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Discoidin, CUB, and LCCL domain-containing protein 2 (DCBLD2) is a two-

domain transmembrane protein-coding gene located on chromosome 3,

the protein expressed by which acts as the membrane receptor of

semaphorin and vascular endothelial growth factor during the

development of axons and blood vessels. Although several research

evidences at the cellular and clinical levels have associated DCBLD2 with

tumorigenesis, nothing is known regarding this gene from a pan-cancer

standpoint. In this study, we systematically analyzed the influence of

DCBLD2 on prognosis, cancer staging, immune characteristics, and drug

sensitivity in a variety of cancers based on a unified and standardized pan-

cancer dataset. In addition, we performed GO enrichment analyses and

KEGG analyses of DCBLD2-related genes and DCBLD2-binding proteins.

Our results showed that DCBLD2 is a potential oncogenic, immunological as

well as a prognostic biomarker in terms of pan-cancer, and is expected to

contribute to the improvement of tumor prognosis and the development of

targeted therapy.
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Background

The pan-cancer analysis contributes to examining

similarities and differences between genotypic and phenotypic

characteristics across different kinds of cancer. Since

tumorigenesis and progression are affected by many factors,

there is a need to study and elaborate on the pan-cancer

influence of candidate genes and discuss the correlation

between gene expression and patient outcome, tumor

malignancy, immune regulation, and drug sensitivity as well

as the potential underlying molecular mechanisms. Datasets

held at the TCGA database contain invaluable functional

genomic information for different tumors, which lays a

foundation for gene pan-cancer analysis (Weinstein et al.,

2013; Blum et al., 2018; Campbell et al., 2020).

Discoidin, CUB and LCCL Domain Containing 2

(DCBLD2) was first cloned from lung cancer cells with

strong metastatic ability by Koshikawa et al. (Koshikawa

et al., 2002) and found to be significantly up-regulated in

high, relative to low, metastatic lung cancer cell lines. The

DCBLD2 protein contains a binding peptide that is partially

homologous to the domain of the SEMA4B signal element.

Previous co-immunoprecipitation results confirmed that

DCBLD2 interacts with SEMA4B-Fc and full-length

SEMA4B, evidence that laid a foundation for subsequent

explorations into the function and underlying mechanism of

DCBLD2 action (Nagai et al., 2007). Furthermore, it was

demonstrated that the over-expression of DCBLD2 is related

to the increased invasive capacity of cancer cells and poor

prognosis of patients with lung cancer (Koshikawa et al.,

2002; Nagai et al., 2007), gastric cancer (Kim et al., 2008),

colorectal cancer (He et al., 2020), and pancreatic cancer

(Raman et al., 2018; Feng et al., 2020).

The tumor microenvironment (TME) is composed of

cancer cells, stromal cells, immune cells, secretory products

(such as cytokines and chemokines) of corresponding cells, and

extracellular matrix (ECM). Cancer cells and their survival

microenvironment are interdependent but antagonistic. TME

can affect and regulate the occurrence and development of

tumor through changes in metabolism, secretion, immunity,

structure and function. As a consequence, researching the

function of TME plays an important role in tumor diagnosis,

prevention and treatment (Whiteside, 2008; Wu and DAI,

2017). Notably, the TME contains a variety of cells, of which

infiltrating immune cells, such as T cells, B cells, macrophages,

natural killer cells, and dendritic cells, account for the largest

proportion. Different tumors can develop immune tolerance by

escaping the effective recognition and killing of cancer cells by

the immune regulation, while immunotherapy restores the

normal anti-tumor immune response by restarting immune

regulation in the tumor microenvironment, to inhibit tumor

growth and metastasis. This treatment has shown strong

antitumor ability in a variety of cancers such as melanoma,

lung cancer, kidney cancer, and prostate cancer (Gajewski et al.,

2013; Topalian et al., 2015). Apart from immune cells,

infiltration of other kinds of cells such as cancer-associated

fibroblasts (CAFs) and vascular endothelial cells inside the

tumor has also been documented, a phenomenon that

constitutes a non-immune microenvironment of the tumor.

For example, CAFs have been proved to release stromal cell-

derived factors and proangiogenic growth factors which in turn

promote the progression and metastasis of cancer (Monteran

and EREZ, 2019).

At present, nothing is known regarding systematic regulation

of DCBLD2 on tumorigenesis, prognosis, and drug susceptibility

in pan-cancer, while knowledge on the relationship between

DCBLD2 and TME, including immune infiltration, is still

lacking. Here, we provide the first report of the effects of

DCBLD2 on tumorigenesis, prognosis, immune infiltration,

and drug sensitivity in pan-cancer based on a dataset from

TCGA. Our findings indicate that DCBLD2 is an oncogenic,

immunological, and prognostic factor and has the potential to be

a biomarker for cancer diagnosis, drug development, and

prognostic analyses.

Materials and methods

Online analysis tools used in this study

The databases used in this study and their web addresses are

listed in the table below (Table 1).

Differential gene expression analysis

We downloaded a unified and standardized pan-cancer data

set, namely the TCGA Pan-Cancer (PANCAN, N=10535, G=

60499) from UCSC (https://xenabrowser.net/), and extracted

expression data for the DCBLD2 gene. Next, we screened the

samples from Solid Tissue Normal, Primary Blood-Derived

Cancer-Peripheral Blood, and Primary Tumor, and carried

out log2 (x + 1) transformation on each expression value. All

cancer species with less than 3 samples per single cancer species

were excluded from the analysis to finally obtain an expression

matrix comprising 26 cancer species. Differential expression

between normal and tumor samples for each tumor was

calculated using packages implemented in R software (version

3.6.4), with differences between groups determined using

unpaired Student’s t-Test.

Prognostic value analysis of DCBLD2

The TCGA dataset was downloaded as described above,

while metastatic samples were screened from TCGA-LAML,
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Primary Tumor, and TCGA-SKCM. Next, we screened data from

a previous study (Liu et al., 2018b) and retrieved high-quality

TCGA prognostic datasets and samples with a follow-up period

of fewer than 30 days. Each expression value was transformed by

log2 (x + 1) transformation, and any cancer species with less than

10 samples were excluded from the analysis. Finally, we obtained

expression data for 39 cancer species and the overall survival or

disease-specific survival data of the corresponding samples were

obtained. The Coxph function implemented in the survival

package of R software (version 3.2-7) was utilized to establish

a Cox proportional hazards regression model for the

determination of the association between gene expression and

prognosis in each tumor. Prognostic significance was obtained by

Log-rank test statistical test.

Immunophenoscore analysis

Data retrieval and screening of metastatic samples were as

described above. Gene expression profiles in each tumor were

extracted and mapped to Gene Symbol using the IOBR package

(version 0.99.9) in R software (Method: Deconvo-IPS)

(Charoentong et al., 2017). Next, MHC, EC, SC, CP, AZ,

and IPS infiltration scores for each patient in each tumor

were reevaluated according to the patterns of gene

expression. This revealed a total of 6 types of immune cell

infiltration scores across 9,555 and 39 tumor samples and

tumor types, respectively. Next, we used the corr. test

function in psych package (version2.1.6) in R software to

calculate the Spearman’s correlation coefficient of gene and

immune cell infiltration scores in each tumor and determine

significantly related immune infiltration scores.

Microenvironment cell populations-
counter analysis

Data retrieval and initial manipulation were as earlier

described above. Next, we employed the IOBR package

(version 0.99.9) in R (Method: Deconvo-MCPcounter)

(Becht et al., 2016). to evaluate infiltration of T cells,

CD8 T cells, Cytotoxic lymphocytes, B lineage, NK cells,

Monocytic lineage, Myeloid dendritic cells, Neutrophils,

Endothelial cells and Fibroblasts for each patient across

each tumor based on gene expression profiles. This revealed

a total of 10 kinds of immune cell infiltration scores, across

9,555 tumor samples from 39 tumor types. Thereafter, we

employed the corr. test function implemented in psych

package (version 2.1.6) in R to calculate the Spearman’s

correlation coefficient between DCBLD2 expression level

and immune cell infiltration scores in each tumor. Finally,

we determined immune infiltration scores significantly related

to DCBLD2 expression.

Estimation of stromal and immune cells in
malignant tumor tissues using expression
data analysis

Data retrieval and initial manipulation were as earlier

described above. Next, we employed the ESTIMATE package

in R (Yoshihara et al., 2013) to calculate stromal, immune, and

ESTIMATE scores of each patient in each tumor and obtained

immune infiltration scores for 9,555 and 39 tumor samples and

tumor types, respectively. Next, we used the corr. test function

implemented in psych package (version 2.1.6) in R to calculate

the Pearson’s correlation coefficient between DCBLD2

expression level and immune invasion scores in each tumor,

then determined the significantly related immune invasion score.

DCBLD2-related gene enrichment
analysis

First of all, we used the STRING database to find the target

proteins that may bind to DCBLD2. We set specific parameters

on the “Basic Settings” page: “evidence” in the “Meaning of

network edges” option, “Experiments” in the “Active interaction

sources” option, and “low confidence (0.150)” in the “Minimum

required interaction score” option, and “no more than

50 interactors” in the “Max number of interactors” option.

When the condition is set, click “update” to get the protein

interaction network. Next, we used GEPIA 2.0 to screen out the

first 100 genes related to DCBLD2 expression, and use the

“correlation analysis” module to analyze the correlation

between the top 10 genes and DCBLD2 expression. The genes

obtained from the above two databases were collected and

merged, and the DAVID database was used for GO

enrichment analysis and KEGG pathway analysis.

Results

Profiles of DCBLD2 expression, cellular
localization, topology, and its correlation
with diseases

To characterize DCBLD2’s intracellular localization, we

evaluated its distribution in the endoplasmic reticulum and

microtubules of A-431, U-2 OS, and U-251 MG cells using

data from the Human Protein Atlas database.

Immunofluorescence assay results revealed an overlap between

DCBLD2 and ER and microtubule across these cell types. The

DCBLD2 protein was mainly expressed in the plasmamembrane,

and partly in the Golgi apparatus and the cytosol (Figure 1A).

Results from analysis of the topological structure showed that the

protein is a transmembrane protein, with a mutation site both

inside and outside the membrane (Figure 1B). Furthermore,
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FIGURE 1
Cellular localization, topology, tissue expression of DCBLD2 and its correlation with diseases. (A) Immunofluorescence assay showed
intracellular localization of DCBLD2 protein in A-431, U-2 OS, and U-251 MG cells as adopted from the HPA database. (B) DCBLD2 protein topology
showing transmembrane localization. (C) The mRNA expression level of DCBLD2 in all normal human tissues as adopted from the TCGA data. (D–E)
Network of potential binding proteins of DCBLD2 (D) and the DCBLD2-related disease (E).
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FIGURE 2
The association of the aberrant overexpression of DCBLD2 with tumor stages. (A) Differential DCBLD2 expression levels (log2 x + 1) between
tumor and adjacent normal tissues as adopted from TCGA data. (B) Differential DCBLD2 expression for the type of CHOL, COAD, GBM, HNSC, KIRP,
LUSC, and THCA as adopted from TCGA data. *p < 0.05, **p < 0.01, **p < 0.001. (C) For the type of CHOL, HNSC, KIRP, LUSC and THCA in the TCGA
project, the box plot data of differentialDCBLD2 expression levels (log2 x + 1) between pathological stages (stages I, II, III, and IV) were supplied.
*p < 0.05, **p < 0.01, **p < 0.001.
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expression profiles showed that DCBLD2 mRNA was expressed

in normal human tissues and organs except the bone marrow

(Figure 1C). Protein-protein interaction networks showed that

DCBLD2 interacted with multiple targets, including EGFR, FYN,

ELAVL1, and HLA-DRA (Figure 1D). Moreover, the disease

interaction network revealed that this gene was associated with

many diseases, including cancer, genetic diseases, nervous system

disease, and metabolic disease among others, of which the

association with cancer was the most significant (Figure 1E).

DCBLD2 is not only aberrantly
overexpressed but is associated with
tumor stages

DCBLD2 was significantly over-expressed in most tumors,

relative to normal adjacent tissues, including GBM (p = 1.8e-

5), GBMLGG (p = 0.01), LUAD (p = 1.2e-8), COAD (p = 2.3e-

4), COADREAD (p = 3.6e-3), STES (p = 0.03), KIRP (p = 1.4e-

16), HNSC (p = 3.2e-20), LIHC (p = 0.02), THCA (p = 2.5e-8)

and CHOL (p = 5.0e-5). Conversely, this gene was significantly

downregulated in four kinds of tumors, relative to normal

adjacent tissues, namely BRCA (p = 2.2e-40), PRAD (p = 9.1e-

14), KIRC (p = 6.4e-6), and KICH (p = 4.6e-10) (Figure 2A).

Validation of these results using the UALCAN database

showed that the DCBLD2 mRNA was significantly up-

regulated in CHOL, COAD, GBM, HNSC, KIRP, LUSC,

and THCA (p < 0.05) (Figure 2B). Results from differential

expression of DCBLD2 across different tumor stages showed

that this gene was significantly upregulated in highly

malignant pathological tumors including CHOL, HNSC,

KIRP, LUSC, and THCA (p < 0.05) (Figure 2C). The above

results showed that the expression levels of DCBLD2 gene

showed significant differences between tumor tissues and

normal tissues in most cancers, suggesting that this gene

has the potential to become a biomarker for evaluating the

development of malignant tumors.

DCBLD2 expression is associated with
poor prognosis of cancer patients

We analyzed the influence of DCBLD2 expression on overall

survival (OS) of patients with different tumor types via TCGA

dataset. Results showed that upregulation of this gene was related

to shorter OS of patients across 16 tumor types, namely

GBMLGG (p = 3.7e-33, HR = 2.19), LGG (p = 2.2e-13, HR =

2.19), LUAD (p = 0.04, HR = 1.13), KIPAN (p = 9.8e-4, HR =

1.18), STAD (p = 8.0e-4, HR = 1.27), HNSC (p = 0.03, HR = 1.16),

GBM (p = 0.01, HR = 1.30), KIRC (p = 7.9e-5, HR = 1.34), COAD

(p = 0.02, HR = 1.32), COADREAD (p = 0.04, HR = 1.27), LIHC

(p = 7.7e-3, HR = 1.42), MESO (p = 1.1e-3, HR = 1.39), PAAD

(p = 2.1e-4, HR = 1.36), BLCA (p = 2.8e-4, HR = 1.23), ACC (p =

4.8e-4, HR = 1.69) and KICH (p = 1.4e-3, HR = 7.50). The only

exception was recorded in LAML (p = 0.02, HR = 0.76) where

high gene expression was significantly associated with increased

OS (Figure 3A).

Similarly, analysis of the relevance between DCBLD2

expression with disease specific survival (DSS) of patients

revealed that high gene expression was significantly related to

shorter DSS of patients in 16 tumor types, including GBMLGG

(p = 3.9e-35, HR = 2.28), LGG (p = 3.3e-13, HR = 2.28), COAD

(p = 2.5e-3, HR = 1.61), COADREAD (p = 2.1e-3, HR = 1.62),

STES (p = 2.3e-3, HR = 1.20), KIPAN (p = 8.0e-3, HR = 1.18),

STAD (p = 5.3e-4, HR = 1.37), HNSC (p = 2.1e-3, HR = 1.29),

GBM (p = 1.8e-3, HR = 1.39), KIRC (p = 2.2e-4, HR = 1.40),

LUSC (p = 0.02, HR = 1.28), MESO (p = 8.2e-3, HR = 1.44),

PAAD (p = 2.1e-4, HR = 1.41), BLCA (p = 2.3e-4, HR = 1.28),

ACC (p = 3.6e-4, HR = 1.75) and KICH (p = 3.7e-3, HR = 8.18).

The only exception was in THYM (p = 4.0e-3, HR = 0.10) where

high gene expression was associated with higher DSS (Figure 3B).

Validation of the above results using the UALCAN database

revealed that upregulation of DCBLD2 was associated with

significantly shorter OS of patients with ACC, BLCA, GBM,

KICH, LGG, LIHC, LUAD, PAAD and STAD (p < 0.05)

(Figure 3C), and significantly shorter DFS in patients with

ACC, BLCA, GBM, LUAD and PAAD (p < 0.05) (Figure 3D).

Furthermore, validation of these results using multiple GSE

datasets revealed that high DCBLD2expression was

significantly associated with shorter OS, DFS, DSS and RFS in

multiple cancers, including colorectal, lung, breast, bladder and

ovarian cancers (Supplymentary Figure S1). Based on these

results, it is evident that the DCBLD2 gene is a potential

biomarker for patient outcomes.

DCBLD2 is associated with activation of
the EMT signal

Next, we employed the GSCA database to elucidate the

correlation between DCBLD2 expression with tumor-related

pathway activity. Results revealed that DCBLD2 expression

contributed to the activation of epithelial-mesenchymal

transition (EMT) signal in 31 kinds of tumors (Figure 4A).

Previous studies have demonstrated that abnormal up-

regulation of EMT in cancer patients is the main factor

leading to poor prognosis, metastasis, and recurrence of

many types of cancer (Fan et al., 2020; Zhang et al., 2020).

Correlation analysis between expression of DCBLD2 and key

regulators of the EMT signal, utilizing the TIMER

2.0 database, revealed a significant positive correlation

between DCBLD2 with CDH1, TJP1, CDH2, VIM, SNAI1,

SNAI2, TWIST1, MMP2, MMP3, MMP9, ZEB1, ZEB2, ILK,

and RHO, across all tumors based on the TCGA dataset

(Figure 4B). Validation of these results, using the GEPIA

2.0 database, revealed that DCBLD2 expression was
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FIGURE 3
Association of DCBLD2 with tumor-poor cancer prognoses. (A) Forest plot showing the correlation between DCBLD2 expression and Overall
Survival (OS) in 39 types of tumors as adopted from TCGA data. (B) Forest plot showing the correlation between DCBLD2 expression and Disease-
Specific Survival (DSS) in 39 types of tumors as adopted from TCGA data. (C–D) Analysis of the Overall Survival (C) and Disease-Free Survival (D) of
multiple tumors based on DCBLD2 expression as adopted from GEPIA 2.0 database (All p < 0.05).
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FIGURE 4
The association of DCBLD2 with EMT signal activation. (A) The percentage of cancers in which mRNA expression of DCBLD2 has a potential
effect on pathway activity (A: Activate; I Inhibit). (B) The correlation heatmap of DCBLD2 and the key regulators of EMT signal in the detailed cancer
types. (C) Analysis of the association between the expression of DCBLD2 and EMT signal regulators, including CDH2, ILK, MMP2, MMP9, SNAI1,
SNAI2, TJP1, TWIST1, VIM, and ZEB2 using the GEPIA2 approach. Only targeting genes with statistically significant correlation are presented. (D)
For the type of HNSC, COAD, CHOL, KIRP and THCA in the TCGA project, the box plot data of differential DCBLD2 expression levels (log2 x + 1)
between N stages (Normal, N1, N2, and N3) were supplied. *p < 0.05, **p < 0.01, **p < 0.001.
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FIGURE 5
Association ofDCBLD2with immune regulation. (A)Heatmap showing correlations betweenDCBLD2 expression and IPS score of standardized
pan-cancer data set. The MHC, EC, SC, CP, AZ, and IPS infiltration scores in each tumor were evaluated according to gene expression. (B) Heatmap
showing correlations between DCBLD2 expression and MCPcounter score of standardized pan-cancer data set. The T cells, CD8 T cells, Cytotoxic
lymphocytes, B lineage, NK cells, Monocytic lineage, Myeloid dendritic cells, Neutrophils, Endothelial cells and Fibroblasts infiltration scores in
each tumor were evaluated according to gene expression. (C) Heatmap showing correlations between DCBLD2 expression and immune infiltration
of cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs) via TIMER 2.0 database. (D) Correlation analysis between
DCBLD2 expression and ESTIMATE score of standardized pan-cancer data set.
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positively correlated with the expression of CDH2, ILK,

MMP2, MMP9, SNAI1, SNAI2, TJP1, TWIST1, VIM, and

ZEB2 (p < 0.05, r > 0.2) (Figure 4C). EMT is one of the

key regulatory factors of cancer metastasis. Therefore, we

further explored the relationship between DCBLD2

expression with tumor M stage and N stage and found no

significant effect on the tumor M stage. However, DCBLD2

was significantly upregulated in patients with severe lymph

node metastasis in CHOL, COAD, HNSC, KIRP, and

THCA (Figure 4D). Collectively, these results suggested

that DCBLD2 expression is associated with activation of the

EMT signal in pan-cancer and thus may promote tumor

metastasis.

DCBLD2 participates in immune
regulation

Next, we characterized the immune microenvironment of

the samples according to gene expression data using multiple

algorithms. Firstly, we employed IPS, which uses biomarkers of

an immune response or immune tolerance for the visualization

and subsequent quantification of multiple immune phenotypes

(MHC, EC, SC, CP, and AZ) in tumor samples, to evaluate the

immune status. This method also generates a z score that

summarizes all the categories, with higher z scores in IPS

indicating stronger immunogenicity in a sample. Results

revealed that DCBLD2 expression was not only inversely

associated with all indexes across all tumors, except EC, but

also with the final IPS score, suggesting that its upregulation

may cause tumor immunosuppression (Figure 5A). Next, we

used MCPcounter to quantify the relative enrichment of

immune cells in heterogeneous tumor samples, and then

evaluated the level of immune infiltration across 10 kinds of

immune-related cells, namely T cells, CD8 T cells, natural killer

cells, cytotoxic-lymphocytes, B cells, monocytic lineage,

myeloid dendritic cells, neutrophils, and endothelial cells and

fibroblasts. Published literature has shown that myeloid-

derived suppressor cells, dendritic cells, neutrophils, and

endothelial cells are key immunosuppressive cells that

promote tumor progression (Liu and CAO, 2016). The

correlation heat map showed a positive association between

DCBLD2 expression with infiltration of the four kinds of cells

mentioned above in almost all tumors (Figure 5B). Following

that, we validated the positive correlation between DCBLD2

expression with infiltration of CAFs and MDSCs using the

TIMER2.0 database (Figure 5C), then employed the

ESTIMATE package in R to quantify and visualize the

impact of DCBLD2 on immune cell infiltration in specific

tumor types. Scatter plots showed that levels of DCBLD2

expression were negatively correlated with ESTIMATE scores

in CESC, THYM, TGCT, UVM, and ACC (p < 0.05, r < -0.2)

(Figure 5D).

DCBLD2 expression is associated with
therapeutic responses

Next, we analyzed the relationship betweenDCBLD2 expression

and therapeutic efficacy using a variety of solid tumors cell lines in

GDSC (Figure 6A) and CTRP (Figure 6B) databases. The two

databases, GDSC and CTRP, were integrated to obtain a total of

about 500,000 drug effect data between 684 drugs and 1,235 cells,

from which we were able to obtain the IC50 values of different types

of tumor cells for various drugs. Results revealed that DCBLD2

expression in cancer cells was positively correlated with IC50 values

of many chemotherapeutic drugs, targeted drugs, and small

molecular probes, including 5-Fluorouracil. Notably, high

DCBLD2 expression was associated with a weaker therapeutic

effect. Next, we analyzed the potential therapeutic effects of

DCBLD2 by comparing it with standardized biomarkers based

upon the predicted therapeutic efficacy and patient outcome of

ICB sub-cohorts. In the first, DCBLD2 alone had an AUC of the

ROC> 0.5 in 7 of the 21 ICB sub-cohorts, this was accompanied by a

better predictive efficacy compared with the T. Clonality and B.

Clonality. Although DCBLD2 expression was comparable to the

TMB score, it was lower than MSI. Score, CD27A, TIDE, IFNG,

Merck18, and CD8 (Figure 6C). Moreover, DCBLD2 upregulation

was associated with worse PD1 outcomes in glioblastoma

(ICB_Zhao2019_PD1) and melanoma (ICB_Riaz2017_PD1 and

ICB_Liu2019_PD1), worse CTLA4 outcomes in melanoma

(ICB_Nathanson2017_CTLA4), and worse PDL1 outcomes in

the bladder (ICB_Mariathasan2018_PDL1). In addition,

phenotypic analysis of gene knockout mice, based on genetic

screening, showed that knocking out DCBLD2 significantly

affected lymphocyte-mediated tumor killing in tumor models

(Freeman 2019 NK, Vredevoogd 2019 MART1, Kearney

2018 IgG, Manguso 2017 GVAX, Kearney 2018 T_PD1 and

Patel 2017 2) (Figure 6D). In addition, DCBLD2 upregulation

was related to shorter OS of melanoma and bladder cancer

patients who were treated with PD1 (Figure 6E). Furthermore,

we analyzed the relationship between DCBLD2 expression level

and chemotherapy sensitivity of tumor patients and found that

patients with highDCBLD2 expression inOvarian cancer and Breast

cancer were less sensitive to drug therapy (Figure 6F).

Enrichment analysis of DCBLD2-related
factors

To deeper explore the molecular mechanism underlying the

effects ofDCBLD2 expression level on tumor development, immune

regulation and drug sensitivity, we found the potential

DCBLD2 binding proteins and genes related to DCBLD2

expression and carried out enrichment analysis. We first used the

STRING tool to screen 38 possible dcBLD2-binding proteins, and

the above results were supported by experimental evidence

(Figure 7A). Next, we utilized the GEPIA 2.0 tool to include
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FIGURE 6
Association of DCBLD2 expression with therapeutic responses. (A,B) A bubble chart showing the association between DCBLD2 expression and
IC50 value of multiple drugs in solid tumor cells, acquired from the GDSC database (A) and CTRP database (B). The color of bubbles showing the
correlation coefficient between DCBLD2 expression level and IC50 value. The points coiled by black contours indicate that FDR < 0.05. (C) The bar
chart showing the difference in the efficacy of DCBLD2 and standardized cancer immune evasion biomarkers in various data sets of tumor
patients receiving immunotherapy. The efficacy was evaluated by the area under the receiver operating characteristic curve (AUC). (D) Heat maps
showing the correlation between DCBLD2 expression levels and outcome in knockout models and tumor patients receiving immunotherapy (E)
Effect of DCBLD2 expression on overall survival in melanoma patients treated with PD1 and bladder cancer patients treated with PDL1 (All p < 0.05).
(F) Effect of DCBLD2 expression level on chemotherapy sensitivity in breast and ovarian cancer patients and ROC curves (All p < 0.05).
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FIGURE 7
Enrichment analysis of DCBLD2-related factors. (A) DCBLD2-binding proteins supported by experimental results were screened using STRING
database. (B) Scatter plot of expression correlation analysis of the top 10 DCBLD2-related genes, including LINC O 0973, ITGA3, SLC20A1, FAM3C2,
NT5E, SMURF2, MDFIC, CALU, MET, and PLAUR. (C–F) GO enrichment and KEGG pathway analyses were performed based on the combine of
DCBLD2-binding proteins and DCBLD2 expression-related genes. Supplymentary Figure S1: The effect of DCBLD2 expression levels on OS,
DSS or RFS in patients with colorectal, lung, breast, blood, bladder and ovarian cancers in multiple GSE datasets.
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gene expression data of all cancer samples and selected the top

100 genes that were related toDCBLD2 expression. The top 10 genes

that were positively related toDCBLD2 expression included LINCO

0973, ITGA3, SLC20A1, FAM3C2,NT5E, SMURF2,MDFIC, CALU,

MET and PLAUR (r > 0.2, p < 0.05) (Figure 7B).We combined both

datasets, and then subjected them to KEGG pathway and GO

enrichment analyses. The regulation of DCBLD2-related genes

was evaluated by biological processes, Cellular Components and

molecular function.With regards to biological processes, these genes

were mainly involved in peptidyl-tyrosine phosphorylation, positive

regulation of cell migration, transmembrane receptor protein

tyrosine kinase signalling pathway, and protein

autophosphorylation, among others (Figure 7C). For cellular

components, DCBLD2-related proteins were mainly located in

the cell surface and plasma membrane and affected focal

adhesion (Figure 7D). For molecular function, most of these

genes mainly regulated the activity of various kinases and

receptors, such as transmembrane receptor protein tyrosine

kinase, protein tyrosine kinase, Ras guanyl-nucleotide exchange

factor, vascular endothelial growth factor-activated receptor, and

fibroblast growth factor-activated receptor, among others

(Figure 7E). KEGG pathway data suggested that DCBLD2

regulates the Rap1, PI3K-Akt, and Ras signalling pathways

during tumor pathogenesis (Figure 7F).

Discussion

Reported literature has revealed that DCBLD2 influences the

emergence and progression of multiple diseases, including cancer

(Kikuta et al., 2017; He et al., 2020; Alhamoudi et al., 2021; Coppo

et al., 2021; Feng et al., 2021). Moreover, DCBLD2 has been found to

interact with the receptor tyrosine kinases EGFR, VEGFR, PDGFR,

and INSR (Nie et al., 2013; Feng et al., 2014; Schmoker et al., 2019;

Schmoker et al., 2020). Currently, no study has investigated whether

DCBLD2 regulates the immunemicroenvironment and pathogenesis

of tumors from the pan-cancer landscape. In our study, 39 types of

tumors were obtained from the TCGA data. The association between

DCBLD2 and tumor stage, prognosis, pathway activity, immune

escape, and drug sensitivity was confirmed.

First, we investigated the oncogenic action of DCBLD2 in total

tumor types from TCGA data. Gene differential expression analysis

revealed that DCBLD2 mRNA levels were high in nearly all TCGA

cancer types, including GBM, GBMLGG, LUAD, COAD,

COADREAD, STES, KIRP, HNSC, LIHC, THCA, and CHOL.

Furthermore, DCBLD2 mRNA levels were linked to tumor stage

in CHOL, HNSC, KIRP, LUSC, and THCA. Prognostic analysis of

gene expression in 16 tumor types, including GBMLGG, LGG,

LUAD, KIPAN, STAD,HNSC, GBM, KIRC, COAD, COADREAD,

LIHC, MESO, PAAD, BLCA, ACC, and KICH, revealed that high

DCBLD2 expression was related to a shorter OS. We also looked at

the effect of DCBLD2 expression on DSS and DFS, and the findings

showed that high expression of DCBLD2 causes poor prognosis in a

variety of tumors. The findings demonstrated that DCBLD2 can

promote the occurrence and deterioration of multiple tumors, and it

has the potential to be a biomarker to predict the prognosis of

patients from the perspective of pan-cancer. Moreover, there are

some contradictions in this result. For example, this gene was

expressed at lower levels in tumor tissues of KIRC relative to

normal tissues. However, when DCBLD2 expression was

upregulated in KIRC, OS was shortened in these patients. These

differences presented in individual tumors also deserve further

studies to explore them in-depth.

Following the confirmation of the broad-spectrum effect of

DCBLD2 on tumor prognosis, we sought to investigate the

mechanism underlying this effect. In this view, we analyzed the

relationship between DCBLD2 expression and cancer-related

pathway activity at the pan-cancer level, revealing that

DCBLD2 activated EMT signalling in 31 different types of

tumors. This result is consistent with reported clinical and

preclinical studies that DCBLD2 mediates tumor metastasis in

colorectal cancer and lung adenocarcinoma by stimulating EMT

(He et al., 2020; Chen et al., 2021). The evaluation of the

association between DCBLD2 expression and the key regulators

of EMT signalling in all tumors using TCGA data revealed

significant positive correlations between DCBLD2 expression

and these genes in the majority of tumors. Moreover, mRNA

levels of DCBLD2 were correlated with the N stage. DCBLD2

expression was higher in patients with more severe lymph node

metastasis in CHOL, COAD, HNSC, KIRP, and THCA.

Previous research has shown that EMT can not only increase

tumor cell migration and invasive but also initiate carcinogenic

changes in the tumor microenvironment. For example, studies have

reported that over-expression of EMT signal regulators (such as

TWIST1 and MMPs) can promote immune infiltration in TME,

which promotes tumor cell immune escape (Terry et al., 2017; Singh

and CHAKRABARTI, 2019) Tumor immune escape is a major

contributor to tumor malignancy, poor prognosis, and treatment

failure (Whiteside, 2008; Tang et al., 2016; Wu and DAI, 2017).

Tumor infiltration into immune cells, on the one hand, causes T cell

dysfunction, promotes tumors to evade the killing effect of the

immune system, and ultimately results in tumor progression,

metastasis, and chemotherapy resistance (Yu et al., 2009; Man

et al., 2013). Besides, tumors can avoid immune killing via the

T cell exclusion mechanism, which means that tumors prevent

immune cell infiltration. T cell exclusion relies on

immunosuppressive cells to play a role, including CAFs, Tregs,

M2-TAMs, MDSCs, and so on (Joyce and FEARON, 2015;

Komohara et al., 2016). The present investigation found that

DCBLD2 expression was inversely related to the IPS score,

implying that high DCBLD2 expression may cause tumor

immunosuppression. Besides, we found a significant positive

correlation between DCBLD2 expression level and CAFs and

MDSCs infiltration in almost all tumors using different

algorithms. This led us to the speculation that DCBLD2 may

escape immune killing via T cell exclusion, resulting in tumor
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malignancy and metastasis. In addition, by evaluating the effect of

DCBLD2 expression on ESTIMATE score in all tumors, we

demonstrated a negative correlation between DCBLD2 expression

level with ESTIMATE score in CESC, THYM, TGCT, UVM,

and ACC.

Following the validation of the influence of DCBLD2 on

EMT and immune escape, its efficacy on the traditional

chemotherapeutic drugs and targeted drugs was further

investigated. The analysis of the relationship between

DCBLD2 expression and sensitivity to chemotherapy of all

solid tumor cells showed a positive correlation of DCBLD2

expression level in tumor cell lines with the IC50 values of

many chemotherapeutic drugs, targeted drugs, and small

molecular probes. Subsequently, we analyzed the role of

DCBLD2 expression levels on chemotherapy sensitivity in

multiple cancer datasets. It turns out that in ovarian and

breast cancer patients, high expression of the gene leads to a

reduced response to drug therapy. In recent years, PD-1/PDL-

1 inhibitor is the biggest breakthrough in the field of tumor

therapy. This immunotherapy, which aims to reactivate the

weakened immune cells of cancer patients, has achieved

obvious results (Makuku et al., 2021). Our findings also

revealed that high DCBLD2 expression levels were related

to poorer PD1 outcomes in glioblastoma and melanoma,

poorer CTLA4 outcomes in melanoma, and poorer

PDL1 outcome in the bladder. Based on the findings, we

hypothesize that high DCBLD2 expression may reduce the

efficacy of chemotherapy or targeted therapy in tumor

patients and that the gene may be a potential biomarker for

drug efficacy evaluation or new drug development. Of course,

only the correlation results of gene expression and drug

sensitivity were obtained by prediction and analysis of each

database, and it is essential to conduct further clinical trials or

mechanistic experiments to verify the above results.

For the first time, this study: 1) Examined the effect of

DCBLD2 on tumor pathological stage and prognosis from a

pan-cancer perspective and discovered that DCBLD2 has a

broad-spectrum activating effect on EMT signalling in all

tumors. 2) Analyzed the effect of DCBLD2 on tumor

immune regulation and confirmed that DCBLD2 may

escape immune killing via T cell exclusion. 3) High

DCBLD2 expression interferes with the efficacy of

traditional chemotherapeutic drugs and emerging targeted

drugs. Despite these strengths, there are some shortcomings

in this study. To begin with, there is no information in these

databases about DCBLD2 gene mutation or post-translational

modification. Methylation, phosphorylation, and ubiquitin,

for example, may all interfere with the molecular function of

DCBLD2. Secondly, we only performed bioinformatics

analysis of DCBLD2 expression, tumor stage, and prognosis

in different databases, rather than in vivo/in vitro

experiments. The study of the DCBLD2 mechanism at the

cellular and molecular levels can clarify the role of the gene.

Furthermore, this study used TCGA (RNA-seq) data, and

there is a gap with protein level studies. The innovation and

accuracy of this study would benefit more from the integration

of proteomic level analysis in the future. Finally, while we

discovered that DCBLD2 expression was related to immune

regulation in tumors, we were unable to demonstrate that

DCBLD2 impacted patient prognosis and drug efficacy via

immune regulation. In-depth clinical studies and molecular

mechanism studies focusing on DCBLD2 expression and

immune regulation in a wide variety of tumors may help to

draw a more precise conclusion.

TABLE 1 Online analysis tools used in this study.

Database Website

Protter (Omasits et al. (2014)) https://wlab.ethz.ch/protter/start/

The Human Protein Atlas (Uhlén et al. (2015)) https://www.proteinatlas.org/

GeneCards (Safran et al. (2021)) https://www.genecards.org/

GPS-Prot (Fahey et al. (2011)) http://gpsprot.org/index.php

The Open Targets Platform (Carvalho-Silva et al. (2019)) https://platform.opentargets.org/

TIMER 2.0 (Li et al. (2020)) http://timer.cistrome.org/

TIDE (Fu et al. (2020)) http://tide.dfci.harvard.edu/

UALCAN (Chandrashekar et al. (2017)) http://ualcan.path.uab.edu/index.html

The ROC plotter (Fekete and Győrffy (2019)) http://www.rocplot.org

GEPIA 2.0 (Tang et al. (2019)) http://gepia2.cancer-pku.cn/

GSCA (Liu et al. (2018a)) http://bioinfo.life.hust.edu.cn/GSCA/

cBioPortal (Gao et al. (2013)) http://www.cbioportal.org/

STRING (Szklarczyk et al. (2021)) https://string-db.org/

DAVID (Huang et al. (2009)) https://david.ncifcrf.gov/
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Conclusion

For the first time, we performed a pan-cancer analysis of

DCBLD2, and the results revealed a was a statistically significant

association of DCBLD2 expression with pathological stage,

prognosis, immune regulation, and chemotherapeutic and

targeted drug sensitivity. Therefore, our findings indicate that

DCBLD2 is an oncogenic, immunological, and prognostic factor

and has the potential to be a biomarker for cancer diagnosis, drug

development, and prognostic analyses.
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