interconnected by flexible linkers (thin lines). Both the NTF2L and UBA domains contain 
FG-repeat-binding sites. Our recent analysis showed that the RNA binding activity of Tap is 
attributable to the RRM, LRR and NTF2L domains [50]. Adaptor proteins that bind to 
various domains of Tap are shown on top of the schema; (B) The structure of the NTF2L 
domain of Tap (green) complexed with p15 (blue). The surface of the NTF2L domain of 
Tap, which is critical for its RNA-binding activity, is shown in yellow. Note that the  
RNA- and the FG-repeat binding sites (an FG-repeat peptide in the complex is shown in red) 
are localized to opposing surfaces. The structural coordinate (accession number; 1JN5) was 
taken from the PDB database and displayed using the GRASP2 software [51]. 
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Recruitment of adaptor proteins to mRNPs is coupled with transcription and processing, causing 
mRNPs to be licensed to the mRNA-specific export pathway upon the completion of nuclear processing. 
Thus, transcription by RNA polymerase II (RNAPII) is a key determinant allocating mRNA to the 
appropriate export pathway. In addition, length is another important determinant that distinguishes 
mRNAs from UsnRNAs, both of which are transcribed by RNAPII in metazoans [52,53]. The 
heterogeneous nuclear ribonucleoprotein (hnRNP) C tetramer, which is an abundant nuclear mRNA 
binding protein, plays a critical role in this initial decision as a “molecular ruler” [53,54]. Recent studies 
concerning genome-wide profiles of RNAPII in yeast [55–57] suggest that size matters in nuclear export 
of mRNAs (see also Section 5.1). 

It has been proposed that gene positioning to NPC-proximal site (known as “gene gating” [58]) is 
coupled to transcription initiation and nuclear export of mRNA in yeast. The yeast TREX-2 complex 
(Sac3-Thp1-Sem1-Sus1-Cdc31), which associates with the NPC through interaction with the SAGA 
(Spt-Ada-Gcn5-Acetyl transferase) transcriptional co-activator complex, plays important roles in this 
coupling and localizes a subset of transcriptionally active genes to NPCs [59–64]. Orthologues of the 
TREX-2 complex (GANP-PCID2-DSS1-ENY2-centrin) were also found in higher eukaryotes [63].  
In mammals, in which transcription occurs deep inside the nucleus, the Sac3 orthologue GANP 
(germinal-center associated nuclear protein) binds to mature mRNPs via an interaction with Tap-p15 
and chaperones them from the transcription sites to NPCs [65–67]. A recent report showed that the 
function of the mammalian TREX-2 is required for nuclear export of a subset of mRNA [68]. 

Several lines of evidence suggest that the mRNA export receptor directly interacts with an mRNA 
after its initial recognition via protein-protein interactions. This step has been shown to be regulated by 
post-translational modifications of the adaptor proteins [41,69]. Subsequently, the transport receptor 
facilitates translocation of the bound mRNA cargo through the NPC by directly interacting with the  
FG-repeat sequences of nucleoporins [32,70–73]. Upon translocation to the cytoplasm, the transport 
receptor is dissociated from the export complex to prevent the mRNA cargo from returning to the 
nucleus. This final step is facilitated by various factors, such as Gle1 and Dbp5, that are associated with 
the NPC [74–77]. 

3. Structure and Function of the mRNA-Specific Transport Receptor Heterodimer 

Tap and Mex67 share a modular domain organization that comprises an RNA recognition motif 
(RRM) followed by leucine-rich repeat (LRR), NTF2-like (NTF2L) and ubiquitin-associated (UBA) 
domains (Figure 2) that are interconnected by unstructured flexible linkers [78]. The NTF2L domains 
of Mex67 and Tap tightly interact, respectively, with the small proteins Mtr2 and p15 [31,32]. Structural 
studies have revealed that this heterodimerization with the small partner proteins is crucial for 
maintaining the integrity of the NTF2L domain [79,80].  

The NTF2L and UBA domains each contain a single FG-repeat-binding site. Although structurally 
unrelated, these domains bind to FG-repeat sequences in a manner similar to that of the 
importin/karyopherin-� family transport receptors [81]. These two FG-repeat-binding sites are essential 
for Tap-mediated mRNA export [82]. Interestingly, it has been shown that Tap derivatives containing two 
copies of either the NTF2L or UBA domain export mRNA less efficiently than the wild type protein [82], 
suggesting that these domains are not functionally equivalent and may have additional functional roles. 
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According to in vivo and in vitro assays, Tap-p15 and Mex67-Mtr2 directly interact with RNA. 
Although the intrinsic RNA-binding activity of the mRNA export receptors is weak, D-type retroviruses, 
such as Mason-Pfizer Monkey Virus (MPMV) and Simian Retrovirus type 1 (SRV-1), have evolved an 
effective way to specifically exploit Tap-p15 to export unspliced viral mRNA [83,84]. The constitutive 
transport element (CTE) is a structured, cis-acting RNA sequence that binds Tap-p15 with high  
affinity [85,86]. It has been thought that the amino-terminal half of Tap consisting of the RRM and LRR 
domains, which exhibits structurally and biochemically similar properties to the spliceosomal U2B'' and 
U1A' heterodimer, is sufficient for CTE binding. Indeed, a structural analysis has shown that the two 
domains extensively interact with the CTE [87,88]. However, our recent analysis revealed that the 
NTF2L domain also functions as an additional RNA binding platform that becomes apparent upon 
heterodimerization with p15 [50] (Figure 2B). Point mutations to the critical residues in the NTF2L 
domain, which are localized to the other side of the FG-repeat binding surface, severely reduced the 
CTE export activities. These data indicate that the binding through the NTF2L domain is functionally 
relevant for the CTE-driven mRNA export. Thus, the three domains of Tap; i.e., the RRM, LRR and 
NTF2L domains, participate in RNA recognition (Figure 2A). The RNA binding activity of Mex67 of 
the budding yeast and the thermophilic fungus Chaetomium thermophilum is also attributable to the 
same domains, suggesting that the way by which the mRNA export receptors recognize cargo mRNAs 
is evolutionarily conserved [50,89]. Moreover, structural analysis of a Tap fragment containing the three 
RNA binding domains complexed with p15 revealed that the Tap-p15 forms an intimate domain-swapped 
dimer [90]. Intriguingly, RNA- and FG-repeat binding domains are arranged on the opposite faces in the 
dimer, thus efficiently interacting with the two-fold symmetrical structure of CTE-RNA and the FG-repeat 
containing nucleoporins. It is conceivable that the formation of the symmetrical RNA binding platform 
may promote the FG-repeat binding and accelerate the NPC translocation of CTE containing mRNA. 

4. Bulk Cellular mRNA Recognition through mRNA-Binding Adaptor Proteins 

To select bulk cellular mRNAs, Tap-p15 and Mex67-Mtr2 exploit a series of adaptor proteins. Yra1, 
the RNA-binding component of the TREX complex, is an essential adaptor protein in yeast and it directly 
binds to the amino-terminal domain of Mex67 through its arginine- and glycine-rich region [38,91].  
In addition to Yra1, other adaptor proteins, such as Npl3 and Nab2, are also likely to mediate the 
recruitment of Mex67-Mtr2 to mRNAs [41–43]. Analysis of protein and RNA components of Nab2-bound 
mRNP revealed that Yra1 is co-purified with Nab2 and that the complex contains the bulk of yeast 
transcripts [43]. A recent transcriptome-wide PAR-CLIP (photoactivatable ribonucleoside-enhanced 
protein-RNA crosslinking and immunoprecipitation) analysis revealed that Mex67 binds mRNA without 
an apparent preference for specific RNA sequences. In contrast, the three adaptor proteins showed 
distinct crosslinking patterns, indicating that these factors bind to a unique spectrum of transcripts [92]. 
These observations, together with the previous data [93], suggest that multiple adaptor proteins enable 
the nuclear export of structurally divergent mRNA by a single transport receptor and that the three 
adaptor proteins could be grouped as general, i.e., Yra1 and Nab2, and specific, i.e., Npl3, with regard 
to their repertoire.  

Aly/REF, an orthologue of Yra1, also interacts with the amino-terminal region of Tap [39]. In contrast 
to Yra1, which is essential for mRNA export in yeast, Aly/REF in metazoans is required but not essential 
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for bulk cellular mRNA export [94,95]. These earlier observations have led to the hypothesis that an 
additional adaptor protein with a partially redundant function might participate in the recognition of bulk 
mRNAs in metazoans [81,94]. Thoc5, a metazoan-specific RNA-binding component of the TREX 
complex, interacts with the NTF2L domain of Tap, which completely overlaps with the RNA-binding 
platform described above [22]. We found that Tap mutants harboring mutations in either the RRM or 
the NTF2L domain exported mRNAs as efficiently as the wild type protein. Notably, mutations in both 
the RRM and NTF2L domains severely blocked the mRNA binding and export activities of Tap [50]. In 
addition, the nuclear export of bulk cellular mRNA was not severely affected in a human cell line 
exclusively expressing the NTF2L domain mutant of Tap. Importantly, the cell line exhibited a synthetic 
growth phenotype due to a severe mRNA export block when Aly/REF was knocked down [50]. 
Moreover, simultaneous knock down of Aly/REF and Thoc5 blocked the nuclear export of mRNA in 
the parental wild type cell line [50,96]. Taken together, these data suggest that, at least in mammalian 
cells, the TREX component Thoc5 could be the factor that cooperates with Aly/REF. Recent studies 
indicated that the nuclear export of only a subset of genes is impeded in mammalian cells under  
Thoc5 depleted condition [97–99]. This result suggests that the nuclear export of certain types of mRNAs 
is differentially dependent on the two principal adaptor proteins. Aly/REF has been shown to be  
involved in nuclear phosphoinositide signaling [100]. Recent data showed that phosphatidylinositol  
(3, 4, 5)-triphosphate (PIP3), a product of inositol polyphosphate multikinase (IPMK), is required for 
Aly/REF to selectively recognize RAD51 mRNA [101], indicating that the target mRNA recognition by 
the adaptor proteins is regulated. In addition, the range of adaptor proteins that have been identified in 
mammals to date may further expand the repertoire of Tap-p15, as has been proposed for the yeast 
adaptor proteins [92]. Moreover, a recent report indicated that a tissue specific adaptor protein 
complements the function of Aly/REF [102]. However, we still do not fully understand whether and how 
these different adaptor proteins participate in the nuclear export of various mRNAs. Thus, determination 
of the specificity of each adaptor and the relevance in the nuclear export of different mRNAs in mammals 
awaits further analysis. 

5. Formation of Export Competent mRNPs 

Soon after the initiation of transcription, an mRNA is coated with a multitude of proteins and thereby 
always exists as an mRNP. The protein components of an mRNP range from factors that participate in 
processing, packaging and nuclear export to those that function in the decay, translation and localization 
of the mRNP. Some of these components are released in the nucleus, while others accompany the mRNP 
to the cytoplasm. Thus, throughout life, the structure of an mRNP and the composition of its associated 
proteins are continually changing [5,6,103–105]. Moreover, many studies have suggested that the way 
how an mRNP is formed in the nucleus affects its fate in the cytoplasm [52,106–111].  

5.1. Transcription-Coupled mRNP Formation 

The co-transcriptional processing of mRNAs, which is mediated by the carboxy-terminal domain 
(CTD) of the largest subunit of RNAPII [112–115], is important for appropriately directing transcripts 
to their mRNA-specific processing and export pathway (Figure 3).  
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Figure 3. Co-transcriptional loading of the TREX complex. The carboxy-terminal domain 
(CTD) of RNAPII is subjected to transcription-cycle-specific modifications. Ser5 of CTD is 
phosphorylated when RNAPII is near the promoter. The capping enzyme specifically binds 
to the Ser5-phosphorylated CTD, allowing capping to occur early during transcription 
initiation. Ser2 phosphorylation gradually increases during transcription elongation and 
becomes dephosphorylated near the transcription termination site. Factors involved in 
cleavage/polyadenylation specifically bind to the Ser2-phosphorylated CTD. Recent data 
indicate that the THO subcomplex of the yeast TREX complex specifically and directly 
interacts with the Ser2/Ser5-diphosphorylated CTD [116].  

The CTD consists of a highly conserved heptapeptide repeat: Y1S2P3T4S5P6S7, the numbers of which 
vary across species, ranging from 26 in yeast to 52 in humans. The repetitive sequence functions as a 
binding platform for a wide variety of nuclear factors involved in capping, transcription elongation, 
splicing and cleavage/polyadenylation. Transcriptional stage specific modification of the CTD determines 
the types of factors that associate with it. For example, S5 of the CTD is phosphorylated during 
transcription initiation and is rapidly dephosphorylated upon the transition to transcription elongation. 
Thus, S5 phosphorylation is high at the promoter region and persists at low levels throughout the gene 
body. The capping enzyme is specifically attracted to the S5 phosphorylated CTD, and, thus, the cap is 
added to the 5' end of mRNA co-transcriptionally during transcription initiation [112]. In contrast, S2 
phosphorylation occurs later, increases during transcription elongation and decreases shortly after 
RNAPII reaches the transcription termination site. Factors that act later in the transcription cycle, such 
as splicing, cleavage and polyadenylation, selectively interact with an S2 or S2/S5 phosphorylated CTD. 
Earlier studies have revealed that the localization pattern of the yeast THO and TREX components  
on active loci, which increases from the 5' to the 3' region, resembles to that of S2-phosphorylated 
RNAPII [117,118]. However, the exact mechanism by which the THO/TREX complex is recruited  
co-transcriptionally has yet to be fully elucidated. A recent analysis in yeast revealed that the THO 
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subcomplex specifically and directly interacts with the S2/S5-diphosphorylated CTD. Thus, the 5' to 3' 
increase in S2 phosphorylation directly mediates the recruitment of the TREX complex to the active 
genes [116]. The elongating chain of the nascent mRNA, to which the THO component, such as Tho2 binds, 
and the Prp19 complex, which also interacts with the elongating RNAPII and the THO/TREX complex, 
further stabilize the binding of the TREX complex to the active loci [119]. This transcription-coupled 
mechanism could also be in operation especially in intronless genes in metazoans. In fact, the TREX 
components, as well as the Prp19 complex and U2AF2, have been shown to associate with cytoplasmic 
accumulation region element (CAR-E), a 10-nt RNA sequence identified in a subset of naturally 
intronless mRNAs that promotes their nuclear export and stable accumulation in the cytoplasm [120]. 

It has recently been reported by different groups that the phosphorylation cycle of RNAPII CTD is 
very similar at all transcribed yeast genes [55–57]. They observed that following S5 phosphorylation, S2 
phosphorylation occurs always approximately 600 bps away from the transcription start site, irrespective 
of the gene length. Therefore, it is conceivable that short and long genes can have different CTD 
phosphorylation levels at the transcription termination site; short genes tend to have higher levels of S5 
and lower levels of S2 phosphorylated RNAPII [57]. The recruitment of factors that participate in  
pre-mRNA processing, including termination factors and mRNA-binding adaptor proteins, could be 
differently influenced by the CTD phosphorylation pattern. Consequently, the size of gene could affect 
nuclear export of the mRNA. 

After being recruited to transcriptionally active genes, the mRNA-binding adaptor proteins Yra1 and 
Aly/REF in the TREX complex are transferred to the mRNA, where they then recruit the export receptors 
Mex67-Mtr2 and Tap-p15. This final step is proposed to be regulated by yeast Sub2 and metazoan 
Uap56, both of which serve as DExD/H-box-type RNA helicases in the TREX complex [121,122]. The 
ATP-bound, but not ADP-bound, Uap56 interacts with RNA and Aly/REF in vitro. The binding of RNA 
and Aly/REF then stimulates the intrinsic ATPase activity of Uap56, inducing the dissociation of Uap56 
from the complex. Since Uap56 and Tap-p15 competitively bind to Aly/REF, the release of Uap56 from 
the complex allows Aly/REF to recruit Tap-p15 [123]. 

The TREX components are also recruited to the mRNA during the transcription termination via 
interactions with the cleavage/polyadenylation factors [124,125]. Synchronization of the export adaptor 
recruitment with pre-mRNA cleavage and polyadenylation is important to release the mRNP upon 
maturation and to prevent the unnecessary retention of mRNAs at gene loci, which may threaten genome 
stability [124,126].  

5.2. Splicing-Coupled mRNP formation 

It has been known for years that splicing stimulates gene expression, but the step at which splicing 
acts has been elusive (see reviews [81,127,128] for a discussion of this topic). One compelling theory is 
that splicing promotes the nuclear export of mRNAs. Indeed, it has been shown that in metazoans,  
of which most genes harbor multiple introns, the TREX complex is recruited to mRNPs during  
splicing [129,130] (Figure 4). Uap56, a component of the metazoan TREX complex, was originally 
identified as an interaction partner of splicing factor U2AF2 [131]. In addition, splicing deposits SR 
proteins and the exon junction complex (EJC), a multiprotein complex that binds approximately 24 
nucleotides upstream of each exon boundary onto the spliced mRNA [132,133] (Figure 4). In 
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mammalian cells, the SR proteins (see the previous sections) and several EJC components interact with 
Tap-p15 [134–136] and, therefore, directly couple nuclear mRNA export to splicing. In contrast to 
metazoans, yeast Mex67-Mtr2 recognizes cargo mRNAs via the adaptors recruited co-transcriptionally 
to mRNP (see Section 5.1). Yeast mRNA binding adaptor proteins, such as Npl3, are co-transcriptionally 
recruited to mRNA and then, in turn, promote transcription elongation and splicing [137–139], linking 
splicing and nuclear export of mRNA. Thus, it is possible that the ways by which transcription and 
nuclear export are coupled are not the same among eukaryotic species, due, at least in part, to the 
abundance of introns in their genome.  

 

Figure 4. Splicing changes the structure and the composition of an mRNP. The exon-junction 
complex (EJC) and a subset of SR proteins are deposited on the mRNP upon splicing. 
Multimerization of the EJC along with the associated SR proteins promotes mRNP 
packaging and compaction. An earlier study has shown that splicing also recruits the TREX 
complex to the 5'-end of mRNA [130]. This compaction and the association of the nuclear 
export factors may promote the translocation of the mRNP through the NPC. 

5.3. Compaction of mRNPs during Processing 

In addition to the recruitment of the nuclear mRNA export factors, processing drastically alters the 
structure and composition of mRNPs. Indeed, it has been reported that the lengths of purified mature 
mRNPs from yeast were considerably shorter than the expected lengths of the mRNAs within them, 
indicating that processed mRNPs are highly compacted [43]. The compaction of mRNPs is also 
supported by the results of an analysis of the diffusion coefficients of fluorescently labeled mRNAs in 
living mammalian cells [140] and of structural studies of Balbiani ring gene mRNPs in the salivary 
glands of Chironomus tentans [141]. In addition, in vivo imaging of labeled endogenous mRNA has 
revealed that the mRNA export process can be divided into three steps, i.e., docking to, translocation 



Genes 2015, 6 173
 
through and release from the NPC, and that the translocation is not the rate-limiting step and  
proceeds very quickly (it takes only 5 to 20 ms), indicating that properly processed mRNP is prone to 
translocation [142,143].  

Recent evidence has indicated a role of splicing in the structural alteration of mRNPs at the  
molecular level. A comprehensive analysis of the endogenous EJC protein and mRNA interactomes in 
human cells has revealed that the EJCs are present on the vast majority of exon-exon junctions and form 
high-molecular-weight multimers with their associated SR proteins [144] (Figure 4). The multimerization 
of EJCs that bind to various positions within a single mRNA could induce the compaction of the mRNP. 
Furthermore, the compaction of an mRNP may alter the proximity of various sites in a single mRNA, 
thus influencing mRNA processing patterns. An overall reduction in size due to compaction may also 
facilitate the ability of an mRNP to translocate through the NPC. Interestingly, both the EJC and SR 
proteins are rich in intrinsically disordered regions, which mediate the phase transition of mRNPs to 
hydrogels [145,146]. Changes in the physicochemical properties of mRNPs induced by the association 
of the EJC and SR proteins may also expedite the translocation of mRNPs through the hydrophobic 
milieu formed by the FG-repeat hydrogel within the central channel of the NPC [147–151]. 

5.4. Surveillance Mechanisms for mRNA Export 

Any failure at each step during the biogenesis of mRNA results in production of faulty mRNP, which, 
in principle, threatens genome integrity and the normal proteome in the cell. To eliminate the 
functionally defective mRNP and ensure translational fidelity, cells have evolved multi-layered 
surveillance mechanisms. The translation-dependent quality control, which takes place in the cytoplasm, 
is the best-studied mechanism to degrade defective mRNAs and proteins deposited in mRNP in the 
nucleus play important roles (see [152] for a recent review). In addition, various nuclear surveillance 
mechanisms, which closely link to the mRNA export step, are in operation in the nucleus (see [36,153] 
for reviews). Immature mRNPs containing unspliced transcripts are retained in the nucleus by 
components of the spliceosome [154,155] and factors associated with the NPCs [156–158]. The yeast 
TREX-2 complex has also been shown to contribute to the retention of immature mRNP at the 
transcription site and nuclear periphery [159]. The retained mRNP is subjected to nuclear RNA decay 
activities for quality control. In yeast, the nuclear exosome, which mediates 3'–5' degradation of RNAs, 
with the aid of the TRAMP (Trf4/Air2/Mtr4 polyadenylation) complex comprises the major decay 
pathway, whereas decapping followed by 5'–3' degradation mediated by Dcp2 and the Rat1-Rai1 
complex, functions as the minor pathway [36,153]. In addition, a yeast endoribonuclease Swt1, which 
transiently associates with the NPC, has been shown to participate in the degradation of defective 
mRNPs trapped at the nuclear periphery to avoid their cytoplasmic export and translation [160]. 

6. Conclusions and Perspectives 

Extensive studies have greatly clarified the molecular mechanisms of mRNA export. Nuclear mRNA 
export is fully integrated into gene expression, and it proceeds with other elementary steps of gene 
expression. The TREX complex plays pivotal roles in the coupling of these processes through the 
extensive interaction networks with the factors involved in transcription, splicing, polyadenylation, and 
nuclear export. 
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mRNAs are associated with various proteins, including a variety of adaptor proteins. The inclusion 
of a diverse set of adaptor proteins within a single mRNP may increase its chance of being recognized 
by the transport receptor. Recruitment of multiple copies of transport receptors may also be advantageous 
for efficient transport of huge mRNPs, as has been suggested for ribosomal particles [161,162]. 
Alternatively, these adaptor proteins may enable the nuclear export of different mRNPs by a single 
transport receptor. As recently suggested, it is also possible that different adaptors function sequentially 
during the course of mRNP maturation [46]. However, due to technical difficulties, the protein 
compositions of individual mRNPs, as well as those of their intermediates still remain to be elucidated. 
Detailed analysis of the transcript-specific association of mRNA export factors, especially in mammalian 
cells, will certainly help answer these open questions.  

While nuclear mRNA export is essential for eukaryotic cells, it is also crucial for certain pathogens, 
such as viruses that replicate in the host cell nucleus. As various studies have exemplified, the transport 
receptor Tap-p15 and the TREX components are exploited to transport viral mRNAs (for recent reviews 
see [163,164]). Although the details remain enigmatic, the mRNA export pathway may include various 
subroutes that are differentially dependent on particular adaptor proteins. Therefore, a more detailed 
dissection of the nuclear mRNA export pathway in mammalian cells will be beneficial not only to better 
understand the general gene expression mechanism, but also to provide information for more practical 
research applications, such as the development of anti-viral drugs. 
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