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Abstract: Metamaterials are composed of nanostructures, called artificial atoms, which can give
metamaterials extraordinary properties that cannot be found in natural materials. The nanostructures
themselves and their arrangements determine the metamaterials’ properties. However, a conventional
metamaterial has fixed properties in general, which limit their use. Thus, real-world applications of
metamaterials require the development of tunability. This paper reviews studies that realized tunable
and reconfigurable metamaterials that are categorized by the mechanisms that cause the change:
inducing temperature changes, illuminating light, inducing mechanical deformation, and applying
electromagnetic fields. We then provide the advantages and disadvantages of each mechanism and
explain the results or effects of tuning. We also introduce studies that overcome the disadvantages or
strengthen the advantages of each classified tunable metamaterial.

Keywords: metasurface; perfect absorber; wavefront engineering; color filter; plasmonics;
phase change material; graphene; indium tin oxide

1. Introduction

A metamaterial (MM) is composed of nanostructures, which are called artificial atoms.
These structures provide the MM with unique properties that natural materials cannot have.
These properties can be used to overcome optical limits caused by several effects such as the
diffraction limit, so, the use of MMs can yield abnormal properties in the devices. Super-lenses,
hyper-lenses, and super-resolution imaging [1–10], negative index materials [11–16], invisibility
cloaking [17–19], perfect absorbers [20–23], meta-holograms [24–26], artificial chirality [27–29],
and electromagnetically-induced transparency [30] are examples of MM applications that have
properties that do not occur in normal materials. However, before MMs can be used in practical
ways, several challenges such as 3-dimensional MM fabrication [31,32] and fixed properties must
be overcome.
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The changeable properties of MMs have been achieved by introducing active materials such as
vanadium dioxide (VO2), indium tin oxide (ITO), polydimethylsiloxane (PDMS), graphene, or liquid
crystals. An active material provides an MM with tunability, reversibility, repeatability and fast
response to change. We have classified tunable MMs into four categories according to the phenomenon
that causes the change: thermal, optical, mechanical, and electrical effects. Some cases are ambiguous.

Thermal tunability uses temperature-responsive materials such as VO2, and germanium-
antimony-telluride (Ge2Sb2Te5, GST). These are phase-changing materials in which the chemical
structure (crystalline and amorphous) or material state (dielectric and metal) changes abruptly in
response to temperature. These materials can be either used as a part of the layer or as the whole layer
with additional processing. In addition, special polymers, distilled water, and liquid crystals have
been used in thermally-tunable MMs. Typical advantages of these materials include a wide tuning
range and the possibility to be used in integrated circuits; typical disadvantages are slow modulation
and a tuning range that is not in the visible spectrum.

Optical tunability exploits materials that change in response to light. Examples include
ITO, optical response polymers, and nanocomposite. The reflectance, resonance wavelength,
and polarization of these materials can be controlled by adjusting the light or pumping power.
Typical advantages of these materials include rapid response, tunability in the visible spectrum,
and applicability in integrated circuits; typical disadvantages include a narrow tuning range and
unfeasibility of controlling each cell.

Mechanical tunability exploits the dependence of an MM’s properties on their shapes or
arrangements. This characteristic can be exploited by fabricating MMs on an elastic substrate,
then stretching it, or by introducing microelectromechanical systems (MEMS) into MMs. The MEMS
structure can induce a change in shape directly when a voltage is applied and can thereby tune
the properties of the MMs. Physical deformation using piezoelectricity, magnetoelectricity, and the
controlling strain field can also be used to tune MMs.

Electrical tunability exploits change in the electrical properties of materials. Many electrical
properties are related to optical properties, so they can also be manipulated electrically. For example,
if the number of electrical carriers changes efficiently according to the voltage, as in ITO, the optical
properties of the materials may also change efficiently. Other methods include designing the MM
two-dimensionally while controlling the number of carriers and using liquid crystals.

2. Thermally-Tunable Metamaterials

Many materials have a property that changes quickly with temperature; these have been
exploited in MMs. Vanadium dioxide (VO2) and germanium-antimony-telluride (Ge2Sb2Te5, GST)
are widespread materials for thermally tunable metamaterials. VO2 changes from a dielectric to a
metal or vice versa at a transition temperature (68 ◦C) [33]. The thermal tuning of surface plasmon
resonance has been achieved in Au-VO2 structure [34–37]. GST undergoes a phase transition between
amorphous and crystalline phases; the transition is controlled by cooling speed. Rapid cooling from
above melting temperature prohibits atoms from crystallization. As a result, it makes GST become
amorphous; it can be changed to a crystalline phase by a series of heating processes between melting
temperature and glass transition temperature [38].

Generally, the thermal tuning of MM has the advantages of a sufficient tuning range and
compatibility of incorporation in integrated circuits [39]. However, it has the disadvantages of a
slow modulation speed due to the time required for heating and cooling, and a tuning scope that is
outside of the visible spectrum.

2.1. Thermally-Responsive Material: VO2

VO2 can be used as the whole layer on the substrate. The thermal tuning of localized surface
plasmon resonance (LSPR) has been demonstrated experimentally using Ag nanoparticles on a thin
film of VO2 [40]. The shifting range of the LSPR wavelength depends on the size and mass thickness of
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the Ag nanoparticles, and this shifting is reversible [41–43]. As the mass thickness increases, the surface
plasmon resonance (SPR) wavelength increases due to the dipole-dipole interaction of the particles.
The simultaneous use of TiO2 and VO2 as a dielectric increases the temperature-sensitivity of Ag
nanoparticles and increases the wavelength tunability as a consequence of the increasing difference in
dielectric functions [36].

An ultra-thin VO2 layer (thickness = ~λ/65 = ~180 nm) on sapphire functions as a perfect light
absorber (up to 99.75% at λ = 11.6 µm) as a result of a transitional state in VO2 in which metallic and
insulator states co-exist (Figure 1a) [44]. In this ultra-thin VO2, the imaginary part of the refractive index
is large, so critical coupling to a cavity resonance occurs, and this process increases the metamaterial’s
absorption. This MM absorber can be made easily by just depositing VO2 on sapphire, so the material
has high potential to be used widely in optical systems.

An MM structure that uses Al as a metal, ZnS as a dielectric spacer, and VO2 as a material that can
change its state yields a thermally-switchable tri-layer absorber that is reflective at around λ = 22.5 THz
when VO2 has dielectric properties, but absorptive when VO2 has metallic properties; the modulation
of the reflectivity levels was 58% at 22.5 THz and 57% at 34.5 THz [33]. VO2 conductivity changes
by three to four orders of magnitude compared with the dielectric state, so when this MM is
used in a metal-dielectric-metal structure (MIM), it can sustain electric and magnetic resonances
simultaneously [45].

Au nanorods and VO2 film affect each other when Au nanorods are used as plasmonic arrays
on VO2 film. Due to plasmonic enhanced light absorption and the photothermal effect, the transition
temperature of VO2 decreases and simultaneously the plasmonic peak is changed from 685 nm to
618 nm inversely when VO2 is the metallic state [46]. Moreover, Au/VO2 absorbs light strongly,
so heating Au/VO2 requires ~28.6% less laser power than heating bare VO2.

A combination of a conventional resonant MM absorber [47] with a partial VO2 film achieves
a tunability of the absorption and resonance frequency. Unlike other research that achieved a
red-shift, the Wen et al. approach realized a blue-shift, which increases the flexibility for practical
applications [48]. When VO2 has metallic properties, it reduces the inductance of an electronic split
ring resonator, so the resonance frequency increases.

A polarization-dependent and independent structure can be achieved using a nanowire grating or
nanodisc arrays, and exploiting each dielectric and metal state of VO2 instead of their co-existence [49];
a hybrid structure of gold-VO2, Au, and sapphire can be tuned according to the state of the VO2.
When VO2 becomes metallic, its refractive index changes and does not show resonant behavior.
Consequently, the hybrid gold-VO2 acts as a continuous reflective surface and the absorption
is suppressed. On the other hand, when VO2 becomes dielectric, the structures showed high
absorptivity at room temperature, with changes of up to 70% with nanowire grating and up to
64% for nanodisc arrays.

As Tungsten (W) can be used for an ultrathin absorber [50], a tunable MM absorber is achieved
by combining VO2 and Tungsten, and it is fabricated in a square lattice nanostructure [51]. The square
lattice nanostructure has a broad tunable range from 9.96% (metal state) to 99.7% (dielectric state) at
5.28 µm, but the three-layer structure does not have a tunability even though the components are the
same in both structures. The tunability of the two-layer structure is achieved by excitation plasma
resonance; its effect can be controlled by adjusting the period of the square lattice. A small amount
of VO2 at the feed gap of a bow-tie field antenna (Figure 1e) reduces the size of the parts that are
controlled by temperature; the heating is integrated and local, so switching can be faster and more
precise at less power than in a VO2 thin film [52]. This meta-device has a tuning range of 360 nm for
absorption and a modulation depth of ~33% with a response time of 1.27 ms. Moreover, the device
was persistent during testing for >24,000 cycles.
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0.0025 at λ = 11.6 μm; i.e., absorption = 99.75%. Reproduced with permission from © 2012, AIP 
Publishing [44]. (c) Schematic of engineering selective defects in VO2 by using ion beam irradiation 
with a mask. Defects in the checkerboard or striped patterns can be achieved by changing the masks. 
Energetic ions strike the VO2 layer and trigger structural defects by moving the vanadium and 
oxygen atoms. As irradiated VO2 has a lower transition temperature, the two states of VO2 co-exist at 
a lower temperature than in the undamaged VO2. (d) Stripe defected switchable polarizer: When the 
thickness of the VO2 layer is much less than the wavelength, the stripe defected VO2 can be used as a 
switchable polarizer. The polarization direction affects the absorption by the meta-device; this 
property provides a variable degree of optical anisotropy. Reproduced with permission from © 2016, 
American Chemical Society [53]. (e) A schematic of a bow-tie shaped unit cell that has a small 
amount of the VO2. The sizes of the structure are length = 264 nm, width = 300 nm, wire width = 100 
nm, and gap width = 34 nm. A spacer dielectric layer made of Al2O3 is located between the bow-tie 
structure and a thick gold backplane to give a gap. Reduction in the amount of VO2 increases the 
switching speed and precision of controllability. (f) The temperature affects the relationship between 
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Figure 1. (a) A VO2 perfect absorber: The design of the material structure and experimental set up inside
an infrared microscope. VO2 is deposited on a sapphire substrate with height = 180 nm. Temperature
is controlled by a stage plate; reflectivity is measured using a mid-infrared microscope, a Fourier
transform infrared (FTIR) spectrometer and mercury-cadmium-telluride detector with normal incidence.
(b) Reflectivity spectrum at temperatures from 297 K to 360 K. Reflectivity is 0.0025 at λ = 11.6 µm;
i.e., absorption = 99.75%. Reproduced with permission from © 2012, AIP Publishing [44]. (c) Schematic
of engineering selective defects in VO2 by using ion beam irradiation with a mask. Defects in the
checkerboard or striped patterns can be achieved by changing the masks. Energetic ions strike the VO2

layer and trigger structural defects by moving the vanadium and oxygen atoms. As irradiated VO2

has a lower transition temperature, the two states of VO2 co-exist at a lower temperature than in the
undamaged VO2. (d) Stripe defected switchable polarizer: When the thickness of the VO2 layer is much
less than the wavelength, the stripe defected VO2 can be used as a switchable polarizer. The polarization
direction affects the absorption by the meta-device; this property provides a variable degree of optical
anisotropy. Reproduced with permission from © 2016, American Chemical Society [53]. (e) A schematic
of a bow-tie shaped unit cell that has a small amount of the VO2. The sizes of the structure are length =
264 nm, width = 300 nm, wire width = 100 nm, and gap width = 34 nm. A spacer dielectric layer made
of Al2O3 is located between the bow-tie structure and a thick gold backplane to give a gap. Reduction
in the amount of VO2 increases the switching speed and precision of controllability. (f) The temperature
affects the relationship between wavelength and absorption. The tuning range is up to 360 nm (NIR).
As the temperature increases, the curve shifts the peak of the absorption into the short-wavelength
direction. Reproduced with permission from © 2017, American Chemical Society [52].

Some methods use VO2 in different ways by an additional process. Selective defect-engineering
has produced tunable absorbers and tunable polarizers [53]. Selective defect-engineering is achieved
by ion beam irradiation (Figure 1c); after the process, the irradiated regions have a lower transition
temperature than pristine VO2. However, the tendencies of the reflectance curves do not quite
differ; this similarity means that that the selective defect-engineering does not change the original
state-transition property of VO2. With the combination of irradiated and intrinsic VO2, the temperature
at which the two states co-exist is lower (60 ◦C) than in pristine VO2 (68 ◦C). The irradiated and pristine
VO2 have different complex refractive indices, so this combination induces anisotropy that can be
tuned by adjusting the temperature. Therefore, stripes defected VO2 can be used as a switchable
polarizer (Figure 1d). When polarized light (λ ~11 µm) parallel to the ridges is primarily absorbed
at the intermediate temperature of 60 ◦C, only the perpendicularly-polarized light can be obtained.
Therefore, this defect-engineered structure can be used in tunable absorbers or tunable polarizers that
are controlled by temperature.
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A totally-encapsulated VO2/Au/VO2 composite structure has a larger modulation range than
that of half-covered structure and improves the tunability of the LSPR peak [54]. In the encapsulated
structure, the modulation range depends on the thickness of the top and bottom VO2 layers.
The increase in the modulation range is caused by the thick top layer of VO2 due to an increase
in the change in the rate of the equivalent permittivity.

2.2. Thermally-Responsive Material: GST

GST changes reversibly between crystalline and amorphous states when heat is applied through
an optical or electrical stimulus, and it is bistable and nonvolatile [55].

A 20-nm-thick GST layer in a metal/dielectric/metal (MIM) structure (Figure 2a) achieves a
650-nm tunable range for the absorption according to a crystallization level of GST (0% for amorphous
phase and 100% for crystalline phase) [56]. This tunability occurs because the refractive index is higher
in crystalline GST (c-GST) than in amorphous GST (a-GST), and this difference affects both the resonant
wavelength of the upper metal part (Au disks) and the impedance of the structure. Therefore, a higher
crystallization level of GST causes an increase in the wavelength at which perfect absorption occurs.

An ultrathin GST film on quartz enables dynamic control of surface phonon-polaritons (SPhPs)
with single laser pulses, and production of ultra-confined SPhPs (polariton wavevector is 70 times
larger than the wavevector calculated by 2π/λ) in quartz [57]. The c-GST region is brighter than the
a-GST region at a frequency of 943 cm−1 (no SPhPs) and the a-GST region has strong SPhP fields at a
frequency of 1135 cm−1 (with SPhP excitation). A nanosecond laser beam can change the GST phase by
rapidly depleting electrons from resonantly-bonded c-GST [58]; this phenomenon can be exploited to
write and erase shapes selectively in certain regions by changing between a-GST (written) and c-GST
(erased) (Figure 2b). However, the resonance strength weakens as the number of switches increases.

Several dynamically reconfigurable optical devices have been obtained using GST film;
these include binary and greyscale devices, writing planar wavelength multiplexing focusing devices,
a dynamically- and optically-reconfigurable zone-plate device (Figure 2c) and writing a dielectric
MM [59]. Although the conventionally nanosecond and microsecond laser pulses can induce phase
change materials to switch their states between amorphous and crystalline phases in optical data
storage technology, femtosecond laser pulses are recently verified that it can induce multi-level
switching [60,61], so the authors use femtosecond laser pulses to induce a GST phase transition with a
change in the refractive index in an extremely small volume of 0.02 µm3. The complex refractive index
changes in accordance with the energy and the number of stimulating optical pulses, so they find
writing and erasing conditions (‘Write’ channel) and observe these patterns by using a charge-coupled
device camera at λ = 633 nm (‘Read’ channel).

An ultra-broadband polarization-independent MM perfect absorber that consists of GST array,
silica, GST cavity, and Au substrate has been analyzed numerically; the temperature of GST parts could
be increased to 433 K in 0.37 ns or to 481 K in 0.56 ns with a light intensity of 1.11 × 108 W/m2 [62].
This rapid change is due to strong plasmon resonances on the array and to cavity resonance.

The emissivity of polar materials has been enhanced by using gratings [63], metasurfaces [64],
and tunable materials such as graphene [65] or VO2 [52], but these devices have limitations such as
a low emissivity, complex fabrication process, high energy requirement, and insufficient chemical
stability. GST film on a silicon carbide SiC polar crystal overcomes these drawbacks and achieves
a dynamic control of emissivity, but needs only a deposition process; this emitter has an angular
insensitivity, zero-static power, and a ratio of emissivity to extinction >10 dB over the Reststrahlen
band of SiC (11.3 µm to 12.3 µm) [66]. The GST states affect the characteristics of the distributions of
electric fields and resistive loss.
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Figure 2. (a) The metal-dielectric-metal structure (MIM) structure with GST between an Au disk array
and a SiO2 insulating layer for the tunable perfect absorber. The Au disks are 300 nm in diameter and
20 nm thick; the GST layer is also 20 nm thick. The absorption of this structure changes depending
on the crystallization level. Reproduced with permission from © 2015, Chinese Laser Press [56].
(b) To induce change to c-GST, a 100-mW pulsed laser beam with a 45-ns pulse is used; to transform
to a-GST, a 310-mW pulsed laser beam with a 15-ns pulse is used. (bottom) The schematic of the
process of switching from a-GST to c-GST in V-shape with a suitable laser. (right) Scattering-type
scanning near-field optical microscope (s-SNOM) image of the SPhPs excited in this structure. In this
structure, the SPhPs form; they reflect from the boundary of a-, c-GST, and the process can be visualized
using s-SNOM. Reproduced with permission from © 2016, Springer Nature [57]. (c) Dynamically
optically reconfigurable zone-plate device. (top-left) Two Fresnel zone patterns of c-GST obtained
using 0.39-nJ write pulses that focus a plane wave onto two foci. (top-middle) A single l.25-nJ erase
pulse changes one of the Fresnel zone patterns to a-GST. (top-right), then by using 0.39-nJ pulses write
pulses, the a-GST returns to the c-GST state. (middle line) Optical images of the Fresnel zone pattern
on the GST film. (bottom line) At λ = 730 nm, red dot: transmission focal spot. The write–erase–write
reconfiguration cycle is achievable by changing the GST phase (Scale bar: 10 µm). Reproduced with
permission from © 2015, Springer Nature [59]. (d) A schematic of silicon metasurface embedded in a
liquid crystal (LC). The LC is nematic at temperature T > 58 ◦C, and isotropic at T < 58 ◦C. This state
change is reversible, and according to the state, the metasurface resonances wavelength shifts and the
tuning range of emission changes. Reproduced with permission from © 2018, American Chemical
Society [67]. (e) Schematic of changing the volume of the poly(N-isopropyl acrylamide) (pNIPAM)
film. The pNIPAM film is placed between Au mirror and Au nanoparticles (NPs); the film volume
changes at 30 ◦C and thereby alters the distance between the mirror and the NPs. (Right: magnification
of pNIPAM to show the change). The transition temperature is ≈30 ◦C. Insets: Scanning electron
microscope (SEM) images of this structure from different angles. Reproduced with permission from
© 2016, John Wiley and Sons [68].

2.3. Others

Instead of VO2 and GST, other materials can be used as elements of tunable metamaterials.
Here we introduce three additional materials and how they change with temperature.

Liquid crystals (LCs) have also been used as a thermally-tuned material. A Mie-resonant dielectric
metasurface is embedded in an LC that can switch its state depending on the cell temperature
(Figure 2d) [67]. When heated to higher than a critical temperature TC = 58 ◦C, the LC state changes
reversibly from nematic to isotropic. The difference of the local photonic density for each state leads to
shifting resonances position, so this metasurface realizes a reshaping of the emission spectrum as well
as the dramatic change of the transmittance spectrum owing to the Purcell effect.

Poly(N-isopropyl acrylamide) (pNIPAM) is a polymer that shows a strong volume shrinkage
(up to 90%) above the critical hydration temperature (≈30 ◦C) and it causes a color change from green
at 25 ◦C to orange at 35 ◦C, which is different from previous structure colorings [69,70]; the transition is
completely reversible. This transition has been exploited to make a fast and reversible plasmon-tuning
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system [68]. As shown in Figure 2e, the pNIPAM is placed between Au nanoparticles (Au NPs) and an
Au mirror (Au film) and modulates the plasmonic resonant modes by controlling the distance between
scattering NPs and film.

Distilled water (DW) has been used as a thermally changeable component in MM absorbers [71].
DW has the advantages of frequency-dispersive characteristics and a large imaginary part in its
permittivity, but DW causes the mismatch of impedance over broad frequency region. To overcome that
challenge, the DW was held in a dielectric reservoir and a copper backplane was used. The thickness
and height of DW and the arranged dimension of water-substrate determine many factors that affect
absorption, including impedance, absorption bandwidth, and a peak of the high frequencies. A metallic
fishbone structure on the side of a DW substrate improves broadband absorption and achieves an
ultra-wide absorption bandwidth with thermal tunability by exploiting the temperature-dependence
in the permittivity of DW.

3. Optically Driven Tunable Metamaterials

Optical elements change depending on what optical source is used and its strength.
Optically-tunable MMs generally have the advantages of fast modulation speed and a tunable range in
the visible spectrum, and compatibility with integrated circuits. However, they have the disadvantage
of a narrow tunable range, and it cannot be adjusted for each cell, but only for the entire structure.
The optically tunable MM will contribute to high-capacity communications, real-time holograms,
and adaptive optics via the fast and reliable response (MMs that are heated by light to change their
properties are classified as thermally-tunable in this review).

3.1. Optically-Responsive Material: Indium Tin Oxide

ITO is a material of an optically-tunable MM; its permittivity can be changed by several factors,
including plasma frequency, charge carrier collision rate, the carrier concentration, and the effective
mass of the electron [72]. Therefore, a pumping laser can affect these factors and activate an
optically-tunable MM that contains ITO.

An antenna-ITO hybrid system that combines a gold nanoantenna with indium tin oxide (ITO)
can achieve a picosecond response [73]. In this system, a pump laser generates plasmon-induced hot
electrons, which are injected from the Au nanoantenna into the conductive ITO; this change amplifies
its large free-carrier nonlinearity.

Tunable double plasmon-induced transparency has been achieved by placing gold nanocuboids
on a nonlinear nanocomposite film made of polycrystalline ITO doped with Au nanoparticles
(nano-Au:polycrystalline-ITO) (Figure 3a) [74]. The double transparencies are obtained by the
destructive interference coupling between two superradiant modes and one subradiant mode. A large
third-order nonlinear susceptibility is also obtained as a result of three nonlinearity enhancement
factors: the local-field effect that originates from the nonuniform electric field distribution of the pump
laser [75], the quantum confinement effect [76], and a hot-electron injection from Au nanocuboids to
the nanocomposite [77]. This MM has a 120-nm tuning range under weak laser pumping (21 kW/cm2)
that is five orders of magnitude lower than the conventional case because of the highly nonlinear
susceptibility of the nanocomposite. The response time is 34.9 ps.

An ultrafast all-optical tunable chirality with ultralow-power is achieved by designing L-shaped
gold nano-antennas twisted 90◦ to each other with a large nonlinear nano-Au:polycrystalline-ITO
layer; the chirality could operate with circularly-polarized light [78]. Circular dichroism is a result
of different plasmonic resonant modes excited by the reverse rotation of the electric field vectors in
two circularly-polarized incident waves. The circular dichroism attains maximum value (30%) at
λ = 1370 nm, but λ at which circular dichroism is greatest, decreases as much as 45 nm in 35 ps when
this tunable MM is excited by a weak 40 kW/cm2 laser pump. The pump laser causes a decrease in
the refractive index of the nonlinear layer, so the resonance wavelength of the plasmonic modes shifts
toward blue.



Micromachines 2018, 9, 560 8 of 23

Micromachines 2018, 9, x 8 of 23 

 

much as 45 nm in 35 ps when this tunable MM is excited by a weak 40 kW/cm2 laser pump. The 
pump laser causes a decrease in the refractive index of the nonlinear layer, so the resonance 
wavelength of the plasmonic modes shifts toward blue. 

 
Figure 3. (a) The schematic structure of the meta-molecule with a top-view. The meta-molecule 
consists of Au nanocuboids and a nanocomposite that provides a large third-order nonlinear 
susceptibility. The nanocomposite is composed of polycrystalline indium-tin oxide doped with Au 
nanoparticles. The bottom graph is the calculated transmission spectra of this MM according to 
pump intensity. With a weak pump laser (21 kW/cm2), the tuning range is 120 nm. Reproduced with 
permission from © 2014 AIP Publishing LLC [74]. (b) A schematic of how to operate the structure. 
The control beam is green light (532 nm) which interacts with a photoisomerizable azo ethyl red to 
cause a switch in the polarization effects of the metasurface. (Top) The single beam combined with 
control beam by a dichroic mirror passes through the nanostructure and a long pass filter that allows 
only a single beam to pass. (Bottom) Structures of trans and cis state of the ethyl red molecule. Green 
irradiation causes a change from the trans to the cis state; darkness allows a return to the trans state. 
Reproduced with permission from © 2017, Springer Nature [79]. (c) A graph of polarization 
parameters. Polarization parameters (ϕ, χ) measured from the transmitted beam; dots: measured 
data; lines: simulation results. When the changing ethyl-red molecule changes from trans to cis, both 
polarization parameters shift toward blue. Depending on the control light power, the measured 
parameters show nonlinear changes (Δϕ and Δχ), and each parameter is compared with the results 
without the control beam. Irradiation with 4 mW green light (λ = 820 nm) induced a nonlinear 
change Δϕ ~23.2° in the transmitted polarization azimuth. (d) A schematic of a switchable reflective 
polarizer. It consists of an indium-doped cadmium oxide (CdO:In) that has a high carrier mobility, 
an Au capping layer and a magnesium oxide (MgO) substrate. An unpolarized incident beam is 
reflected by the polarizer and the output beam can have different polarization states depending on 
whether the polarizer is on or off. Bottom graph: concept of how the polarizer works. When the 
polarizer is turned on or off, the reflection spectrum of the p-polarization (p-pol) beam changes. 
When it is switched on, the polarizer acts as a perfect absorber for the p-pol at wavelength λ1; when 
the polarizer is switched off, it acts as a mirror for p-pol at λ1. Right: set-up of the pump-probe 
measurement. The reflectance of p-pol is changed due to the photoexcitation of the CdO film, and 
this change is dependent on the energy density of the pump beam. Due to the changing reflectance, 

Figure 3. (a) The schematic structure of the meta-molecule with a top-view. The meta-molecule consists
of Au nanocuboids and a nanocomposite that provides a large third-order nonlinear susceptibility.
The nanocomposite is composed of polycrystalline indium-tin oxide doped with Au nanoparticles.
The bottom graph is the calculated transmission spectra of this MM according to pump intensity.
With a weak pump laser (21 kW/cm2), the tuning range is 120 nm. Reproduced with permission from
© 2014 AIP Publishing LLC [74]. (b) A schematic of how to operate the structure. The control beam is
green light (532 nm) which interacts with a photoisomerizable azo ethyl red to cause a switch in the
polarization effects of the metasurface. (Top) The single beam combined with control beam by a dichroic
mirror passes through the nanostructure and a long pass filter that allows only a single beam to pass.
(Bottom) Structures of trans and cis state of the ethyl red molecule. Green irradiation causes a change
from the trans to the cis state; darkness allows a return to the trans state. Reproduced with permission
from © 2017, Springer Nature [79]. (c) A graph of polarization parameters. Polarization parameters
(φ, χ) measured from the transmitted beam; dots: measured data; lines: simulation results. When the
changing ethyl-red molecule changes from trans to cis, both polarization parameters shift toward blue.
Depending on the control light power, the measured parameters show nonlinear changes (∆φ and ∆χ),
and each parameter is compared with the results without the control beam. Irradiation with 4 mW
green light (λ = 820 nm) induced a nonlinear change ∆φ ~23.2◦ in the transmitted polarization azimuth.
(d) A schematic of a switchable reflective polarizer. It consists of an indium-doped cadmium oxide
(CdO:In) that has a high carrier mobility, an Au capping layer and a magnesium oxide (MgO) substrate.
An unpolarized incident beam is reflected by the polarizer and the output beam can have different
polarization states depending on whether the polarizer is on or off. Bottom graph: concept of how the
polarizer works. When the polarizer is turned on or off, the reflection spectrum of the p-polarization
(p-pol) beam changes. When it is switched on, the polarizer acts as a perfect absorber for the p-pol at
wavelength λ1; when the polarizer is switched off, it acts as a mirror for p-pol at λ1. Right: set-up of
the pump-probe measurement. The reflectance of p-pol is changed due to the photoexcitation of the
CdO film, and this change is dependent on the energy density of the pump beam. Due to the changing
reflectance, the degree of p-pol state of the reflected light varies with wavelength. Reproduced with
permission from © 2017, Springer Nature [80]. (e) A schematic of the spiropyran (SPI)/PMMA layer
is integrated into nanopatch antennas and changing the chemical structure of SPI. The SPI/PMMA
layer is integrated into nanopatch antennas comprised of silver nanocubes and silver film (left).
The chemical structure of an isomer of SPI changes reversibly between Spiropyran and Merocyanine
(right). Depending on the types of light, the C-O ring opens or closes and this affects the optical
properties of the isomer. Reproduced with permission from © 2017 American Chemical Society and
https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b04109. Note that further permissions related to
the material excerpted [81] should be directed to the ACS [81]. (f) The simulated electric field increase
of the fundamental plasmonic mode (SPI: 565 nm and MC: 610 nm) and experimental data about the
scattering intensity. Initially, the reset resonance wavelength is 577 nm and after ultra-violet (UV)
exposure, it red-shifts by 39 nm to 616 nm and the full width at half maximum decreases to 0.75 times
the initial value.

https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b04109
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3.2. Optically-Responsive Composites

Conventional polarizers, such as a wire-grid polarizer, birefringent crystal, and apparatus using
electro-optical or acousto-optical effect, are either static or possessing the only nanosecond response
times, but a gateway plasmonic material composed of indium-doped cadmium oxide (CdO:In) that has
a high carrier mobility, an Au capping layer and magnesium oxide (MgO) substrate has yielded
a reflective polarizer that achieves fast tuning (800 fs) with a range from near- to mid-infrared
frequencies [80]. Optical pumping at with 339 µJ·cm−2 shifts the perfect absorption resonance strongly
toward the red, so p-polarized reflectance changes from 1.0 to 86.3% at 2.08 µm and from 73.0 to 10.5%
at 2.23 µm (Figure 3d). The intraband optical pumping can alter the electron effective mass in the
plasmonic material by creating a hot-electron distribution; the time required for the effective mass
change is influenced by the heat exchange rate between the electrons and the lattice. Due to the shifting
p-polarized reflectance, the degree of the reflection of p-polarized light depends on the wavelength.

Metallic split-ring resonators with incorporated semiconductors can achieve a tunability by
changing the pump power [82]. The split gap at the center of the unit cell is considered as a capacitor.
Since photoexcitation changes the effective size of the capacitor causing conductivity changing, this
enables tunability. As the photoexcitation influence increases, the resonance frequency that depends
on the capacitance can decrease monotonically, so this MM can be frequency-tunable in the terahertz
range with a tuning range of 20%.

Rearranging the structure of Au nanocuboids, changing the nanocomposite to polycrystalline
barium-titanate-doped gold nanoparticles (nano-Au:polycrystalline-BaTiO3), and covering the
nanocomposite with a multilayer tungsten disulfide (WS2) micro sheets decreased the threshold
pump intensity to 20 MW/cm2, which is lower than those of previous reports [83–89]; the response
time of this structure was 85 ps due to fast carrier relaxation dynamics in the nanocomposite [90].
The nanocomposite and WS2 act as nonlinear optical materials and their optical nonlinearity are
amplified by the quantum-confinement effect, the field-reinforcement effect, and the local-field
enhancement effect caused by the non-uniform electric-field distribution of a pump light. Because of
this increased optical nonlinearity, the MM provides a large third-order nonlinear susceptibility and
transmission spectrum that varies with the intensity of the pump light.

3.3. Optically-Responsive Polymers

A layer of nonlinear azobenzene polymer (poly((methyl methacrylate)-co-(disperse red 13
acrylate))) on periodic arrays of an asymmetrical square lattice of meta-molecules etched in a gold
film has achieved a shift of Fano resonance wavelength by a weak pump light [76]. The azobenzene
polymer’s refractive index changes greatly as a result of extremely enhanced photoisomerization
associated with resonant excitation, so this MM provides a large optical nonlinearity. The tuning range
of the Fano resonance wavelength is maintained with a weak pump light (0.06 kW/cm2), which is
seven orders of magnitude lower than that of conventional optical materials (GW/cm2).

A metasurface composed of a periodic array of gold L-shaped slits and a thin layer of
photoisomerizable azo ethyl red as a switching layer provided nonlinear changes in the polarization
azimuth of a transmitted beam at optical frequencies [79]. Under a green incident light, the ethyl red
molecule changes from a trans state to a cis state, then under darkness, it returns to the trans state
(Figure 3b). Due to this change property, the molecular polarizability and the refractive index of the
polymer layer change according to the Lorentz-Lorenz-condition [91]. The resonant plasmonic modes
are coupled, and the ethyl red layer can switch between two isometric states, so 4 mW of green light
induces >20◦ nonlinear change in the transmitted polarization azimuth.
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A composite made by photoisomerization of spiropyran (SPI) and poly (methyl methacrylate)
(PMMA) as the spacer layer can tune plasmon resonances and overcome the severely limited tuning
range of conventional tunable MMs [81]. UV irradiation causes the SPI to isomerize to merocyanine
(MC); the change can be reversed by visible light or heat exposure (Figure 3e). The MC isomers are
coupled to the plasmonic resonance, so the scattering spectra of this MM red-shift during UV exposure
(Figure 3f). This device shifted the plasmon resonance by up to 71 nm (i.e., a figure of merit of 1.43).

4. Structurally Deformable Metamaterials

Many types of MMs or metasurfaces have unique properties that are a consequence of the
arrangement of the structures, and the shape of each element. Thus, the properties of these MMs can
be tuned by applying an external excitation that deforms the shape or arrangement of a structure; if the
deformation is continuous, the change in properties change may also be continuous. Most methods
of imposing such a deformation fabricate nanostructures on the stretchable substrate then stretch
it, or fabricate a MEMS MM device and apply a voltage. Magnetoelastic, strain field, piezoelectric
properties can also be used to obtain tunability by mechanical deformation.

4.1. Stretchable Substrates

A flat optically-tunable meta-lens can be achieved by the patterning of a gold metasurface
on stretchable polydimethylsiloxane (PDMS) substrate (Figure 4a,b) [92]. It operates in the visible
frequency regime, and stretching the lens enables continuous tuning of the optical wavefront.
Stretching widens or narrows the gaps between gold nano-size patterns; as a consequence,
the spatially-varying phase discontinuity term in the generalized Snell’s law is modulated.
The phenomenon enables control of the properties of the lens, including the anomalous refraction
angle. This study overcame the limitation of flat lenses fabricated from metasurfaces that have a
single fixed characteristic. The study also advanced the field of formal stretching-tunable MMs,
which has been focused on tuning individual optical resonators and their properties, not on tuning
entire surfaces and optical wavefronts. This addition of tunability to MMs has advanced them toward
practical applications.
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Figure 4. (a) The schematic of tunable metalens fabricated on an elastic substrate. The four corners of
the elastic substrate are held by the arms, and when the force is applied in four directions, the elastic
substrate is stretched and the spacing of the gold patterns changes. (b) Photograph of the fabricated
metalens before and after stretching. Reproduced with permission from © 2016, American Chemical
Society [92]. (c) A schematic of un-activated and activated MEMs tunable MM. The voltage applied
to each arm in the four directions can release the arm from the surface. (d) A SEM image of the
pattern. Reproduced with permission from © 2014, AIP Publishing LLC [93]. The cantilever on the
right and bottom side have been released. A schematic of MM (e) before and (f) after transformation.
Reproduced with permission from © 2017, Springer Nature [94]. When the magnetic fields are applied
to the patterns on the top and bottom side, a force that pulls each side is generated. As a result,
the elastic interlayer substrate shrinks, so the properties of the MMs change. (g) A schematic of total
material, (h) Schematic of the tuning mechanism; depending on the applied voltage, the structure is
bent up or down by piezoelectricity, so the volume of the voids changes and the property of the entire
structure is tuned. Reproduced with permission from © 2016, Optical Society of America [95].

Early research on tunable MMs on stretchable substrate involved measurement of Raman
scattering while controlling the space between two gold nanoparticle dimers on an elastomer [96].
The sophisticated control of nano-gaps is challenging, but these tunable MMs allow for continuous
control of the gap size, understanding of plasmonic coupling at the nanoscale has been advanced.
Raman scattering between gold nanoparticles with a radius smaller than the wavelength can be
clearly observed from the dark-field scattering spectra at different stretching distances; these spectra
are anisotropic with the polarization direction. This study considers several nanoparticles and their
properties and shows that spacing and consequent tunable properties can be controlled simply by
using a stretchable substrate. Early research looked at only several nanoparticles and their tunable
properties, but some studies show the feasibility of tuning a metasurface, which is a repeating set
of nanopatterns.

The working frequencies of structures can be controlled about 400 nm by making several types of
split ring resonator (SRR) structures on a flexible substrate, then stretching it to adjust the gaps between
the structures [97]. This stretching can be used to tune the optical characteristic of the entire surface
over a broad range. The SRR structures can be modeled as an LC resonator with resonant frequency
ω0 ~(LC)−1/2, where capacitance C depends on the gap size and inductance L is propositional to the
total effective length of each SRR. Therefore, it is possible to control the ω0 of the LC resonator by
controlling the gap. The work demonstrated SRR-bar, asymmetric coupled SRR, square SRR, and
double SRR arrays. The metallic elements on the stretchable substrate could withstand a tensile strain
as high as 50% with distortion.

An elastomer can be used to form a reversibly-wrinklable metasurface [98]. This research
suggests that the mechanical deformation of the elastomer with a metasurface is not limited to
two dimensions but can have tunability from a wave-like winkled structure to a planar structure.
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This paper confirmed the feasibility of gaining sufficient robustness and variation in characteristics of
tunable MM. Their structure was fabricated using a method based on ‘wrinkling instabilities’ which
uses pre-strained layers of a rigid film composite, and a soft backing layer that relaxes spontaneously.
Likewise, adding a stretchable substrate to existing MMs make it possible to tuning the working
frequency of MMs and even can adding special properties into existing MMs.

Mechanical deformation can also be used in acoustic MMs. An acoustic MM in which the structure
rotates in response to applied strain achieved a rotational transformation rather than a linear change in
the unit structures [99]. The resonating mass is supported by easy-to-buckle elastic beams, rather than
by an elastomer. A uniaxial strain causes the array of beams to buckle, so their stiffness changes, as do
the natural frequencies of the resonating units.

Materials research in this area is also developing. A dielectric resonator on conductive rubber as a
stretchable substrate achieved near-unity absorption around the magnetic Mie resonance; the working
frequencies of this device can be tuned [100]. The decreasing longitudinal coupling effect between
adjacent dielectric resonators cause the absorption peak to blue-shift by 410 MHz. This work considered
only two dielectric bricks and their resonating features, but it demonstrates the feasibility of using a
new type of stretchable material and adapting dielectric materials into tunable MMs.

Tunable metasurfaces can be fabricated in all-dielectric materials rather than conductors [101].
This work is a large advance over [100], which used only two dielectric bricks. Fabricating a dielectric
nanostructure onto PDMS was difficult, but they produced a tunable all-dielectric metasurface with
a smaller loss than metasurfaces that use conductive materials. PDMS, as the soft substrate in their
structure, allowed tuning of the period of TiO2 resonators which are a hard material. Resonance shifted
due to the tuning of the period. To interpret the resonance frequency shift, which their structure can
exert, they analyze the near-field interactions with a Lagrangian model.

Another tunable meta-lens [102] has a tunable focal length from 600 µm to 1400 µm, which means
that the ratio between the minimum and maximum focal lengths is more than 2. The lens is constructed
of encapsulated amorphous silicon nanoposts (meta-atoms) that have a high refractive index n in a
dielectric in a subwavelength periodic lattice in PDMS which has low n. This high contrast in n causes
weak optical coupling, and this weak coupling causes a high localization of energy density inside the
nano-posts. This weak optical coupling between the nano-posts is a key characteristic in the design of
their tunable meta-lens.

Because ordinary meta-holograms have one image at first demonstration, attempts to implement
multiple images in one metasurface have been made [103]. However, the meta-holograms still have
a fixed number of images. A tunable meta-hologram [104] solves the problem that an ordinary
meta-hologram can only show a limited number of images. They fabricate anisotropic gold nanorods
on PDMS. Position-dependent phase discontinuity which stems from the orientation angle of the
nanorod-created hologram images. Structural changes due to isotropic stretching changed the
hologram image. Isotropic stretching of the metasurface altered the position-dependent phase
discontinuity and reconfigured the optical wavefront. They employ Fresnel transformation to
rigorously understand how a wavefront changes.

Rearrangement of structures by deformation can yield the full-color range on one
metasurface [105]. The pattern consists of a periodic array of rectangular aluminum nanostructures.
Aluminum has a high bulk plasma frequency, so its plasmonic resonance is tunable from the ultraviolet
to infrared. The far-field interference among unit cells in the lattice suppresses the scattered light
outside the target tuning range and thereby provides vivid colors. Stretching the metasurface changes
the period of structures and their resonance features, so the metasurface shows different colors when
stretched in different directions.

4.2. Micro-Electro-Mechanical System

A micro-electro-mechanical system (MEMS) is a small device that is regulated by electrically-
induced physical deformation or movement.
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A tunable split-ring resonator structure (Figure 4c,d) [93] can be directly physically deformed
by an induced voltage so that the property can be controlled at THz frequency range. Two of four
cantilevers can be actuated in out-of-phase directions, while the other two cantilevers are fixed.
Depending on which cantilever is released, resonance features that can be explained by the LC model
are changed. Each unit cell has multiple movable cantilevers, so various combinations of changing
properties are possible. In tunable MMs that use MEMS, the unit cell size is usually somewhat large to
allow verification of change or movement, so the device has a rather long operating wavelength.

A switchable structure is a relatively simple tunable metasurface that uses MEMS. Two modes of
MM can be implemented with a MEMS switch structure [106]. The unit cell can have an on and off
mode, so that the unit cell can assume a resonance state or a nonresonance state, thereby obtaining
tunability. This study demonstrated that the MEMS structure can be used as an MM and is tunable.
The unit cell is large, so the working frequency is in the gigahertz frequency range.

Arrays of switches with SRR structures [107] allow the SRR structure to be in the off-state or the
on-state. The research shows that MEMS reconfigurable MM can be realized on a surface level, and
is not restricted to the unit cell level. The device uses low-loss quartz. The structure consists of a
square SRR and a cantilever with a disk inside. When the voltage is not applied, the cantilever with
the disk is suspended; when a voltage is applied, the disk contacts the surface with a small quartz
gap relative to the size of the disk. As the gap decreases, the LC resonance changes, so the terahertz
transmission can be tuned. In the ‘off’ state, the device has a resonance frequency at 696 GHz, and in
the ‘on’ state, it has resonance frequency at 461 GHz in the electric field parallel to the MEMS-SRR
cantilever. The electric field perpendicular to the MEMS-SRR cantilever showed no resonance, so this
device achieves polarization selectivity.

A MEMS comb-drive structure yielded an MM structure with a continuously-controlled gap [108].
The gap of the MEMS comb-driver structure is precisely controlled by an applied voltage. When the
gap of the MEMS comb-driver structure is precisely adjusted, the gap between the MMs connected
to the comb-driver is also precisely controlled. The gap size can be controlled from 1 µm to 10 µm
continuously. Therefore, this MM filter can have a large tuning range. For incident light, the size of
the gap affects the distributions of the magnetic and electric fields, so the optical response changes.
This structure can achieve continuous tuning of the properties by the continuous movement of the
structure; in this sense, this structure differs from the switch structure.

MMs with structural anisotropy exhibit different responses that depend on the polarization
direction of incident light. A MEMS MM that is tunable and dependent on polarization direction is
possible [109]; the structure consists of a square unit cell with a pair of cantilever-shaped arms inside.
These arms are lifted according to an applied voltage, and the properties are changed accordingly.
Here, the reaction of the structure differs according to the polarization direction of the incident light,
so the device can be tuned without disturbing this property.

4.3. Magnetoelastic, Strain Field, Piezoelectricity Modulation

Mechanical deformation can be used to tune MMs. In one such device, the distance
between multilayer structures is reduced by electromagnetically-induced forces (Figure 4e,f) [94].
The magnetoelastic MMs consist of two layers of SRR arrays or capacitively-loaded rings. The induced
magnetic field H0 in the axial direction imparts resonant magnetic behavior to the MMs. The resonators
affect each other by mutual inductance and attractive Ampere force when magnetic fields are
introduced. By those interactions, the MMs’ properties are modulated by the thickness of the
intermediate layers. This study differs from the studies mentioned earlier in that the thickness
of the intermediate elastomer layer is reduced by the magnetically induced force, rather than by
mechanical stretching, and that the electric force is induced by an electric potential. Another difference
is that the inducing force and modulating properties are realized by the same-shaped two-layer MM.

The strain field generated by the induced voltage can be controlled; this ability can be exploited
to make a tunable meta-lens that controls astigmatism, shift, and focal length [110]. This tunable
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meta-lens is a combination of metasurfaces used in general meta-lenses, and dielectric elastomer
actuators (DEAs), which are referred to as ‘artificial muscles’ in soft robotics. This meta-lens design
uses a hyperboloid phase profile, which is used in many other meta-lenses. However, the meta-lens
divides the lens into four parts and an individual strain field is applied by DEAs to each part, so the
arrangement allows for the control of the size of the lens, along with many other functions such as
defocusing, controlling astigmatism, and shifting the focal point.

Piezoelectricity can also be used to induce mechanical deformation that can be used to tune the
properties of the MM. Piezoelectricity can be used to change the size of the optical cavity in a tunable
MM (Figure 4g,h) [95]. The MM consists of an optomechanical cavity with an array of nanostrip
antennas. Piezoelectric actuation induces a voltage, which modulates the size of the optomechanical
cavity; therefore, the resonance wavelength of the perfect absorber is tuned.

5. Electrically-Tunable Metamaterials

Electromagnetic tuning induces changes in an MM’s electromagnetic properties. Two methods
have been mainly explored. The first is to control the number of electrical carriers in the target substrate;
the second is to tune the overall characteristic by adjusting the band gap of graphene. Advanced
tunability can also be obtained by designing isotropic 2D structures and using liquid crystals.

The voltage applied to a particular material can increase the number of electrical carriers in it,
and this increased carrier density affects its optical properties. These effects have been exploited to
tune MMs. A representative example of such a material is indium tin oxide (ITO).

5.1. MIM Structure

The refractive index of a MIM structure can be tuned by adjusting the number of carriers in the
ITO layer in it [111]. Their architecture is a metal-transparent conducting oxide (TCO)-semiconductor
heterostructure, in which the TCO is the active material. When the voltage is applied, the electrical
carrier concentration at the interface between dielectric and conducting oxide interface increases
by more than 10 times. As a result, the refractive index in the visible spectrum changes
significantly. This study demonstrates that a structure that uses ITO is integrated with an MM
can be tuned electrically.

A tunable absorber that works in the mid-infrared wavelength band can be assembled from
several materials [112–114]. All of these papers tuned the absorption of the MM by adjusting the
carrier density in the ITO layer. One of these electrically-tunable MMs consists of metal-insulator-metal
with an ITO layer between an insulator and a metal pattern (Figure 5a,b). To maximize the absorption
property, a metal square patch array was fabricated on the top of the device. They derived the
carrier concentration of the ITO layer according to the applied voltage using a conventional metal-
oxide-semiconductor model and complex permittivity of the ITO layer according to the carrier
concentration using the Drude model. As the applied electric field increased the carrier concentration,
ITO became metallic, and its complex permittivity changed. As a result, the minimum point of the
reflectance spectra blue-shifted by 50 nm. Each paper used a different material between the metal layer
and the ITO layer; this difference demonstrates that research into materials is ongoing in this field.
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Figure 5. (a) The schematic of MIM with tunable ITO MM, with a basic MIM structure of aluminum 
square patterns in the top layer and an ITO layer between the top metal patterns and the insulator 
(Al2O3). (b) A cartoon of the mechanism of tuning MM by an ITO-induced structure. Reproduced 
with permission from © The Author(s) 2017 [113]. The voltage between ITO and metal layer 
increases the carrier accumulation; as a result, the reflectance change reaches 5.16 at wavelength = 
2.56 μm. (c) A schematic of a graphene-added tunable MIM MM structure and (d) a SEM image. A 

Figure 5. (a) The schematic of MIM with tunable ITO MM, with a basic MIM structure of aluminum
square patterns in the top layer and an ITO layer between the top metal patterns and the insulator
(Al2O3). (b) A cartoon of the mechanism of tuning MM by an ITO-induced structure. Reproduced
with permission from © The Author(s) 2017 [113]. The voltage between ITO and metal layer increases
the carrier accumulation; as a result, the reflectance change reaches 5.16 at wavelength = 2.56 µm.
(c) A schematic of a graphene-added tunable MIM MM structure and (d) a SEM image. A MIM
structure with patterning on the top layer makes the reflectance close to zero at a certain wavelength
band. By putting a graphene layer in the middle of this structure and applying a voltage to that
layer, the target wavelength band shifted. (e) Simulation of the reflectance change when the voltage
was changed from 0 to 80 V, and the consequent change in the target frequencies. Reproduced with
permission from © 2014, American Chemical Society [115].

A MIM grating structure with ITO can be used for beam steering [116]. The tunability of their
structure is a result of field-effect modulation of the refractive indices of the conducting layer and the
metasurface antenna elements. The authors added independent addressability to the grating antenna
metasurface to enable the electrical switching of first-order diffraction beams. The wave phase and
amplitude of reflected light could be dynamically controlled by adjusting the periodic voltage applied
to the grating.

The carrier concentration and refractive index of the ITO layer of a MIM structure have been
controlled to steer reflected beams [117]. The metasurface of the antennas was designed to be a square
patch. By adjusting the voltage applied to each rectangular unit cell, a beam could be steered in
two dimensions.

A tunable metasurface can be produced by using an all-dielectric patterning rather than a metal in
the top layer of a MIM structure; i.e., a dielectric-TCO-insulator-metal structure [118]. Here, the tuning
principle also entails adjusting the carrier concentration of the ITO layer; the difference is that
the current paper uses an all-dielectric metasurface and their reflection characteristic when two
closely-spaced electric and magnetic resonances occur. By adopting multigate biasing, the authors
achieved a relatively high reflection amplitude of 0.4 over 180◦ in the NIR spectrum. This study
suggests that the selection of materials used in tunable ITO MMs can be expanded.

5.2. Graphene

Graphene is a hexagonal array of carbon with single-atom thickness and is a zero-bandgap
semiconductor. It has been used to create MMs and to add tunability to existing MMs. The electrical
and optical properties of a material can be tuned using electrical gating, which is induced by applying
a voltage to graphene [119,120].
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The reflectance and transmittance of graphene samples on a SiO2/Si substrate change significantly
as a function of the gate voltage as a result of band structure changes in response to electrical gating
which analyzed using the Drude model. Field-effect-modulated electrical conductivity of monolayers
and bilayers of graphene yield interband optical transitions [120]. The interband optical transition
causes a distinct change in optical response. This property of graphene has been used to obtain the
tunability of existing MMs.

The optical plasmonic resonance of gold nanorods in the NIR can be changed by surrounding
it with graphene and applying a voltage [121]. Gold nanorods are of fixed size, so they have a fixed
resonance frequency, and the intensity of their plasmon resonance is very weak. When graphene
contacts the gold nanorods structure, the resonance frequency, quality factor, and resonance scattering
intensity of gold nanorod plasmons can be controlled simultaneously. These changes are consequences
of changes in the real and imaginary parts of graphene’s dielectric constant.

The operating range of MM can be tuned by adding a graphene layer to the metasurface; this layer
acts as a plasmonic antenna (Figure 5c,d) [122,123]. The carrier density and the Fermi level can be
changed by applying a gating voltage to the graphene, and permittivity is dependent on carrier
concentration. By exploiting this property, the authors turned the plasmonic antennas by controlling
carrier concentration. Applying a voltage has no effect on the spacing between the structures, but gating
in the graphene layer affects the electrical properties and consequent optical properties. Therefore,
the tunability of the metasurface can be achieved. In most cases, graphene has been introduced into
existing MMs to add tunability.

Graphene itself can be used as a material for a tunable metasurface [115]. Arrays of closely packed
graphene nanodisks with different gap and diameter show the absorption of graphene structure is
tunable. A graphene layer alone interacts very weakly with visible and near-infrared light (2.3%
absorbance). Nano-patterning by graphene induces localized surface plasmonic resonance, which
increases the absorbance and obtaining tunability by electrical gating.

The working frequency of a perfect absorber can be adjusted by fabricating a metasurface that
includes a graphene layer between the pattern and insulator layer of a MIM absorber [115] and can be
modeled as an asymmetric Fabry–Perot resonator. The perfect absorption property of the structure is
also implemented when the graphene layer is not present, but adding a graphene layer and adjusting
the carrier density by applying voltage yields a wide tuning range (5–7 µm) in the near-infrared region.

The working frequency of the perfect absorber using graphene can also be used to create
a dual-band MM perfect absorber by using patterns of two different sizes and shapes [124].
This dual-band MM absorber has two absorption bands that can be tuned independently. It also
operates at a wide range of incidence angle.

5.3. Structure MMs

Some MMs exploit structural specificities while controlling the carrier concentration of the
material or gating the graphene structure. Two-dimensional multi-material nanowire designs are
representative examples.

Tunability can be obtained by adding ITO to a metal-oxide-semiconductor and metal-insulator-
metal ‘nanowire’ structure [125,126] (Figure 6a). Fabrication of the MM in this 2D form enables tuning
of controlled transmitted light. The MM consisted of a set of vertical MIM nanowires; this architecture
yielded the tunability and multifunctionality of MMs that had a graded refractive index. The authors
also used materials other than ITO to study the tuning of the effective permeability and the effective
impedance while maintaining the nanowire structure.
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Figure 6. (a) The schematics of the cross-section and total structure of 2D tunable MMs. Reproduced
with permission from © 2017, Springer Nature [125]. The array of a 2D layered line structure can
transmit light. The line is composed of a metal-oxide-semiconductor integrated with ITO, which is
conventionally used in tunable MMs. (b,c) tunable color-generation and color-filtering MM using the
LC model. The alignment structure of the LC is changed by the applied voltage and changes the color
produced by the MMs. MM in (b) tuning color of reflected light; (c) transmitted light. Reproduced with
permission from © 2017, Springer Nature [127], Reproduced with permission from © 2017 American
Chemical Society [128].

5.4. Liquid Crystals

The properties of LCs are changed by an applied voltage, and their optical properties change
accordingly. LCs can produce a spectral shift of plasmon resonance of Au nanoparticles [129]. When an
Au nanoparticle was embedded in a liquid crystal, the application of changed the direction of the LC,
so the anisotropic refractive index of the embedding media changed. This change results in a shift in
the spectrum of the particle plasmon resonance.

An MM that can tune color generation or filter colors has been developed by exploiting this
changing property (Figure 6b,c) [127]. Both studies are similar, but Reference [127] tuned the reflected
beam color by using a reflective plasmonic surface with a nanowall unit cell, whereas Reference [128]
tuned the transmitted beam by using an asymmetric-lattice metal nanohole. These works demonstrate
tunability the visible spectrum, whereas the target frequency of most tuned MMs is within the NIR
or MIR.

6. Conclusions

This paper reviews methods tune MM reversibly within a certain range. We considered the effects
of thermal, optical, mechanical, and electrical factors. When a particular material or structure in an
MM is excited by heat, light, mechanical force, and voltage, the property of MM can change reversibly.
VO2 and GST are phase-change materials and representative components of thermally-tunable MM.
ITO as a carrier adjustable material is widely used in optically and electrically tunable MMs. PDMS is
widely used in MMs that are mechanically tuned by stretchable substrates. This review expresses the
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working principles or mechanisms of the classified tunable MMs. Research has manipulated LSPR,
absorption, transmittance, reflectance, polarization, and thermal emission.

Each method has the advantages and disadvantages of visible tunability, tuning range,
and modulation speed. A strength of one method can be a weakness of other methods, so the
choice of an appropriate tuning method is dictated by the purpose of tuning. Research on tunable
MMs has achieved many advances, such as by increasing the range of variation in MMs or using novel
materials. Further developments of this technology will yield practical applications of MMs.
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