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ABSTRACT

Background: The effects, in terms of bias and precision, of omitting non-confounding predictive covariates from generalized
linear models have been well studied, and it is known that such omission results in attenuation bias but increased precision with
logistic regression. However, many epidemiologic risk analyses utilize alternative models that are not based on a linear
predictor, and the effect of omitting non-confounding predictive covariates from such models has not been characterized.

Methods: We employed simulation to study the effects on risk estimation of omitting non-confounding predictive covariates
from an excess relative risk (ERR) model and a general additive-multiplicative relative-risk mixture model for binary outcome
data in a case-control setting. We also compared the results to the effects with ordinary logistic regression.

Results: For these commonly employed alternative relative-risk models, the bias was similar to that with logistic regression when
the risk was small. More generally, the bias and standard error of the risk-parameter estimates demonstrated patterns that are
similar to those with logistic regression, but with greater magnitude depending on the true value of the risk. The magnitude of
bias and standard error had little relation to study size or underlying disease prevalence.

Conclusions: Prior conclusions regarding omitted covariates in logistic regression models can be qualitatively applied to the
ERR and the general additive-multiplicative relative-risk mixture model without substantial change. Quantitatively, however,
these alternative models may have slightly greater omitted-covariate bias, depending on the magnitude of the true risk being
estimated.
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INTRODUCTION

Binary regression models are often used to estimate the
association between an exposure and disease risk with adjustment
for other covariates. Adjustment covariates can include con-
founders, as well as risk factors not associated with exposure
(non-confounding predictors). It is well known that omitting
confounders can result in bias; what concerns us here is omitting
non-confounding predictors. With ordinary linear regression, it
does not matter—in terms of bias—whether or not we adjust for
additional covariates not associated with included covariates, but
such adjustment can increase precision for estimating the effects of
the covariates of interest because of reduced residual variation.1

This “conventional wisdom” does not apply, however, with
generalized linear models (GLM), except with the identity link and
log link functions,2–4 and this issue has received renewed attention
recently in terms of case-control studies of genetic risk factors.5,6

Estimates of GLM parameters of included covariates can change

with omission of covariates associated with outcome but not
associated with included covariates (“omitted-covariate bias”);
the change is towards the null value of no risk (attenuation) with
certain classes of link functions, including logistic regression.1,3

Omitting covariates from a GLM can also effect asymptotic
efficiency—also depending on the class of link function—with
efficiency gains occurring in the case of the logistic link.7

The published work to date assumes a linear predictor. In
many applications, it is desirable to perform the analysis using
alternative, or “general”, relative-risk (RR) models,8–10 specifi-
cally the linear relative risk (or excess relative risk [ERR]) model:
ERR = RR − 1,11,12 where RR is the relative risk (we assume that
RR ≥1 for exposure, so that ERR ≥0). The effect of omitted
covariates does not appear to have been assessed with these more
general models. Therefore, we assessed omitted-covariate bias
with the ERR model and with a more general relative-risk mixture
model that combines components for additive and multiplicative
effects of exposure on the RR.
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METHODS

Mathematical details
We are interested in general relative-risk models of the form

logitðpÞ ¼ log
p

1 � p

� �
¼
Xs

i¼0
�iZi þ R�ðXÞ;

where p ¼ PrðY ¼ 1jZ; XÞ for binary outcome Y (coded 1 if the
outcome of interest is observed and 0 otherwise); Z is a vector
of adjustment covariates (Z0 is 1 for the intercept); and X is a
risk factor (exposure) of interest, which is non-negative, can be
discrete or continuous, and has risk expressed through some
function Rβ(X) depending on unknown parameter(s) β. We do
not deal here with interactions or joint effects of multiple risk
factors because our interest is in the effect of including or
omitting other factors (elements of Z) on the risk for a single
exposure of interest. This form of model is called “general”
because it generalizes the ordinary logistic regression model
where R(X) = βLX (the subscript “L” signifying ordinary logistic
regression). The odds ratio from case-control data approximates
the risk ratio (relative risk), and βL from ordinary logistic
regression is the log odds ratio corresponding to a one unit
difference in risk factor X. General relative-risk risk models
include a wide range of dose-response shapes and joint effects of
multiple factors because they are not constrained to be linear on
the scale of the link function (the logit link in the case of logistic
regression).13

Despite the generality of Rβ(X), we focus on the ERR model
because it is one of the most commonly used forms of general
relative-risk model. The ERR model is defined by Rβ(X) =
log(1 + βEX); we refer to βE as the “ERR parameter”. An
important distinction between the ERR model and the ordinary
logistic regression model concerns interpretation of the effect of a
unit change in the risk factor. With the logistic model, a one-unit
increase in the value of the risk factor results in a relative
(multiplicative) change e�L in the RR (ie, RRX+1 = e�L RRX),
whereas, with the ERR model, a one-unit increase in the value of
the risk factor results in an additive change βE in the RR (ie,
RRX+1 = RRX + βE). Therefore, we can speak of the ERR as a
risk “per unit exposure”, but we cannot speak of the RR as a risk
per unit exposure.

General relative-risk models can also be used to assess
departure from strictly additive or strictly multiplicative models
for the RR. The log odds mixture model proposed by Thomas8

has

R�M ðXÞ ¼ ��MX þ ð1 � �Þ logð1 þ �MXÞ: ð1Þ
The power model of Breslow and Storer9 has

R�PðXÞ ¼
ð1 þ �PXÞ� � 1

�
� ≠ 0

logð1 þ �PXÞ � ¼ 0

8<
: :

With both families of models, the ERR model arises when λ = 0,
which is a convenient starting point for testing non-additivity of
joint effects of multiple risk factors. We also recommend the
paper by Breslow and Storer as a generally readable motivation
and explanation of the ERR model.

The ERR model can be written as

p

1 � p
¼ e�

0Zð1 þ �EXÞ ð2Þ

on the odds scale, where α and Z are vectors. Strictly speaking,
model (2) is a model for the excess odds ratio, but it is generally
referred to as an ERR model given the usual odds ratio
approximation to the RR that applies with a rare outcome.
Indeed, with nested case-control data, one actually estimates the
RR, rather than the odds ratio, when fitting a binary regression
model.14 Therefore, in this paper, we will use “odds ratio” and
“relative risk” interchangeably.

As an example, consider the nested case-control study of
radiation, endogenous hormones, and breast cancer in female
atomic-bomb survivors, based on 57 post-menopausal breast
cancer cases and 109 non-cases matched on age and counter-
matched on radiation dose.15,16 Although the purpose of that
study was to estimate the interaction between radiation and
endogenous estradiol, as well as to assess potential mediation by
estradiol of the radiation risk, we ignore those two aspects here
and focus on the radiation risk alone merely for illustration. Two
other covariates, body mass index (BMI; kg=m2) and number of
full-term pregnancies (parity), are known risk factors (larger
parity being protective), so the question “should they be
adjusted?” arises. Crude RRs for these covariates were 1.12
(95% confidence interval [CI], 1.01–1.25) for a one-unit increase
in BMI and 0.71 (95% CI, 0.55–0.90) for an increase of 1 in
parity. With both covariates centered at their mean values among
controls (23.0 kg=m2 for BMI and 3.0 live births for parity) and
with parity treated as a quantitative variable, Table 1 shows that
the estimated ERR for radiation decreases when BMI, parity, or
both are omitted. The standard error and CI width also decrease
(precision increases) with either or both covariates omitted. P
values are generally the same or larger with omitted covariates,
although omission of parity alone results in a slightly reduced
P value.

The two adjustment variables (BMI and parity) are not
considered potential confounders,17,18 so results in Table 1 are
qualitatively similar to what would be expected from omitting
non-confounding covariates with ordinary logistic regression.
However, because the ERR model is not linear on the scale of any
link function, it is not a GLM and results pertaining to bias and
precision with a GLM cannot be assumed to apply. Therefore, it
is important to assess how bias and precision of the estimated
parameters that quantify the risk for exposure are affected by
omitting covariates in the case of general relative-risk models,
such as the ERR model.

The ERR model (2) can also be written

logitðpÞ ¼ �0Z þ lnð1 þ �EXÞ: ð3Þ
If any elements of Z are omitted, the possibly mis-specified ERR
is ��E in

logitðp�Þ ¼ ��0Z� þ lnð1 þ ��EXÞ ð4Þ

Table 1. Effect of omitting covariates on estimated ERR in the
Radiation and Breast Cancer Study

Covariates omitted
Estimated

ERR
SE

95% likelihood
bounds

Likelihood
ratio P value

Adjusted for parity and BMI 1.21 0.89 0.36, 3.71 0.012
BMI omitted 1.09 0.82 0.13, 3.27 0.014
Parity omitted 1.08 0.79 0.15, 3.16 0.011
BMI and parity omitted 0.91 0.70 0.10, 2.67 0.017

BMI, body mass index; ERR, excess relative risk; SE, standard error.
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where the asterisk ‘
*
’ represents the situation with one or more

elements of Z omitted. Neither model (3) nor model (4) is a GLM,
but either may be fit with the generalized nonlinear model (GNM)
package gnm19 in R (R Foundation for Statistical Computing,
Vienna, Austria) or with the PECAN or GMBO modules in
Epicure (Risk Sciences International, Ottawa, Ontario).13 The
mixture model (1) can also be fit with these programs. R code to
specify these models is provided in eMaterial 1 (see “R code for
the generalized nonlinear models”). We explored the bias and
precision of the estimate �̂

�
E of ��E using simulation, as described

in the next section.

Simulation study
We conducted a simulation study to examine whether the
omitted-covariate bias and precision with the general relative-
risk models depart substantially from the bias and precision
results with GLMs. We generated data, including independent
effects of the adjustment covariates under either the ERR model,
the logistic model, or the additive-multiplicative RR mixture
model, and analyzed the data using the correct model (the same
model as was used to generate the data) with or without the other
covariates adjusted in the analysis. We examined the bias and
precision with the mixture model with an intermediate value of
the mixture parameter (λ = 0.5), in addition to the mixture-
parameter values corresponding to the logistic model (λ = 1.0)
and the ERR model (λ = 0.0).

Data on X and Z for the simulation were generated to mimic the
exposure and two covariates—one continuous and one discrete
(ordinal)—in the nested case-control study of radiation exposure
and breast cancer described above, with a wide range of risk
parameters for each covariate (not based solely on the actual
study results). Let X be radiation dose and Z be a vector
containing two elements: a continuous log-normally distributed
variable transformed by taking the logarithm after dividing by the
mean, and a discrete variable with possible values 0, 1, 2, …, or 8
(for simplicity we will call these two variables BMI and parity,
but the simulation results can be generalized to any similar
continuous and ordered categorical covariates). For each hypo-
thetical cohort member, random values of exposure and the two
covariates were generated by independently sampling from their
distributions in the cohort, as reflected in the nested case-control
study. Radiation doses were randomly drawn from an exponential
distribution with mean 0.35 using the R function rexp. BMI
values were randomly sampled from a log-normal distribution,
with mean 3.11 and standard deviation 0.15 on the log scale,
using the R function rlnorm. Parity was randomly selected from a
multinomial distribution with probabilities {0.076, 0.069, 0.179,
0.235, 0.169, 0.132, 0.066, 0.047, 0.027} for values {0,1, …, 8}.

Case prevalence at the reference levels of covariates
(prevalence among non-exposed subjects with BMI and parity
at their mean values), p0, was set at 0.015, 0.05, or 0.1. After the
exposure and two covariates were randomly drawn for each
member of the hypothetical cohort, the probability of being a case
(p) was calculated according to the true risk model under study
(whichever one of ERR, logistic, or mixture), with the selected
risk parameter for each variable: RR 1.0, 1.25, 1.5, or 1.75 for
BMI; RR 1.0, 0.9, 0.75, or 0.5 for parity; and ERR 0.1, 0.25, 0.5,
or 1.0 for radiation (corresponding to RR 1.1, 1.25, 1.5, or 2.0
for radiation, respectively). Each hypothetical subject was then
assigned an outcome Y (case [1] or control [0]) using a random
Bernoulli draw (R function rbinom) given that subject’s

calculated value of p. All cases and an unmatched sample of
controls were then selected from the simulated cohort; two
simulated cohort sizes (N) were used: 5,000 and 20,000. Two
control:case sampling ratios (m) were studied: 2:1 and 5:1. A 5:1
ratio is assumed to be sufficient for achieving close to full-cohort
efficiency in matched studies,20 whereas a 2:1 ratio is not efficient
with nested case-control sampling.21 With large case prevalence
and large effects of covariates, the 5:1 ratio can result in a
case-control sample size that exceeds the cohort size; such
configurations were excluded from the simulation study. BMI
and parity were centered in fitted models, as in the actual study
(described above), and parity was incorporated as a quantitative
covariate. A total of 2,000 simulations was run under each
configuration; results from duplicated runs differed by <1.5%.
Simulations were conducted in R for Windows version 3.1.3. To
facilitate comparing bias with the ERR model to that with logistic
regression, we converted the logistic regression estimate to an
excess RR as follows: exponentiate the logistic-regression
estimate �̂L and subtract 1 (e�̂L � 1), then calculate the difference
from the true relative risk minus 1 (e�L � 1)— ie, the bias is
ðe�̂L � 1Þ � ðe�L � 1Þ ¼ e�̂L � e�L .

RESULTS

Depending on sample size (more often with small samples and
low disease prevalence) and true ERR βE (especially with βE close
to zero), simulated case-control samples occasionally arose in
which, by chance, the mean value of exposure among controls
was larger than that among cases, resulting in a negative estimate
of �̂E. This alone is not problematic, but sometimes there arose
during the iterations a negative value of the estimate of �̂E, such
that �̂EX � �1 for some hypothetical cohort member’s generated
dose value (this tended to occur more often when effects of the
other covariates were small); the GNM algorithm failed in such
situations because log(1 + βEX) is not defined when (1 + βEX) ≤
0, so we replaced such situations with a new run. Occasionally
the GNM algorithm terminated successfully but with no
convergence for the discrete-variable (parity) parameter; this
occurred at most only a few times per 2,000 runs, most frequently
with smaller sample sizes and lower outcome prevalence. Failure
of the continuous-variable (BMI) parameter to converge was
extremely rare, but did occur. Runs where either the BMI or
parity parameter failed to converge were discarded and simulation
summaries were calculated using only the complete results. No
failures of convergence occurred with the logistic regression
model.

Simulated values of the estimated ERR �̂E from a fit of model
(2) demonstrated a slightly skewed distribution (see eMaterial 1).
Therefore, we used the median of estimated ERR values over the
2,000 runs for estimating bias. Figure 1 shows the relative bias
½medianð�̂EÞ � �E�=�E for various pairs of BMI and parity effects,
ranging from small to large and for the four different values of
true exposure ERR βE. The farther from null the effects of the
omitted covariates, the greater was the relative bias (greater
attenuation). Relative bias of the ERR estimate �̂E was also
greater with larger magnitude of true exposure ERR βE, and this
became more apparent with effects of omitted covariates farther
from null.

The effect of omitting the protective discrete covariate parity
was not as dramatic as that of omitting the deleterious covariate
BMI (see eFigure 1). To clarify whether this was due to a
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detrimental versus protective effect or due to a continuous versus
discrete covariate, we conducted simulations where the effect of
the continuous covariate BMI took on inverse ‘protective’ values
1.25−1, and 1.5−1 (Table 2; more-detailed results are shown in
eTable 1). The magnitude of bias and gain in precision of the
ERR estimate �̂E were not symmetric: for the same degree of
risk (eg, RR = 1.25 versus RR = 1.25−1 = 0.8), the degree of
attenuation bias and precision gain was less when the omitted
continuous covariate had a protective effect than when it had a

detrimental effect. Thus, the asymmetry does not seem to be due
to the distinction between discrete and continuous covariates.
We also observed the same qualitative difference in detrimental
versus protective covariates with ordinary logistic regression
(Table 2 and eTable 2). This asymmetry does not seem to have
been reported in previous studies of omitted-covariate bias with
logistic regression.

Results on precision of the ERR estimate �̂E with omitted
covariates are presented in the eFigure 2. Within each simulation
scenario, the standard deviation of simulated ERR estimates over
all runs was virtually identical to the average across runs of the
estimated standard errors. The standard deviation decreased
(precision increased) with increasing magnitude of the RRs of the
omitted covariates (RRs increasingly far from null). The decrease
in standard deviation (gain in precision) of the ERR estimate �̂E
with covariate omission was most pronounced at the largest
values of true exposure ERR βE, which have larger variance.
As the RR of omitted BMI increased, the standard deviation of
the estimated ERR values approached its lower bound of zero,
so further decrease due to greater RRs of omitted covariates was
less pronounced.

Figure 2 shows the difference in absolute attenuation bias
between the true ERR model and the true logistic model, with
data under each model generated using the same true RR for an
exposure of one unit (ie, setting ½1 þ �E� ¼ e�L ). All values of
cohort size, prevalence, and control:case ratio are included in
Figure 2, as there was little effect of these parameters on relative
bias (see eFigures 3, 4, and 5), although some configurations
could not be evaluated (as explained previously). There was little
difference in terms of bias between the ERR and logistic models

BMI and parity relative risks
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Figure 1. Simulated relative bias in the estimated excess relative risk (ERR) for exposure from a fit of model (2), as a function of
true excess relative risk and various combinations of the relative risk (RR) of omitted covariates: body mass index
(BMI) and parity. Cohort size N = 20,000, baseline prevalence p0 = 0.05, and control:case sampling ratio 2:1.

Table 2. Simulated effect of omitting a continuous covariate with
either detrimental or protective effecta

Relative risk for
omitted covariate

With covariate omitted With covariate included

Median Std dev Median Std dev

ERR model, ERR for radiation 0.5
1.5 0.375 0.109 0.509 0.145
1.25 0.458 0.141 0.495 0.158
1.0 0.504 0.171 0.504 0.171
0.8 (1.25−1) 0.478 0.141 0.495 0.153
0.667 (1.5−1) 0.418 0.121 0.499 0.148

Logistic regression, relative risk for radiation 1.5 (log relative risk = 0.405)
1.5 0.315 0.071 0.403 0.087
1.25 0.381 0.084 0.407 0.091
1.0 0.401 0.096 0.401 0.096
0.8 (1.25−1) 0.391 0.087 0.408 .090
0.667 (1.5−1) 0.350 0.073 0.406 0.085

ERR, excess relative risk.
aBased on 2,000 simulations with cohort size N = 20,000, baseline
prevalence p0 = 0.05, and 2 controls per case.
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at true RR values of 1.1 and 1.25. Bias with the ERR model
increased compared to that with the logistic model at larger values
of true RR, which is revealed by superimposing fitted curves
obtained using the supsmu function, with span 0.4, in S-plus
(version 6.2; Insightful Corp., Seattle, Washington). Bias with the
ERR model also increased compared to that with the logistic
model as RRs of omitted covariates became farther from null.
Because the difference in biases of the two methods may be
difficult to interpret, we also calculated the mean bias for each of
the two methods and computed the ratio of those means at each
true RR. The ratio of mean absolute bias in the estimated ERR
parameter �̂E to mean absolute bias in the log(RR) parameter �̂L
(on the ERR scale) was 1.017 at true RR = 1.5 and 1.034 at true
RR = 2.0.

Figure 3 shows how the bias of the parameter estimate �̂M
depends on the parameter λ in the mixture model (1). The
magnitude of attenuation was greater at λ = 0 (ERR model) than
at λ = 1 (logistic model), consistent with the slightly greater bias
seen with the ERR model in Figure 2. Indeed, biases with the
mixture model at λ = 0 and λ = 1 were respectively similar to
those with the ERR and ordinary logistic regression models with
the same values of RR (shown in the side margins of Figure 3).
At λ = 0.5, the bias was intermediate to the biases at λ = 0 and
λ = 1. Again, the relative bias was greater (more negative) with
RRs of omitted covariates farther from null, and the relative bias
was greater with larger values of true exposure RR.

DISCUSSION

Contrary to conventional wisdom, omitting non-confounding risk
factors from logistic regression models for binary outcomes is
known to result in attenuation yet increased precision in the
estimated effects of covariates included in the model; this is
related to non-collapsibility of the odds ratio.22 We have shown
that these results carry over to the ERR model and a more general
relative-risk mixture model that includes the ERR model and
ordinary logistic regression model as special cases, at least in the
simple situation where there are no unmeasured or unadjusted
confounders. Despite the further complications of a nonlinear link
function and a nonlinear predictor, the bias with these general
relative-risk models was similar to that with logistic regression for
a true exposure RR up to 1.25 and only slightly larger with a true
RR as high as 2.0. This is not surprising given that the ERR
model can be approximated using a logistic model at small values
of risk (see eMaterial 1, “Logistic approximation to the ERR
model”). It seems to be the consensus of most authors that, with
GLMs, it is better to adjust than not to adjust, particularly in
moderate to large samples, because asymptotically the bias
predominates over the variance.1 We conclude that the same is
true with general relative-risk models for binary outcome data.

With logistic regression and with general relative-risk models,
omitting a non-confounding predictive covariate can result in gain
of precision. Thus, we have a dilemma in that omitting covariates
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m = 2 or 5 (although some configurations could not be evaluated, as described in the text). Results for three different
pairs of magnitudes of omitted-covariate effect sizes are shown (see figure legend). BMI, body mass index.
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can lead to a biased but more precise risk estimate. In practice,
there may be some advantage to using the unadjusted risk
estimate (with non-confounding predictive covariates omitted) for
testing the null hypothesis of no risk. However, any advantage
would apply only in small samples because with large samples
the bias dominates the mean squared error.1 Furthermore, if the
test is rejected, one is left with an attenuated risk estimate.

We focused on the ERR model because it provides a simple
approach to modelling joint effects of multiple risk factors on an
additive scale. The mixture model of Thomas8 is an intuitive
method for testing additive versus multiplicative scales, and a
similar model is available in the Epicure software package under
the label ‘geometric mixture model’.13 However, when the best-
fitting model is neither purely additive nor purely multiplicative,
the same parameter appears in both the ERR and log-linear terms
of the mixture model. Little et al23 noted that, “in the presence of
‘mixing’, one would not expect there to be common parameters
in both”, but they reported having problems fitting separate risk
parameters for the two exposure components of the mixture
model. That difficulty was due in large part to the fact that one
or the other risk parameter is not defined when the mixing
parameter takes value 0 or 1. The power model might, therefore,
be more intuitive for estimating risk when the fit of the mixture
model suggests that the scale is neither the pure ERR nor the
pure logistic.

We noted that omitting a covariate caused smaller bias when
the covariate was simulated to have a protective effect with the
same magnitude of RR but as the inverse. Moolgavkar and
Venzon24 noted that both the mixture model and the power model

suffer from the fact that recoding a binary covariate can affect the
results, whereas a related model of Guerrero and Johnson,25

which differs slightly from the power model and is related to
Box-Cox transformation, is not altered by recoding a binary
covariate. We speculate that this may be related to the lack of
symmetry between detrimental and protective covariates, which
is analogous to switching reference and exposed groups with a
dichotomous risk factor.

In conclusion, the effects—in terms of bias and precision—
of omitting non-confounding predictor variables from general
relative-risk models for binary data are similar both qualitatively
and quantitatively to effects previously reported for logistic
regression models, except with large values of risk. The best
strategy seems to be to include covariates known or suspected to
be risk factors, whether or not they are suspected of being
confounders. Nevertheless, in practice it may be worthwhile
to empirically assess the impact of omission before deciding
whether to include a covariate. It would also be useful to assess
in future research whether similar omitted-covariate-bias results
hold when there are unmeasured confounding variables, as may
often be the case in epidemiologic studies.
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APPENDIX A. SUPPLEMENTARY DATA

Supplementary data related to this article can be found at https:==
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