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Abstract Chemotherapy resistance is a critical barrier in cancer treatment. Metabolic

adaptations have been shown to fuel therapy resistance; however, little is known regarding the

generality of these changes and whether specific therapies elicit unique metabolic alterations.

Using a combination of metabolomics, transcriptomics, and functional genomics, we show that two

anthracyclines, doxorubicin and epirubicin, elicit distinct primary metabolic vulnerabilities in human

breast cancer cells. Doxorubicin-resistant cells rely on glutamine to drive oxidative phosphorylation

and de novo glutathione synthesis, while epirubicin-resistant cells display markedly increased

bioenergetic capacity and mitochondrial ATP production. The dependence on these distinct

metabolic adaptations is revealed by the increased sensitivity of doxorubicin-resistant cells and

tumor xenografts to buthionine sulfoximine (BSO), a drug that interferes with glutathione synthesis,

compared with epirubicin-resistant counterparts that are more sensitive to the biguanide

phenformin. Overall, our work reveals that metabolic adaptations can vary with therapeutics and

that these metabolic dependencies can be exploited as a targeted approach to treat

chemotherapy-resistant breast cancer.

Introduction
Therapeutic resistance is a central problem in the clinical treatment of cancer. The incidence of

breast cancer has risen to over one million new cases per year worldwide, where 20–30% of cases

are diagnosed at an advanced or metastatic stage and another 30% recur or develop metastases

(Siegel et al., 2018; Murray et al., 2012). While both adjuvant and neoadjuvant therapies have

proven effective to improve patient outcomes, not all patients respond to the same therapeutics.

Furthermore, drug resistance can manifest within months of treatment and is believed to cause treat-

ment failure in over 90% of metastatic cancers (Garrett and Arteaga, 2011; Longley and Johnston,
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2005). Consequently, due to intrinsic or acquired resistance, breast cancer patients often suffer dis-

ease progression despite drug treatment (Murphy and Seidman, 2009; Moreno-Aspitia and Perez,

2009).

In the absence of targeted therapies, chemotherapy is a standard-of-care treatment for many

aggressive breast cancers (Lebert et al., 2018). While this is efficient at killing fast-growing cells, it

can also select for resistant cells or elicit adaptations that confer resistance in surviving populations.

These may include genetic modulation of mechanisms that decrease intracellular drug concentration,

like drug export through the ATP-binding cassette (ABC) transporter family (Hembruff et al., 2008)

or lysosomal clearance (Guo et al., 2016), as well as adaptations that minimize or overcome ther-

apy-associated insults like DNA damage or reactive oxygen species (ROS) (Morandi and Indraccolo,

2017). Importantly, therapeutic agents elicit diverse resistance-conferring adaptations both across

tumor subtypes and within tumors due to genetic and metabolic heterogeneity (Caro et al., 2012;

Viale et al., 2015).

Several recent reviews have emphasized the importance of metabolic adaptations in driving or

supporting drug resistance (Morandi and Indraccolo, 2017; Viale et al., 2015; Wolf, 2014;

Bosc et al., 2017; Ashton et al., 2018). Although glycolysis is likely to remain favored in resistant

cancers undergoing hypoxia or with defective mitochondria (Xu et al., 2005; Zhou et al., 2012),

increased reliance on mitochondrial energy metabolism and oxidative phosphorylation has been

identified as a distinctive characteristic of drug resistance (Bosc et al., 2017) being central to thera-

peutic resistance in ovarian (Matassa et al., 2016), pancreatic (Viale et al., 2014), colon

(Vellinga et al., 2015), prostate (Ippolito et al., 2016), melanoma (Vazquez et al., 2013), and

breast (Lee et al., 2017) cancers, as well as large B cell lymphoma (Caro et al., 2012) and acute

(Farge et al., 2017) or chronic (Kuntz et al., 2017) myeloid leukemia.

Despite these advances in our understanding of the metabolic status of treatment-resistant can-

cers, little is known about the impact of different therapeutic drugs on the metabolic status of a

given cancer. Addressing this knowledge gap is important, as numerous monotherapy and combina-

tion therapy regimens are often available to treat each patient. Here, we show that breast cancer

cells resistant to either doxorubicin or epirubicin, two anthracycline drugs that are used interchange-

ably for breast cancer treatment (Mao et al., 2019), rely on distinct primary metabolic processes,

and that exploiting these dependencies may impair the growth of treatment resistant breast

cancers.

Results

Doxorubicin-resistant and epirubicin-resistant breast cancer cells
display distinct global metabolic alterations
As experimental models, we used well-established and published models of breast cancer therapeu-

tic resistance (Hembruff et al., 2008; Guo et al., 2016; Veitch et al., 2009; Heibein et al., 2012).

Briefly, these models were generated from human MCF-7 breast cancer cells, adapted to increasing

concentrations of either doxorubicin or epirubicin to a maximum tolerated dose of 98.1 nM (DoxR

cells) or 852 nM (EpiR cells), respectively, in a stepwise manner and over several months

(Hembruff et al., 2008; Figure 1a). Parental control cells (Control cells) were maintained in DMSO

throughout the extensive selection process (Hembruff et al., 2008; Figure 1a). At these maximally

tolerated doses, it has been shown that resistance is not simply linked to drug exclusion by the cells.

Indeed, augmenting intracellular drug levels by inhibiting ABC transporter activity in DoxR or EpiR

has little effect on cell survival, highlighting the importance of adaptation mechanisms separate from

that of the ABC transporters and independent of drug concentration (Hembruff et al., 2008).

DoxR and EpiR cells maintained in culture with a stable dose of their respective drug grew slower

than Control cells without treatment (Figure 1b), and acute exposure of Control cells to 98.1 nM of

doxorubicin had a cytostatic effect, while treatment with 852 nM epirubicin was cytotoxic

(Figure 1b,c). Finally, we verified that DoxR and EpiR cells are stably resistant, retaining their level of

resistance even after a 7-week drug holiday (Figure 1—figure supplement 1a).

In line with the chemical similarity and mechanism of action of both anthracycline drugs—nucleic

acid intercalation, topoisomerase II inhibition leading to double-strand DNA breaks and apoptosis,

and production of ROS (McGowan et al., 2017)—there was a considerable overlap in the signature
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Figure 1. Transcriptomic and metabolomic analyses uncover distinct metabolic alterations in doxorubicin and epirubicin resistant breast cancer cells,

compared to anthracycline-sensitive Control cells. (a) Model detailing stepwise generation of Control, DoxR, and EpiR breast cancer cells, as previously

described (Hembruff et al., 2008). (b) Viable cell number of anthracycline-resistant cells in the presence of drugs and anthracycline-treated Control

cells compared to untreated Control (DMSO). N = 4, ***p<0.001 Control vs Control +Dox, ##p<0.01 ###p<0.001 DoxR vs Control +Dox, †††p<0.001

Figure 1 continued on next page
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of differentially expressed genes between DoxR and EpiR cells when compared to Control cells

(Figure 1d, 56% overlap). These gene expression signatures also resemble that of human breast can-

cer tumors after epirubicin-based therapy where biopsies were taken prior to and after treatment,

consisting of four cycles of epirubicin and cyclophosphamide, followed by four cycles of docetaxel

(Figure 1—figure supplement 1b,c; GSE43816) (Gruosso et al., 2016). While the surviving tumor

fractions in this dataset cannot be assumed to be entirely treatment-resistant, they represent a close

clinical approximate of the adaptations that may occur after any anthracycline-based therapy, or as a

result of selected advantages that may promote resistance. Gene expression profiles of both DoxR

and EpiR cells significantly overlapped with that of post-treatment biopsies, when compared to the

overlap expected from random shuffling (Figure 1—figure supplement 1b,c). The overlap in the

gene expression profiles between DoxR and EpiR cells as well as that between the respective

expression profile of DoxR and EpiR cells with breast cancer patients post-treatment biopsies high-

light common mechanisms of adaptation to anthracyclines as well as the clinical relevance of the

DoxR and EpiR breast cancer cell models.

Despite these similarities, we noted that 44% of differentially expressed genes in DoxR and EpiR

cells were distinct (Figure 1d). A principal component analysis of their global gene expression pro-

files accordingly produced three discrete groups, with DoxR and EpiR diverging from each other in

the second principal component (Figure 1e). Gene Set Enrichment Analysis (GSEA) further revealed

that, although both DoxR and EpiR display enrichment in drug clearance pathways (ABC transport-

ers, lysosome) and depletion of pathways supporting proliferation (cell cycle, one carbon pool by

folate) compared to Control cells, several metabolic pathways are specifically enriched in DoxR

(pyruvate metabolism, glutathione metabolism) or EpiR (nicotinate and nicotinamide metabolism,

alanine, aspartate, and glutamate metabolism) (Figure 1f, Figure 1—figure supplement 1d).

Analysis of the global metabolite profiles of Control, EpiR, and DoxR also indicated significant dif-

ferences between all three models (Figure 1g,h). To visualize the distinct metabolic adaptations that

occur in resistance to either doxorubicin or epirubicin, we performed an integrated transcriptional

and metabolic network analysis (Sergushichev et al., 2016) of DoxR and EpiR cells compared to

parental Control cells (Figure 1i). DoxR cells displayed increased expression of glutathione pathway

genes as well as elevated levels of key glutathione metabolites (glutamate, cysteine, glutathione

disulfide), indicating a likely role of this pathway in overcoming doxorubicin-induced oxidative stress

(Figure 1i; Pilco-Ferreto and Calaf, 2016). EpiR cells showed alterations in pathways linked to pyru-

vate and glutamate metabolism, in particular through elevated transamination reactions linking glu-

tamate, alanine, and aspartate (Figure 1i).

Figure 1 continued

Control vs Control +Epi, ‡p<0.05 ‡‡‡p<0.001 EpiR vs Control +Epi (two-way ANOVA, Tukey’s multiple comparison test). (c) Viability of anthracycline-

resistant cells and treated or untreated (DMSO) Control cells after 7 days growth. N = 4, ***p<0.001 (paired Student’s t-test). (d) Venn diagram of

differentially expressed genes in DoxR or EpiR cells compared to Control cells. Legend: green (differentially expressed in DoxR only), red (differentially

expressed in EpiR only), and white (differentially expressed in both). N = 3. (e) Principal component analysis of global gene expression profiling

between Control, DoxR, and EpiR cells. N = 3. (f) Gene set enrichment analysis (GSEA) of DoxR and EpiR cells compared to Control cells (KEGG

database, N = 3). Data are shown as normalized enrichment score (NES) for DoxR and EpiR, where color designates the p-value associated with each

enrichment (from yellow at p=0.1 to red at p=0.0001) and where white bars designate non-significant enrichments (n/s, p>0.1). (g) Partial least squares

discriminant analysis of metabolite profile data between Control, DoxR, and EpiR cells. N = 6, p=0.008 (1000 permutations). (h) Volcano plot of

metabolite profile of DoxR and EpiR cells compared to Control cells (N = 6). Significant features (p<0.05, paired Student’s t-test) highlighted. (i)

Integrated metabolic network analysis of DoxR (left) and EpiR (right) cells compared to Control cells. Metabolites are represented by nodes, with

p-value represented by node size. Enzymes are represented by edges, with p-value of gene expression represented by edge thickness. Direction and

magnitude of fold changes in gene expression and metabolite abundance are represented on a yellow (depleted in resistant) to red (enriched in

resistant) color scale. Major pathways are highlighted in shaded areas. (j) Model detailing shRNA screen targeting 1215 drug target genes. Changes in

shRNA barcode abundance were measured after 7 days, and viable gene targets were ranked by p-value and fold change of target shRNA abundance.

Depleted shRNA were considered cytotoxic or cytostatic to resistant cells in the presence of drug, while enriched barcodes were considered to

promote cell proliferation or survival. (k) (left) Top five metabolic pathways identified by Gene Set Enrichment Analysis (KEGG database) of ranked

shRNA gene targets depleted in DoxR (top) and EpiR (bottom) cells. (right) GSEA plots detailing enrichment of key metabolic pathways identified in

DoxR cells (Glutathione Metabolism, top) or EpiR (Oxidative Phosphorylation, bottom). All data presented as averages ± S.E.M. (b-c).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Common and distinct pathways modulated in DoxR and EpiR cells compared to Control cells.
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In parallel to these transcriptomics and metabolomics analyses, we performed pooled shRNA

screens focused on 1215 druggable genes to identify primary vulnerabilities of DoxR and EpiR cells

(Figure 1j). In this screen, the enrichment or depletion of shRNA barcodes in each cell system is

measured over 7 days (post-integration of shRNAs); constructs whose barcodes are depleted over

this span indicate gene targets whose knockdown impairs growth and/or cell viability. Analyzing

depleted constructs via GSEA determined that DoxR cells were particularly sensitive to knockdown

of glutathione metabolism genes (GSR and GPX family genes), while EpiR cells were vulnerable to

suppression of genes involved in oxidative phosphorylation (NDUF and SDH family genes) and

methionine metabolism (MAT1A, MAT2A, MAT2B, BHMT, DNMT1; Figure 1k and Figure 1—figure

supplement 1e). In agreement with previous work (Veitch et al., 2009; Heibein et al., 2012), both

DoxR and EpiR cells were sensitive to knockdown of aldo-keto reductase family genes, which are

represented in the steroid hormone biosynthesis pathway (Figure 1k). Overall, results from the

shRNA screens are consistent with our integrated transcriptional and metabolic network analysis

(Figure 1i) and highlight distinct metabolic vulnerabilities supporting epirubicin and doxorubicin

resistance.

Doxorubicin-resistant breast cancer cells display altered glucose and
glutamine metabolism
To gain greater understanding of the reliance of anthracycline-resistant breast cancer cells on the

pathways identified in the integrated analyses above, we confirmed gene expression profiles by RT-

qPCR (Figure 2a) and performed stable isotope tracer analyses of [U-13C]-glucose (Figure 2b–d,

Figure 2—figure supplement 1a,b) and [U-13C]-glutamine (Figure 2e,f, Figure 2—figure supple-

ment 2a,b). The full kinetics of all stable isotope tracing experiments are shown in Figure 2—figure

supplements 1 and 2, in accordance with the standard practice in the field (Buescher et al., 2015).

DoxR cells exhibited significantly increased expression of anaplerotic metabolism genes (PC,

ME1, ME2), glutamine metabolism genes (SLC1A5, GLS, GLUL), and, markedly, glutathione metabo-

lism genes (GCLC, GCLM, GSS, GSR) compared to Control cells (Figure 2a). Accordingly, kinetic

tracing of glucose carbons showed that while Control and EpiR cells replenish their pools of citric

acid cycle intermediates (citrate and malate m + 2) principally through pyruvate dehydrogenase

(PDH), DoxR cells significantly favor anaplerotic pyruvate metabolism (citrate, malate, and fumarate

m + 3) through pyruvate carboxylase (PC) and/or malic enzymes (ME1/2; Figure 2d and Figure 2—

figure supplement 1a,b). Interestingly, glutamate, alanine, and serine synthesis from glucose was

decreased in DoxR cells compared to Control cells (Figure 2d and Figure 2—figure supplement

1a,b). Kinetic tracing further showed that glutamine metabolism was enriched in DoxR cells com-

pared to Control and EpiR cells, evidenced by increased labeling to glutamate, a-ketoglutarate, and

citrate (Figure 2e,f and Figure 2—figure supplement 2a,b). Reductive carboxylation of glutamine

was particularly increased in DoxR cells compared to Control and EpiR cells, as indicated by a signifi-

cant increase in m + 5 labeling to citrate (Figre 2e,f and Figure 2—figure supplement 2a,b). More

strikingly, DoxR cells largely favored the use of glutamine carbons for de novo production of gluta-

thione, evidenced by a fourfold enrichment of labeling to GSH and GSSG compared to both Control

and EpiR cells (GSH m + 5, GSSG m + 5,10; Figure 2f and Figure 2—figure supplement 2a,b). This

may also be driven in part by exchange of glutamate for cystine through the glutamate/cystine anti-

porter system (Habib et al., 2015) as DoxR cells were found to export significantly higher levels of

glutamate than both Control and EpiR cells (Figure 2—figure supplement 3a).

In agreement with these stable isotope tracing results, DoxR cells displayed a significantly higher

total intracellular glutathione concentration than EpiR cells, and both had higher values than Control

cells (Figure 2g). Both resistant lines had a significantly higher GSH:GSSG ratio than Control cells,

with DoxR cells displaying an even greater enrichment of reduced glutathione compared to EpiR

cells (Figure 2h). The elevated glutathione metabolism in DoxR cells is further supported by their

decreased NADH:NAD and NADPH:NADP ratios (Figure 2i) compared to Control cells, as the

reduced equivalent NADPH is required for the reduction of GSSG to GSH through glutathione

reductase (GSR), whose expression was increased in DoxR but not EpiR cells compared to Control

cells (Figure 2a). NADPH levels may also be depleted through the reductive carboxylation of gluta-

mine, as this pathway relies on the NADPH-dependent isocitrate dehydrogenases (IDH1/2); the

expression of IDH1 is significantly increased in DoxR cells compared to both EpiR and Control cells,

in line with their increased engagement of this pathway (Figure 2a,f). Conversely, EpiR cells
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Figure 2. Doxorubicin-resistant breast cancer cells fuel anaplerotic metabolism by altering glucose and glutamine metabolism. (a) Relative expression

of pyruvate metabolism, citric acid cycle, and glutamine and glutathione metabolism genes in DoxR and EpiR compared to Control cells. N = 3–6,

*p<0.05 **p<0.01 ***p<0.001 resistant versus Control cells (paired Student’s t-test). (b) Stable isotope tracing diagram for [U-13C]-Glucose through

glycolysis and into the citric acid cycle via pyruvate dehydrogenase (PDH, black) and adjacent pathways (gray). (c) [U-13C]-Glucose tracing into the citric

acid cycle via PDH (citrate, malate, fumarate, and aspartate m + 2, 30 min tracer) in Control, DoxR, and EpiR cells expressed as fractional enrichment.

N = 4, *p<0.05 resistant versus Control cells (paired Student’s t-test). (d) [U-13C]-Glucose tracing to glutamate (m + 2) via PDH and into the citric acid

cycle via PC or ME1/2 activity (citrate, malate, fumarate, and aspartate m + 3, 30 min tracer) in Control, DoxR, and EpiR cells expressed as fractional

enrichment. N = 4, *p<0.05 **p<0.01 resistant versus Control cells (paired Student’s t-test). (e) Stable isotope tracing diagram for [U-13C]-Glutamine

into the citric acid cycle, glutathione synthesis, and adjacent pathways. Reductive carboxylation pathway shown in gray. (f) [U-13C]-Glutamine tracing to

glutamate and into the citric cycle (2KG m + 5, citrate m + 4 and m + 5, 60 min tracer) or through to glutathione (GSH m + 3,5 and GSSG

m + 3,5,6,8,10, 4 hr tracer) in Control, DoxR, and EpiR cells expressed as fractional enrichment. N = 4, *p<0.05 ***p<0.001 resistant versus Control cells

(paired Student’s t-test). (g) Total intracellular glutathione concentration in Control, DoxR and EpiR cells. N = 4, *p<0.05 resistant vs Control cells,

#p<0.05 DoxR vs EpiR cells (paired Student’s t-test). (h) Fold change in GSH:GSSG ratio of DoxR and EpiR cells compared to Control cells. N = 4,

**p<0.01 resistant vs Control, #p<0.05 DoxR vs EpiR cells (paired Student’s t-test). (i) Fold change in NADH/NAD and NADPH/NAD ratio of DoxR and

EpiR cells compared to Control cells. N = 6, *p<0.05 **p<0.01 resistant versus Control cells (paired Student’s t-test). Data are shown on a log2 scale. (j)

Relative expression of oxidative response genes in DoxR and EpiR cells compared to Control cells. N = 4–7, *p<0.05 **p<0.01 ***p<0.001 resistant vs

Control cells (paired Student’s t-test). (k) Fold change of ROS signal in DoxR and EpiR cells compared to Control cells, detected by CM-H2DCFDA.

Figure 2 continued on next page
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displayed elevated NADH:NAD and NADPH:NADP ratios compared to Control cells (Figure 2i).

EpiR cells also did not display any significant changes in either anaplerotic pyruvate metabolism

(Figure 2d and Figure 2—figure supplement 1a,b), reductive carboxylation of glutamine, or de

novo glutathione synthesis from glutamine (Figure 2f and Figure 2—figure supplement 2a,b) when

compared to Control cells, even though they showed increased expression of glutamine metabolism

genes (Figure 2a).

Given that both DoxR and EpiR cells had a higher GSH:GSSG ratio compared to Control cells, we

further sought to determine whether these anthracycline-resistant cells displayed markers of ele-

vated oxidative stress response. Both resistant lines had increased expression of key antioxidant

genes compared to Control cells, with DoxR cells showing a higher increase in expression of many

genes (NFE2L2, NQO1, SOD2, PRDX5, CAT) compared with EpiR cells (Figure 2j). Through CM-

H2DCFDA experiments, we also determined that DoxR cells have decreased ROS signals compared

to EpiR cells, both at baseline (Figure 2k) and after H2O2 treatment (Figure 2l), while both resistant

cells had lower ROS signals than Control cells. DoxR cells likely support this greater engagement of

oxidative stress response through their increased de novo glutathione synthesis from glutamine, in

agreement with findings from the shRNA screen showing that glutathione metabolism is a specific

vulnerability in this model (Figure 1k).

Epirubicin-resistant breast cancer cells display increased oxidative
bioenergetic capacity
Given that oxidative phosphorylation was identified as a specific vulnerability for EpiR cells in the

shRNA screen (Figure 1k), we sought to determine the bioenergetic profile of these cells. Using the

Seahorse platform, we found that basal and maximal oxygen consumption rates were significantly

increased in EpiR cells, but not DoxR cells, compared to Control cells, whereas extracellular acidifica-

tion rates were not significantly different amongst the three cell lines, albeit slightly lower in EpiR

cells (Figure 3a–c). From these data, we further extrapolated the total rates of ATP production

(JATP) as well as the fraction of ATP generated through glycolysis (JATPglyc) or oxidative phosphoryla-

tion (JATPox) using published assumptions and algorithms (Mookerjee et al., 2017). Aligning with

their increased respiration, a greater proportion of ATP produced in EpiR cells was linked to oxida-

tive phosphorylation — 69%, compared to 62% and 60% for Control and DoxR cells respectively

(Figure 3d,e). However, the total ATP production rate in EpiR cells was not significantly different

than Control cells, as their glycolyic ATP production was proportionally lowered (Figure 3d). EpiR

cells also acquired a significant increase in total bioenergetic capacity (25%) compared to both Con-

trol and DoxR cells (Figure 3f,g), largely driven by increased oxidative capacity (Figure 3f) and, con-

sequently, EpiR cells have a greater reserve capacity for generation of ATP through oxidative

phosphorylation (Figure 3h). This increased capacity is further supported by elevated mitochondrial

volume in EpiR cells compared to Control or DoxR cells (Figure 3i).

Given the importance of peroxisome proliferator-activated receptor gamma coactivator 1-alpha

(PGC-1a) in mitochondrial biogenesis (Wu et al., 1999), OXPHOS (Mootha et al., 2003), glutamine

metabolism (McGuirk et al., 2013), and glutathione synthesis (Guo et al., 2018), we hypothesized

that it may play a role in the metabolic adaptations that support doxorubicin and/or epirubicin resis-

tance. Indeed, PPARGC1A expression at the mRNA (Figure 3j) and protein (Figure 3k) levels was

markedly increased in EpiR compared to Control cells, while there was a modest and non-significant

increase in DoxR compared to Control cells. mRNA expression of ERRa (ESRRA), the central tran-

scription partner of PGC-1a, was also increased in DoxR and EpiR cells compared to Control cells

Figure 2 continued

N = 3, **p<0.01 resistant vs Control cells, #p<0.05 DoxR vs EpiR cells (paired Student’s t-test). (l) Fold change of ROS signal in DoxR and EpiR

compared to Control cells, after 30-min treatment with 0.03% H2O2. N = 3, *p<0.05 **p<0.01 resistant vs Control cells (paired Student’s t-test). All data

presented as averages ± S.E.M.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. [U-13C]-glucose tracing of Control, DoxR, and EpiR breast cancer cells.

Figure supplement 2. [U-13C]-glutamine tracing of Control, DoxR, and EpiR breast cancer cells.

Figure supplement 3. Media metabolite composition of Control, DoxR, and EpiR breast cancer cells.
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Figure 3. PGC-1a is overexpressed and elevates OXPHOS capacity in epirubicin-resistant cells but is essential for sustaining growth and survival in both

doxorubicin and epirubicin resistant breast cancer cells. (a) Analysis of relative basal, leak (oligomycin), maximum (FCCP), and non-mitochondrial

(rotenone and myxothiazol) respiration, as well as after addition of monensin, in Control, DoxR, and EpiR cells. All values normalized to basal respiration

in Control cells. N = 9. (b) Quantification of coupled, uncoupled, and total Oxygen Consumption Rate (OCR) in Control, DoxR, and EpiR cells. N = 9,

**p<0.01 uncoupled #p<0.05 total, resistant vs Control cells (paired Student’s t-test). (c) Quantification of basal Extracellular Acidification Rate (ECAR) in

Control, DoxR, and EpiR cells. N = 9. (d) Quantification of ATP production rate (JATP) from oxidative phosphorylation (JATPox) or glycolysis (JATPglyc) in

Control, DoxR, and EpiR cells. N = 9, *p<0.05 JATPox #p<0.05 JATPglyc, resistant vs Control cells (paired Student’s t-test). (e) Proportion of ATP produced

by OXPHOS in Control, DoxR, and EpiR cells under basal conditions and at peak bioenergetic capacity (Max). N = 9, **p<0.01 ***p<0.001 resistant vs

Control cells, #p<0.05 ##p<0.01 ###p<0.001 Max vs Basal (paired Student’s t-test). (f) Bioenergetic space plots of Control, DoxR, and EpiR cells. Solid

points represent basal JATPglyc and JATPox values, hollow points represent theoretical maximums for JATPox (FCCP) and JATPglyc (rotenone, myxothiazol,

monensin). Dotted line arrows’ length represents flexibility of ATP production within maximum boundaries (solid lines). Area under maximum

boundaries represents the bioenergetic capacity. N = 9. (g) Fold change in bioenergetic capacity of DoxR and EpiR cells compared to Control cells.

N = 9, *p<0.05 resistant vs Control cells (paired Student’s t-test). (h) Fraction of bioenergetic capacity used under basal conditions in Control, DoxR,

and EpiR cells. N = 9, *p<0.05 resistant vs Control cells (paired Student’s t-test). (i) Quantification of mitochondrial volume as a percentage of total

cytoplasmic volume, in Control, DoxR, and EpiR cells. N = 38, **p<0.01 resistant vs Control cells (Kruskal-Wallis test and Dunn’s multiple comparisons

test). Data presented as a box plot. (j) Relative expression of PPARGC1A and PPARGC1B mRNA in DoxR and EpiR cells compared to Control cells.

N = 7, **p<0.01 ***p<0.001 resistant vs Control cells (paired Student’s t-test). (k) Immunoblots of PGC-1b, PGC-1a, and Actin protein expression in

Figure 3 continued on next page
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(Figure 3—figure supplement 1a, Giguère, 2008). Furthermore, both PGC-1a and ERRa were

found to be enriched at the promoters of key metabolic and resistance-associated genes whose

expression is modulated in DoxR or EpiR compared to Control. Specifically, they were enriched at

the promoters of genes central to glutathione metabolism (GSS, GSR), oxidative response (NQO1,

CAT, NFE2L2, HMOX2), drug efflux (ABCB1, ABCC1), anabolic pyruvate metabolism (PC), as well as

AKR1C3 and FTH1, two genes that were previously shown to be involved in doxorubicin resistance

(Figure 3—figure supplement 1b,c; Hembruff et al., 2008; Veitch et al., 2009). The promoter

enrichment of PGC-1a is notably higher in EpiR cells, aligning with its elevated expression level in

these cells (Figure 3—figure supplement 1b,c).

To test the biological significance of PGC-1a in resistant cells, we opted to knock down both

PPARGC1A and PPARGC1B in DoxR and EpiR cells (Figure 3l) to avoid potential compensation

between these two transcriptional coactivators as they regulate overlapping gene expression pro-

grams (Villena, 2015; Lin et al., 2005). Knockdown of both PPARGC1A and PPARGC1B significantly

abrogated the growth (Figure 3m) and survival (Figure 3n) of both DoxR and EpiR cells, compared

to siCTL. Also, knockdown of PGC-1s significantly reduced the expression of key glutathione metab-

olism genes in DoxR (GCLM, GSS, GSR) and EpiR (GCLM) cells, compared to siCTL (Figure 3o). Col-

lectively, these data suggest that PGC-1s play an important role in promoting resistance to

doxorubicin and epirubicin by regulating the expression of genes that contribute to resistance to

each drug.

Doxorubicin-resistant cells rely on glutamine for sustained ATP
production
Given that glutamine is a key fuel for cancer cell growth (McGuirk et al., 2013) and that DoxR cells

use glutamine for glutathione synthesis, we hypothesized that anthracycline-resistant cells may be

particularly sensitive to glutamine withdrawal. The proliferation rates of all cell lines were severely

affected by glutamine withdrawal. However, while Control cells could maintain a low level of prolifer-

ation, both DoxR and EpiR cells were unable to proliferate in the absence of glutamine (Figure 4a).

This was accompanied by a small, but significant, increase in cell death, by 5% in DoxR and 10% in

EpiR cells, compared to Control cells (Figure 4b). Comparatively, neither Control, DoxR, nor EpiR

cells were significantly affected by glucose limitation (Figure 4—figure supplement 1a).

To further quantify the impact of glutamine withdrawal on cellular metabolism, we assessed the

bioenergetics of resistant cells in the presence or absence of glutamine, through extrapolation of

JATP rates from OCR and ECAR measurements (Figure 4c, Figure 4—figure supplement 1b). After

4 hr of glutamine withdrawal, all three cell lines showed a decrease in mitochondrial ATP production,

with DoxR cells being the most affected (Figure 4d). This decrease in mitochondrial ATP production

was compensated for by an increase in ATP production through glycolysis in EpiR and Control cells,

but not DoxR cells (Figure 4e). This compensatory increase in glycolytic ATP production was suffi-

cient to maintain total ATP production (mitochondria and glycolysis) in Control and EpiR cells, while

the lack of compensatory glycolytic ATP production in DoxR cells led to a drop in their total ATP

production (Figure 4f). The fact that DoxR cells were unable to increase glycolytic ATP production

to compensate for diminished mitochondrial ATP production upon glutamine withdrawal may indi-

cate a defect in glycolytic regulation or ATP sensing (Figure 4e–f).

We also measured the maximal mitochondrial bioenergetic capacity as well as the maximal glyco-

lytic capacity of these cells (Figure 4h–j; Mookerjee et al., 2017). Strikingly, glutamine starvation

Figure 3 continued

Control, DoxR, and EpiR cells. (l) Relative expression of PPARGC1A and PPARGC1B mRNA in DoxR and EpiR 3 days after double siRNA knockdown of

PGC-1a and PGC-1b, compared to control siRNA. N = 5, *p<0.05 **p<0.01 ***p<0.001 siPGC-1a/b vs siCTL (paired Student’s t-test). (m) Growth of

DoxR and EpiR in the presence of anthracyclines (dox 98.1 nM or epi 852 nM) with double siRNA knockdown of PGC-1a and PGC-1b or control siRNA.

N = 5, **p<0.01 ***p<0.001 DoxR siPGC-1a/b vs DoxR siCTL, #p<0.05 ##p<0.01 EpiR siPGC-1a/b vs EpiR siCTL (paired Student’s t-test). (n) Cell

viability at day 6 of the growth curve shown in d. N = 5, **p<0.01 ***p<0.001 siPGC-1a/b vs siCTL (paired Student’s t-test). (o) Relative expression of

glutathione metabolism genes 3 days after double siRNA knockdown of PGC-1a and PGC-1b, compared to control siRNA. N = 5, **p<0.01 ***p<0.001

siPGC-1a/b vs siCTL (paired Student’s t-test). All data presented as averages ± S.E.M.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. PGC-1a and ERRa are enriched at the promoters of key metabolic and resistance-associated genes.
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Figure 4. Doxorubicin-resistant breast cancer cells are reliant on glutamine to sustain their OXPHOS bioenergetic capacity. (a) Growth of Control,

DoxR, and EpiR cells in glutamine-rich (4 mM) or glutamine-deprived (0 mM) conditions. Cells were differentially seeded to reach a total of 200,000 cells

at day 3 under normal growth conditions; media was then changed for glutamine-rich or glutamine-depleted media, daily (day 3–11). N = 3, *p<0.05

**p<0.01 Control cells 0 mM vs 4 mM, #p<0.05 ##p<0.01 DoxR cells 0 mM vs 4 mM, †p<0.05 ††p<0.001 EpiR cells 0 mM vs 4 mM (paired Student’s

t-test). (b) Fold change in viability of Control, DoxR, and EpiR cells after 6 days glutamine withdrawal compared to glutamine-rich (4 mM) conditions.

N = 3, *p<0.05 **p<0.01 0 mM vs 4 mM glutamine (paired Student’s t-test). (c) Seahorse analysis of basal, leak (oligomycin), maximum (FCCP), and non-

mitochondrial (rotenone and myxothiazol) oxygen consumption rates, as well as after addition of monensin, in Control, DoxR, and EpiR cells after 4 hr

glutamine withdrawal compared to glutamine-rich (4 mM) conditions, presented as relative to the basal respiration rate of Control cells in the presence

of glutamine. N = 5, *p<0.05 **p<0.01 DoxR 0 mM Gln vs DoxR 4 mM Gln, #p<0.05 EpiR 0 mM Gln vs EpiR 4 mM Gln (paired Student’s t-test). (d) Fold

change in ATP production by oxidative phosphorylation (JATPox) of Control, DoxR, and EpiR cells after 4 hr glutamine withdrawal compared to

glutamine-rich (4 mM) conditions. N = 5, #p<0.05 0 mM vs 4 mM (paired Student’s t-test). (e) Fold change in ATP production from glycolysis (JATPglyc) of

Control, DoxR, and EpiR cells after 4 hr glutamine withdrawal compared to glutamine-rich (4 mM) conditions. N = 5, ##p<0.01 0 mM vs 4 mM (paired

Student’s t-test). (f) Fold change in total ATP production rate (JATP) of Control, DoxR, and EpiR cells after 4 hr glutamine withdrawal compared to

glutamine-rich (4 mM) conditions. N = 5, *p<0.05 resistant vs Control cells (paired Student’s t-test). (g) Fold change in bioenergetic capacity of Control,

DoxR, and EpiR cells after 4 hr glutamine withdrawal compared to glutamine-rich (4 mM) conditions. N = 5, *p<0.05 **p<0.01 resistant vs Control cells,

###p<0.001 0 mM vs 4 mM glutamine. (h-j) Bioenergetic space plots of Control (h), DoxR (i), and EpiR (j) cells after 4 hr glutamine withdrawal compared

to glutamine-rich (4 mM) conditions. Solid points represent actual JATPglyc and JATPox values, hollow points represent theoretical maximums for JATPox
(FCCP) and JATPglyc (rotenone, myxothiazol, monensin). Dotted line arrows’ length represents flexibility of ATP production within maximum boundaries

(solid lines). Area under maximum boundaries represents the bioenergetic capacity. N = 5. All data presented as averages ± S.E.M.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Proliferation and bioenergetics of Control, DoxR, and EpiR cells under nutrient deprivation conditions.
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entirely abrogated the spare oxidative capacity of DoxR cells (Figure 4i, box height relative to basal

point). This significantly reduced the total bioenergetic capacity (mitochondrial and glycolytic capaci-

ties combined, Figure 4i box area, Figure 4g) of DoxR cells and their bioenergetic flexibility—the

ability to dynamically shift glycolysis and OXPHOS rates while maintaining a constant ATP produc-

tion rate (Figure 4i, dotted arrow length). Control and EpiR cells showed diminished oxidative

capacity (box height) and increased glycolytic capacity (box width) as well as no change in flexibility

after glutamine withdrawal (Figure 4h,j). However, the decrease in oxidative capacity in EpiR cells

was greater than their increase in glycolytic capacity, leading to a reduced total bioenergetic capac-

ity in the absence of glutamine (Figure 4g,j). The total bioenergetic capacity of EpiR cells remained

nevertheless greater than that of DoxR cells (Figure 4g). Taken together, these data show that gluta-

mine is specifically important for doxorubicin resistant breast cancer cells, not only for glutathione

synthesis but also for mitochondrial ATP production.

Independently-derived models of doxorubicin- and epirubicin-resistance
confirm their respective dependance on glutathione metabolism and
oxidative phosphorylation
To independently confirm the distinct metabolic adaptations to doxorubicin and epirubicin of the

well-characterized cells in this study (Hembruff et al., 2008), we generated new resistant cell lines

from drug-naive MCF-7 cells over the course of 8 months, following a similar step-wise process and

up to a common end-point dose of 100 nM doxorubicin (D100 cells) or epirubicin (E100 cells;

Figure 5a). Matched parental control (Ctl) cells were maintained in 0.1% DMSO through parallel pas-

sages (Figure 5a). Importantly, while we sought to confirm the distinct metabolic adaptations to

each drug, it was expected that there would be some variability between these independently

derived resistant cells and the cells used in the rest of study given that cancer cells may engage dif-

ferent adaptation strategies to develop resistance to chemotherapy (Edwardson et al., 2013).

As seen in DoxR and EpiR cells (Figure 2), key oxidative response genes (NFE2L2, NQO1) as well

as GLS and IDH1 were significantly overexpressed in both D100 and E100 cells, while only D100 cells

exhibited significant overexpression of glutathione metabolism genes (GCLC, GCLM, GSS, GSR)

compared to parental control (Ctl) cells (Figure 5b). Accordingly, stable isotope tracing analyses

confirmed that D100 have significantly increased de novo synthesis of glutathione from glutamine

compared to Ctl cells, whereas it was significantly decreased in E100 cells (Figure 5c and Figure 5—

figure supplement 1a). D100 cells also displayed a lower ROS signal than E100 cells, both at base-

line (Figure 5d) and after H2O2 treatment (Figure 5e), while both resistant cells had lower ROS sig-

nals than Ctl cells.

Similar to EpiR cells (Figure 3), E100 cells also had significantly higher expression of PPARGC1A

(Figure 5b), along with increased oxygen consumption and extracellular acidification rates, increased

total ATP production rates, increased basal and maximum oxidative ATP production rates (JATPox),

as well as greater bioenergetic capacity compared with Ctl cells (Figure 5—figure supplement 1b,c

and Figure 5f–i). Interestingly, and in contrast to DoxR cells, D100 cells displayed a significant

increase in the expression of PPARGC1A (Figure 5b), as well as elevated maximum oxidative ATP

production rate and bioenergetic capacity compared to Ctl (Figure 5g–i). Despite these differences

in bioenergetics between the two cell models of doxorubicin resistance, these results confirm that

epirubicin resistant cells display higher oxidative capacity than doxorubicin-resistant

cells (Figure 5g–h).

Overall, these independently derived cell models of doxorubicin and epirubicin resistance broadly

replicate the central findings of the manuscript, namely that doxorubicin-resistant cells have an ele-

vated usage of glutamine for glutathione synthesis and that epirubicin-resistant cells display

markedly increased OXPHOS capacity. Furthermore, given that the independently derived cell lines

were selected to a common end-point dose of 100 nM of doxorubicin or epirubicin, these data fur-

ther demonstrate that these metabolic adaptations are specific to the drug and not the dose.

Tailored metabolic adaptations underpinning resistance to doxorubicin
and epirubicin lead to primary actionable vulnerabilities
Despite some similar mechanisms supporting resistance to doxorubicin and epirubicin in breast can-

cer cells, our results have thus far shown that drug-dependent dominant metabolic adaptations arise

McGuirk et al. eLife 2021;10:e65150. DOI: https://doi.org/10.7554/eLife.65150 11 of 29

Research article Cancer Biology

https://doi.org/10.7554/eLife.65150


Figure 5. Independently derived resistant models confirm specific metabolic adaptations to doxorubicin and epirubicin. (a) Model detailing generation

of breast cancer cells resistant to increasing concentrations of anthracyclines, to a final stable extracellular concentration of 100 nM of doxorubicin

(D100) or epirubicin (E100). Control cells (Ctl) were maintained in DMSO in parallel passages. (b) Relative expression of PPARGC1A and selected

metabolic, glutathione, and oxidative response genes in D100 and E100 compared to Ctl. N = 3–6. *p<0.05 resistant vs Ctl cells (paired Student’s

t-test). (c) [U-13C]-Glutamine tracing to glutamate and into the citric cycle (2 KG m + 5, citrate m + 4 and m + 5, malate m + 3, 2 hr tracer) or through to

glutathione (GSH m + 5 and GSSG m + 5,10, 4 hr tracer) in Ctl, D100, and E100 expressed as fractional enrichment. N = 3–5, *p<0.05 **p<0.01

***p<0.001 resistant vs Ctl cells (paired Student’s t-test). (d) Fold change of ROS signal in D100 and E100 cells compared to Ctl cells, detected by CM-

H2DCFDA staining. N = 5, **p<0.01 resistant vs Control cells, #p<0.05 D100 vs E100 (paired Student’s t-test). (e) Fold change of ROS signal in D100 and

E100 compared to Ctl cells, after 30 min treatment with 0.03% H2O2. N = 5, **p<0.01 resistant vs Control cells, #p<0.05 D100 vs E100 (paired Student’s

t-test). (f) Quantification of ATP production (JATP) from oxidative phosphorylation (JATPox) or glycolysis (JATPglyc) in Ctl, D100, and E100. N = 5, *p<0.05

Figure 5 continued on next page
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in resistant cells. Indeed, resistance to doxorubicin is linked to glutathione metabolism, whereas

resistance to epirubicin is tied to enhanced mitochondrial bioenergetic capacity. To further demon-

strate the importance of these tailored metabolic adaptations, we sought to determine whether

these primary vulnerabilities are targetable.

Using the biguanide phenformin, we assessed if epirubicin-resistant cells are specifically sensitive

to inhibition of OXPHOS. As expected, phenformin had a strong and dose-dependent effect on the

growth of drug-naı̈ve (Control and Ctl) breast cancer cells (Figure 6a,b). Epirubicin-resistant cells

(EpiR and E100) were similarly vulnerable to phenformin in a dose-dependent manner, whereas

doxorubicin-resistant (DoxR and D100) cells were only mildly responsive to the drug; both epirubi-

cin-resistant cells were significantly more sensitive to phenformin than their doxorubicin-resistant

counterparts (Figure 6a,b).

Next, given that doxorubicin-resistant cells display elevated glutathione metabolism and that

they rely on glutamine to fuel glutathione synthesis, we explored this pathway for therapeutic inter-

vention through targeted therapy with buthionine sulfoximine (BSO), an inhibitor of the catalytic sub-

unit of glutamate-cysteine ligase (GCLC) (Drew and Miners, 1984). Both doxorubicin-resistant cell

models (DoxR and D100) were acutely and specifically sensitive to BSO treatment in vitro (Figure 6c,

d). BSO was highly effective in reducing proliferation of DoxR cells even at the lowest dose tested

(50 mM, 60% reduction in viable cell count), while having little to no effect on Control and EpiR cells

at that concentration (Figure 6c). These results were further replicated in D100 cells, which were sig-

nificantly more sensitive to BSO than Ctl and E100 cells (Figure 6d).

Given the potency of BSO treatment in vitro, we explored its effectiveness in vivo by injecting

DoxR and EpiR cells into opposing mammary fat pads of immunocompromised mice, supplemented

with subcutaneous estrogen in order to promote tumor growth. Once DoxR tumors reached ~100

mm3, mice were divided into two groups and treated daily by intraperitoneal injection with either

450 mg/kg of BSO or with vehicle (PBS), for 20 days (Figure 6e). While all EpiR tumors grew to a

larger size than DoxR tumors before the start of treatment, both tumor types similarly doubled in

size over the 20 days when treated with vehicle (from 100 mm3 to 200 mm3 for DoxR, from 325 mm3

to 650 mm3 for EpiR, Figure 6f,g). Daily BSO treatment significantly reduced the growth of DoxR

tumors, which only increased in size by a factor of 30%, while the growth of EpiR tumors were unaf-

fected (Figure 6f,g). Tumor excision after 20 days of treatment further confirmed this result

(Figure 6e). Collectively, these data highlight that despite common adaptations to chemotherapeu-

tics, distinct primary metabolic vulnerabilities arise in doxorubicin and epirubicin resistance, which

can be targeted through metabolic interventions to impair drug-resistant tumor growth (Figure 6h).

Discussion
Whereas most studies on therapeutic resistance have focused on single agents or multi-drug resis-

tance, our study presents an unprecedented side-by-side comparison of the metabolic adaptations

driving resistance to distinct therapeutic agents within the same drug class. Here, we show that two

anthracycline drugs, doxorubicin and epirubicin, elicit different actionable primary metabolic adapta-

tions that support therapeutic resistance and breast cancer cell survival.

Specifically, our findings indicate that doxorubicin-resistant, but not epirubicin-resistant, cells rely

on elevated usage of glutamine for de novo glutathione synthesis. This metabolic dependency can

be targeted, as demonstrated by the fact that doxorubicin-resistant cells and tumors are significantly

Figure 5 continued

JATPox #p<0.05 JATPglyc †p<0.05 JATP, resistant vs Ctl cells (paired Student’s t-test). (g) Quantification of ATP production by OXPHOS (JATPox) in Ctl, D100

and E100 cells under basal conditions and at peak bioenergetic capacity (Max). N = 5, *p<0.05 resistant vs Ctl cells, ##p<0.01 E100 vs D100 (paired

Student’s t-test). (h) Bioenergetic space plots of Ctl, D100, and E100. Solid points represent actual JATPglyc and JATPox values, hollow points represent

maximums for JATPox (FCCP) and JATPglyc (rotenone, myxothiazol, monensin). Length of dotted line arrows represents flexibility of ATP production within

maximum boundaries (solid lines). Area under maximum boundaries represents the bioenergetic capacity. N = 5. (i) Fold change in bioenergetic

capacity of D100 and E100 compared to Ctl. N = 5 *p<0.05 **p<0.01 resistant vs Ctl cells (paired Student’s t-test). All data presented as averages ± S.E.

M.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Supporting information for independently derived resistant models.
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Figure 6. Tailored metabolic adaptations underpinning resistance to doxorubicin and epirubicin lead to primary actionable vulnerabilities in vitro and in

vivo. (a) Relative viable cell count of Control, DoxR, and EpiR cells after 3 days treatment with a combination of phenformin and their respective drug

(DMSO, 98.1 nM doxorubicin, or 852 nM epirubicin). Data are shown as relative viable cell count of phenformin-treated cells compared to cells treated

with vehicle (water). N = 4, *p<0.05 **p<0.01 ***p<0.001 resistant vs Control cells, #p<0.05 DoxR vs EpiR cells (paired Student’s t-test). (b) Relative

viable cell count of Ctl, D100, and E100 cells after 3 days treatment with a combination of phenformin and their respective drug (DMSO, 100 nM

doxorubicin, or 100 nM epirubicin). Data are shown as relative viable cell count of phenformin-treated cells compared to cells treated with vehicle

(water). N = 4, **p<0.01 ***p<0.001 resistant vs Ctl cells, ***p<0.001 D100 vs E100 cells (paired Student’s t-test). (c) Relative viable cell count of Control,

DoxR, and EpiR cells after 3 days treatment with a combination of buthionine sulfoximine (BSO) and their respective drug (DMSO, 98.1 nM doxorubicin,

or 852 nM epirubicin) after 7 weeks of drug holiday. Data are shown as relative viable cell count of BSO-treated cells compared to cells treated with

vehicle (water). N = 3, **p<0.01 ***p<0.001 resistant vs Control cells, ##p<0.01 ###p<0.001 DoxR vs EpiR cells (paired Student’s t-test). (d) Relative

viable cell count of Ctl, D100, and E100 cells after 3 days treatment with a combination of BSO and their respective drug (DMSO, 100 nM doxorubicin,

or 100 nM epirubicin). Data are shown as relative viable cell count of BSO-treated cells compared to cells treated with vehicle (water). N = 3, **p<0.01

resistant vs Control cells, #p<0.05 ##p<0.01 ###p<0.001 D100 vs E100 cells (paired Student’s t-test). (e) Picture of end-point DoxR and EpiR tumors after

70 days of growth in the opposing mammary fat pads of NOD Scid Gamma mice supplemented twice weekly with subcutaneous injection of 5 mg

estrogen, followed by 20 days with daily intraperitoneal injection of either 450 mg/kg BSO or vehicle (PBS). (f) Volume of DoxR and EpiR tumors

measured over 20 days with daily treatments of either 450 mg/kg BSO or vehicle (PBS) by intraperitoneal injection. Data are shown as tumor volume on

day 0, 6, 13, and 20. N = 4–5, *p<0.05 BSO vs vehicle (two-way ANOVA, Sidak’s post-hoc test). (g) Fold change in DoxR and EpiR tumor volumes after

20 days of daily treatment with either 450 mg/kg BSO or vehicle (PBS) by intraperitoneal injection. Data are shown as fold changes for individual

tumors, relative to baseline tumor volume at day 0 (dotted line). The average fold change for each condition is shown by horizontal lines. N = 4–5,

*p<0.05 BSO vs vehicle (Student’s t-test). (h) Schematic of common adaptation mechanisms and distinct primary metabolic dependencies in

anthracycline resistant breast cancer cells. Doxorubicin and epirubicin both induce production of reactive oxygen species (ROS) and intercalate nucleic

acids and inhibit topoisomerase II, leading to double-strand DNA breaks. Both doxorubicin- and epirubicin-resistant cells engage oxidative response,

drug metabolism, and drug efflux pathways to overcome these drug mechanisms, and both are dependent on expression of PGC-1a for their survival.

PGC-1a-regulated pathways may further underpin distinct and context-dependent metabolic adaptations to either drug. Compared to drug-sensitive

control cells, doxorubicin-resistant cells rely on glutamine for de novo glutathione (GSH) synthesis and for mitochondrial ATP production, while

epirubicin-resistant cells display elevated mitochondrial content, oxygen consumption rate (OCR), and oxidative bioenergetic capacity. These distinct

Figure 6 continued on next page
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more sensitive than epirubicin-resistant cells to therapeutic intervention with BSO, which interferes

with glutathione synthesis. Given that side effects such as cardiotoxicity limit the use of anthracy-

clines in patients to a restrictive cumulative total lifetime dose, there is important clinical relevance in

reducing tumor growth in anthracycline-resistant patients through a secondary treatment option

such as BSO without administrating additional anthracycline chemotherapy (Barrett-Lee et al.,

2009). In contrast to doxorubicin-resistant cells, epirubicin-resistant cells display a drastic increase in

OXPHOS and oxidative bioenergetic capacity and were more sensitive than doxorubicin-resistant

cells to treatment with phenformin. This aligns with the compendium of evidence showing that

dependence on mitochondrial energy metabolism and oxidative phosphorylation is a widespread

characteristic of drug resistance, across several cancer types and therapeutic interventions

(Caro et al., 2012; Bosc et al., 2017; Matassa et al., 2016; Viale et al., 2014; Vellinga et al.,

2015; Ippolito et al., 2016; Vazquez et al., 2013; Lee et al., 2017; Farge et al., 2017;

Kuntz et al., 2017; Thompson et al., 2017).

Our findings are particularly interesting given the structural similarity of doxorubicin and epirubi-

cin. In line with this, breast cancer cells resistant to either drug displayed well-known mechanisms of

resistance to anthracyclines, including increased drug efflux, lysosomal activity, and oxidative stress

response (Hembruff et al., 2008; Guo et al., 2016). Their different metabolic state may, in part, be

due to minor structural differences between the two drugs, leading to distinct on- and off-target

effects under sustained treatments with either drug (Salvatorelli et al., 2006). For example, while

cardiotoxicity is a common side effect of sustained anthracycline treatment, epirubicin has been

shown to induce less cardiotoxic effects than doxorubicin, even if both drugs display equivalent

response rate to treat breast cancer (Mao et al., 2019). Given that cardiotoxicity is linked to oxida-

tive stress, it is possible that breast cancer cells treated with doxorubicin may face a greater oxida-

tive challenge over the course of treatment than those treated with epirubicin, which aligns with a

greater dependence of doxorubicin-resistant cells on de novo glutathione synthesis

(Salvatorelli et al., 2006). Accordingly, doxorubicin-resistant cells also displayed much greater

engagement of oxidative stress response than epirubicin-resistant cells. Interestingly, epirubicin-

resistant cells displayed an elevated level of uncoupled respiration, which may represent an alternate

approach to minimizing ROS production in this model (Echtay et al., 2002; Brand, 2000). Indeed,

targeting uncoupling proteins has previously been shown to sensitize multi-drug-resistant leukemia

cells to both doxorubicin and epirubicin (Mailloux et al., 2010).

Crucially, our study further upholds the viability of exploiting metabolic alterations associated

with resistance to chemotherapeutic drugs to increase their success rate (Zaal and Berkers, 2018).

This strategy has already shown success in numerous cancers; for example, inhibition of amino acid

recycling sensitized neuroblastomas to cisplatin (Gunda et al., 2020), fueling histidine catabolism via

histidine supplementation increases sensitivity of leukemic xenografts to methotrexate

(Kanarek et al., 2018), and the glutaminase inhibitor CB-839 synergistically enhances the cytotoxic-

ity of carfilzomib in treatment-resistant multiple myeloma cells, notably through its inhibition of glu-

tamine-fueled mitochondrial respiration (Thompson et al., 2017).

It is also notable that the master regulator of mitochondrial metabolism PGC-1a regulates a sig-

nificant number of pathways implicated in therapy resistance, including OXPHOS (Mootha et al.,

2003), oxidative stress response (St-Pierre et al., 2006), glutamine metabolism (McGuirk et al.,

2013), and glutathione metabolism (Guo et al., 2018). The context-dependent roles of PGC-1a may

therefore underpin specific metabolic vulnerabilities in both doxorubicin and epirubicin resistance in

breast cancer. Accordingly, both doxorubicin- and epirubicin-resistant cells were sensitive to PGC-

1a knockdown in our study. This aligns with the emerging role of PGC-1a in driving bioenergetic

flexibility and metabolic plasticity in the face of survival challenges involved in cancer progression

(Tan et al., 2016; McGuirk et al., 2020; Andrzejewski et al., 2017); advanced cancers need to be

adaptable, and thereby the context-dependent adaptations conferred by PGC-1a could further con-

tribute to the difficulty in treating advanced cancers. Indeed, similar to OXPHOS and mitochondrial

Figure 6 continued

primary metabolic dependencies are actionable, as epiribucin-resistant cells are more sensitive to phenformin treatment than doxorubicin-resistant

cells, and the latter are specifically sensitive to inhibition of glutathione synthesis by buthionine sulfoximine (BSO) both in vitro and in vivo. Unless

otherwise noted, all data presented as averages ± S.E.M.
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energy metabolism, PGC-1a has been shown to be implicated in drug resistance across cancer types

and through various mechanisms (see Supplementary file 1). While therapeutically targeting tran-

scription factors that relay PGC-1a effects may represent an effective strategy in some cases

(De Vitto et al., 2019; Deblois et al., 2016), attempts to directly target PGC-1a have unfortunately

shown little success thus far.

Ultimately, targeting global regulators of metabolic plasticity like PGC-1a may be promising as a

broad strategy for treatment of therapeutic-resistant cancers. However, targeted interventions

exploiting the primary metabolic dependencies associated to specific resistant cancers—such as

using BSO as a therapeutic intervention for doxorubicin-resistant breast cancer—may represent a

more immediate and effective approach.

Materials and methods

Tissue culture and generation of stable cell lines
MCF-7CC, MCF-7DOX-2, and MCF-7EPI cells were obtained from Dr. Amadeo Parissenti

(Hembruff et al., 2008). Briefly, MCF-7DOX-2 and MCF-7EPI were selected over 12 sequential dose

increases with their respective anthracycline drug (doxorubicin, epirubicin) to maximal doses of 98.1

nM and 852 nM (Hembruff et al., 2008). MCF-7CC cells were maintained in 0.1% DMSO through

parallel passages (Hembruff et al., 2008). For simplicity, MCF-7CC, MCF-7DOX-2, and MCF-7EPI cells

are referred to only as Control, DoxR, and EpiR in this study. Cells were cultured in high-glucose Dul-

becco’s Modified Eagle’s Medium (DMEM, Wisent #319–005 CL), 10% FBS, and penicillin/streptomy-

cin at 37˚C and 5% CO2. New resistant MCF-7 models were derived from MCF-7 cells obtained from

the American Type Culture Collection (ATCC) and cultured in similar media under increasing doses

of doxorubicin (Abmole Biosciences #M1969) or epirubicin (Sigma Aldrich #E9406) from 0.1 nM to a

final dose of 100 nM, over the course of 8 months. Ctl cells were maintained in 0.1% DMSO through

parallel passages. All cells were maintained in culture with a constant dose of their respective drug

or DMSO control, at all times unless otherwise specified.

Proliferation and viability
Proliferation assays were performed by seeding 200,000 cells in 35 mm plates and growing in full

media as described above. For glutamine withdrawal experiments, media was replaced on day three

with glutamine-free media or glutamine-free media re-supplemented with 4 mM glutamine. To

determine cell counts, cells were washed, trypsinized, and counted using a TC10 automated cell

counter (Bio-Rad). Viability was determined by exclusion of trypan blue dye.

Mouse experiments
Four million DoxR or EpiR cells were injected into opposing mammary fat pads of NOD Scid Gamma

mice supplemented twice weekly with subcutaneous injection of 5 micrograms of estrogen in corn

oil. Seventy days after tumor cell injection mice were divided into two groups and treated daily by

intraperitoneal injection with either 450 mg/kg of L-Buthionine-sulfoximine (Sigma Aldrich #B2515)

or vehicle (PBS). Tumor volume was measured weekly using caliper measurements and the

formula length � width2 � p

6
.

Gene expression
Total RNA from cultured cells was extracted using the Aurum Total RNA Mini Kit (Bio-Rad, Missis-

sauga, Canada) and was reverse transcribed with iScript cDNA Synthesis kit (Bio-Rad). mRNA expres-

sion analyses by real-time PCR were performed using iQ SYBR Green Supermix (Bio-Rad) and gene-

specific primers with the MyiQ2 Real-Time Detection System (Bio-Rad). Values were normalized to

TATA-binding protein (TBP) expression. All primer sequences are listed in Supplementary file 2.

Gene expression profiling, enrichment analyses, and ranked gene list
comparisons
Gene expression profiling of Control, DoxR, and EpiR cells was performed with Genome Québec

(Montreal, Canada) using the Affymetrix Human Gene 2.0 ST Array (HT) system, for which RNA was

isolated as described above. The .CEL files were analyzed and pre-processed using the Affymetrix
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Transcriptome Analysis Console software (RRID:SCR_016519). These data have been deposited in

NCBI’s Gene Expression Omnibus (RRID:SCR_005012, Edgar et al., 2002) and are accessible

through GEO Series accession number GSE125187 (https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE125187). Gene Set Enrichment Analysis (GSEA, RRID:SCR_003199) was performed on

ranked gene lists, where ranks were designated by the sign of the fold change multiplied by the log-

arithm of the p-value (Subramanian et al., 2005).

To compare with patient data, differential expression analyses of this microarray and a publicly

available patient dataset (GEO accession GSE43816, Gruosso et al., 2016) were performed using

the R (RRID:SCR_001905) Bioconductor (RRID:SCR_006442) package ‘LIMMA’ and lists were ranked

by t-test statistics (R Development Core Team, 2019; Phipson et al., 2016). There are 34,744 and

20,474 genes in the cell line and GEO data set, respectively. 19,038 genes appeared in both data

sets. To compare the observed size of overlap between two ordered gene lists to the expected

overlap when two lists are independent, we followed the methods outlined by Yang et al., 2006.

Specifically, we measured the expected overlap by randomly shuffling the rank order of one list and

measuring the size of overlap, repeating this over 1000 permutations. The R Bioconductor (RRID:

SCR_006442) package ‘OrderedList’ was used to calculate the expected overlap.

shRNA screen for drug target genes
A list of 1215 genes related to clinically-approved drugs was generated based on DrugBank and The

NCGC Pharmaceutical Collection (Huang et al., 2011). A library with 7847 shRNAs targeting these

genes (FDA library) was constructed from the arrayed and sequence-verified RNAi Consortium (TRC)

human genome-wide shRNA collection, provided by The McGill Platform for Cell Perturbation

(MPCP) of the Rosalind and Morris Goodman Cancer Research Centre and Biochemistry Department

at McGill University. This druggable library consists of 11 plasmid pools. Lentiviral supernatants were

generated as described at http://www.broadinstitute.org/rnai/public/resources/protocols. DoxR and

EpiR cells were infected separately by the 11 virus pools. Cells were then pooled and plated at

500,000 cells per 15 cm dish with 1000 times of coverage in presence of doxorubicin or epirubicin

(respectively), for a total of 32 dishes per cell line. Genomic DNA was extracted from the remaining

cells in the original pool, as well as in a pool of all 32 dishes after 7 days of growth, and sequencing

libraries were built as previously described (Huang et al., 2012). shRNA stem sequence was segre-

gated from each sequencing reads and aligned to TRC library. The matched reads were counted,

normalized, and analyzed in R (RRID:SCR_001905) using MAGeCK (v0.5.5) (Li et al., 2014). Hits

were ranked by p-value from most depleted to most enriched in DoxR or EpiR after 7 days, and

ranked lists were further analyzed for over-represented pathways using Gene Set Enrichment Analy-

sis (RRID:SCR_003199, Mootha et al., 2003; Subramanian et al., 2005).

Stable isotope tracer analysis
Stable isotope tracer analyses (SITA) were performed in GC/MS as previously described

(McGuirk et al., 2013). Briefly, cells were seeded in 6-well dishes to achieve 70–80% confluency

after 48 hr. Media was then replaced by DMEM without glucose, sodium pyruvate or L-glutamine

(Wisent #319–062) supplemented with 10% dialyzed FBS, 25 mM glucose, 1X sodium pyruvate, and

4 mM glutamine for 2 hr to equilibrate metabolism. Media was further changed to equivalent

labeled media made with either 25 mM [U-13C]-glucose or 4 mM [U-13C]-glutamine for the indicated

time points. DMSO, doxorubicin, or epirubicin were present in the media throughout. Cells were

washed twice with saline at 4˚C, quenched in 80% HPLC-grade methanol at �80˚C, sonicated, and

centrifuged. Supernatants were supplemented with internal control (750 ng myristic acid-D27) and

dried in a cold trap overnight (Labconco) at �1˚C. Pellets were solubilized in 10 mg/mL methoxy-

amine-HCl in pyridine, incubated 30 min at 70˚C, and derivatized with N-tert-Butyldimethylsilyl-N-

methyltrifluoroacetamide (MTBSTFA) for 1 hr at 70˚C. 1 mL was injected into an Agilent 5975C GC/

MS in SCAN mode and analyzed using Chemstation (Agilent Techologies, RRID:SCR_015742) and

Masshunter softwares (Agilent Technologies, RRID:SCR_015040).

Tracing glutamine carbons to glutathione was done using a similar labeling method as above.

Cells were washed twice with 150 mM ammonium formate buffer in HPLC water at 4˚C, quenched in

50% HPLC-grade methanol at �20˚C on dry ice, and phase-separated using acetonitrile, water, and

dichloromethane after vigorous bead-beating and vortexing. The aqueous phase was collected and
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dried in a cold trap overnight at �1˚C. Pellets were solubilized in HPLC water and 5 mL was injected

into an Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS system coupled to ultra-high pressure liquid

chromatography (UHPLC, 1290 Infinity LC System) and analyzed using Masshunter software.

All isotopic corrections were performed using an in-house algorithm designed by SM as previ-

ously described (McGuirk et al., 2013).

Metabolomics
Steady-state metabolite abundances were determined using GC/MS and LC/MS systems, using unla-

beled media. Citric acid cycle, glycolytic intermediates, and fatty acids were measured in GC/MS as

described above. Amino acids were measured in a Q-TOF system as described above. Nucleotide

abundances were determined by washing 70–80% confluent 10 cm plates of cells with 150 mM

ammonium formate at 4˚C, quenched in 80% HPLC-grade methanol at �80˚C on dry ice, after which

the cell slurry was quickly transferred to tubes equilibrated in liquid nitrogen. After 24 hr, these were

phase-separated using water and dichloromethane after vigorous bead-beating and vortexing. The

aqueous phase was collected and flash-frozen in liquid nitrogen, then dried in a cold trap at �1˚C.

Once dry, pellets were maintained at �80˚C and solubilized in HPLC water immediately before injec-

tion into an Agilent 6430 Triple Quadrupole LC/MS system coupled to ultra-high pressure liquid

chromatography (UHPLC, 1290 Infinity LC System) separation for fast targeted analysis.

Glutathione levels were quantified using an Agilent 1100 series HPLC (Mailloux et al., 2014).

Three days post-seeding, cells grown in 6-well plates were washed twice with ice-cold PBS, flash-fro-

zen on dry ice and kept at �80˚C until further processing. Cells from parallel plates were counted for

normalization. Cells were lysed on ice for 20 min using a mix of 125 mM sucrose, 1.5 mM EDTA, 5

mM Tris, 0.5% TFA and 0.5% MPA in 50% mobile phase (10% HPLC grade methanol, 0.09% TFA –

0.2 mm filtered). Lysates were then centrifuged for 20 min at 14,000 g, 4˚C. Each sample was run in

duplicate on a Pursuit5 C18 column (150 � 4.6 mm, 5 mm; Agilent Technologies, Santa Clara, CA)

with a 1 mL/min flow rate and detected at 215 nm. Standards were diluted in the same buffer and

interpolated between the samples. All LC/MS data were analyzed using the Masshunter software

(Agilent Technologies, RRID:SCR_015040).

Media metabolite levels were determined using a BioProfile 400 Analyzer (BioNova). Briefly, 2 mL

media was collected from cells after 72 hr incubation at 37˚C in a CO2 incubator. These were centri-

fuged to remove any cell debris, and 1 mL was used to measure glucose, lactate, glutamine, gluta-

mate, NH4
+, and H+ levels. To control for natural degradation of metabolites, values were compared

to that of media incubated in parallel wells which contained no cells.

Integrated metabolic network analysis
Integrated metabolic network analysis was performed as previously described (Vincent et al., 2015)

using the Shiny GAM application (https://artyomovlab.wustl.edu/shiny/gam/; Sergushichev et al.,

2016) and visualized using Cytoscape (RRID:SCR_003032, Shannon et al., 2003). FDR was set to

�0.25 for metabolites and �3.9 for gene expression for comparison of DoxR and Control, and to

�0.1 and �3.4 respectively for comparison of EpiR and Control. Absent metabolite score was set to

�0.5 for all analyses.

ROS measurements
Cells were seeded in a 96-well dish for 48 hr prior to the experiment to achieve 75–80% confluence.

Cells were maintained under normal drug conditions throughout. After PBS wash, cells were incu-

bated with 20 mM CM-H2DCFDA (Thermo Fisher Scientific #C6827) in serum-free high-glucose

DMEM for 30 min at 37˚C, covered in foil to prevent light exposure. Control wells without CM-

H2DCFDA were supplemented with equivalent volume of DMSO. After 30 min, cells were washed

with PBS and incubated an additional 30 min with high-glucose DMEM supplemented with either

water or 0.03% (vol/vol) H2O2. Fluorescence was then measured in an Omega plate reader (BMG

LabTech) at excitation/emission wavelengths of 495/520 nm.

Immunoblots
Total proteins from cultured cells were extracted with lysis buffer (50 mM Tris–HCl pH 7.4, 1% Triton

X-100, 0.25% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA) supplemented with inhibitors (2
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mg/mL pepstatin, 1 mg/mL aprotinin, 1 mg/mL leupeptin, 0.2 mM phenylmethylsulfonyl fluoride and 1

mM sodium orthovanadate) and quantified using a BCA protein assay kit (Thermo Fisher Scientific

#PI123225). The blots were incubated according to the manufacturer’s instructions with the following

primary antibodies: PGC-1a (Calbiochem #ST1202, RRID:AB_2237237), PGC-1b (Millipore #ABC218,

RRID:AB_2891214), and Actin (Santa Cruz Biotechnology #sc-1616, RRID:AB_630836) and with

horseradish peroxidase-conjugated secondary antibodies (anti-mouse, KPL #KP-074–1806; anti-rab-

bit, KPL #KP-074–1506; anti-goat, Abcam #ab6881, RRID:AB_955236). The results were visualized

using Clarity ECL (Bio-Rad #1705060).

Respirometry, bioenergetics, and JATP calculations
Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured using a

Seahorse XFe96 Analyzer (Agilent Technologies, RRID:SCR_019545). Briefly, 10,000 cells were plated

in 100 mL of their standard growth media and, after overnight culture, washed twice with XF media

at pH 7.4, and equilibrated in XF media supplemented with 25 mM glucose, 4 mM glutamine, and

sodium pyruvate (1X) at pH 7.4 in a CO2-free 37˚C incubator for 1 hr. Three sequential measure-

ments of OCR and ECAR were taken to assay bioenergetics under basal, proton leak (1 mM oligomy-

cin, Sigma Aldrich #O4876), maximal respiration (1 mM FCCP, Sigma Aldrich #C2920), OXPHOS

inhibition (1 mM each rotenone and myxothiazol, Sigma Aldrich #R8875 and #T5580), and high glyco-

lytic ATP demand (20 mM monensin, Sigma Aldrich #M5273) conditions. ECAR data was corrected

for media buffering power as previously described (Mookerjee et al., 2016) and both OCR and

ECAR were normalized on protein levels. ATP production rates (JATP), glycolytic index, bioenergetic

capacity, and ATP supply flexibility were determined quantitatively as previously described

(Mookerjee et al., 2017). Glutamine deprivations were performed over 4 hr in supplemented XF

media as described above compared to media without supplemented glutamine, prior to measure-

ment of OCR and ECAR as described.

Immunofluorescence and quantification of mitochondrial volume
Cells were seeded onto 18 mm #1.5 glass coverslips and placed in 12-well plates overnight, then

fixed with 4% PFA for 15 min at 37˚C. Blocking and permeabilization was carried out by incubation

with PBS containing 1% BSA and 0.5% Triton X-100. Mitochondria were visualized through staining

with rabbit polyclonal anti-Tom20 antibody (Proteintech #11802–1-AP, RRID:AB_2207530) and goat

anti-rabbit secondary antibody conjugated to Alexa Fluor 568 (Thermo Fisher Scientific #A-11011,

RRID:AB_143157). Cytoplasm was visualized using HCS CellMask Green stain (Thermo Fisher Scien-

tific #H32714), and nuclei were stained with DAPI. Coverslips were mounted onto microscope slides

using ProLong Glass Antifade Mountant (Thermo Fisher Scientific #P36982) and kept at 4˚C in the

dark until imaging. Images were taken with an Axio Observer Z1 epifluorescent microscope (Zeiss),

using a 63x Plan-Apochromat oil objective. Deconvolution of images was carried out in Autoquant

X2 software (MediaCybernetics, RRID:SCR_002465) using an adaptive PSF with 10 iterations. Seg-

mentation and surface rendering of mitochondria, cytoplasm, and nuclei was performed in Imaris v8

(Bitplane, RRID:SCR_007370).

ChIP
For ChIP analyses, chromatin was prepared from Control, DoxR, and EpiR cells maintained in drug

prior harvesting. Standard ChIP was performed as described previously (Deblois et al., 2016). Quan-

tification of ChIP enrichment by real-time quantitative PCR was carried out using the LightCycler480

instrument (Roche). ChIPs are normalized against background enrichment on anti-IgG antibody ChIP

control and average enrichment on two negative control unbound regions. The antibodies used are:

anti-PGC1a (Santa Cruz Biotechnology #sc-13067, RRID:AB_2166218), anti-ERRa (Abcam

#Ab76228, RRID:AB_1523580). The ChIP primers are listed in Supplementary file 3.

siRNA knockdowns
Cells were subjected to either 40 nM control siRNA (Dharmacon #D-001810–10- 05) or a combined

40 nM pool of four siRNA specifically targeting PPARGC1A (Qiagen FlexiTube-GeneSolution

#GS10891) and four siRNA specifically targeting PPARGC1B (Qiagen FlexiTube-GeneSolution

McGuirk et al. eLife 2021;10:e65150. DOI: https://doi.org/10.7554/eLife.65150 19 of 29

Research article Cancer Biology

https://scicrunch.org/resolver/AB_2237237
https://scicrunch.org/resolver/AB_2891214
https://scicrunch.org/resolver/AB_630836
https://scicrunch.org/resolver/AB_955236
https://scicrunch.org/resolver/SCR_019545
https://scicrunch.org/resolver/AB_2207530
https://scicrunch.org/resolver/AB_143157
https://scicrunch.org/resolver/SCR_002465
https://scicrunch.org/resolver/SCR_007370
https://scicrunch.org/resolver/AB_2166218
https://scicrunch.org/resolver/AB_1523580
https://doi.org/10.7554/eLife.65150


#GS133522). Cells were transfected using Lipofectamine RNAiMax (ThermoFisher #13778–150) and

incubated for 72 hr before pursuing subsequent experiments.

Statistical analyses
All statistical analyses were performed using GraphPad Prism (GraphPad Software Inc, RRID:SCR_

002798), Microsoft Excel (Microsoft Corporation, RRID:SCR_016137), or R (R Foundation for Statisti-

cal Computing, RRID:SCR_001905 R Development Core Team, 2019).
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Appendix 1

Appendix 1—key resources table

Reagent
type
(species) or
resource Designation Source or reference Identifiers Additional information

Cell line (H.
sapiens)

MCF-7 Control,
MCF-7CC

Obtained from Dr.
Amadeo Parissenti
Hembruff et al., 2008;
DOI: 10.1186/1471-2407-8-318

Grown in 0.1% DMSO media.
Negative for mycoplasma.

Cell line (H.
sapiens)

MCF-7 DoxR,
MCF-7DOX-2

Obtained from Dr.
Amadeo Parissenti
Hembruff et al., 2008;
DOI: 10.1186/1471-2407-8-318

Resistant to 98.1 nM
doxorubicin. Negative for
mycoplasma.

Cell line (H.
sapiens)

MCF-7 EpiR,
MCF-7EPI

Obtained from Dr.
Amadeo Parissenti
Hembruff et al., 2008;
DOI: 10.1186/1471-2407-8-318

Resistant to 852 nM epirubicin.
Negative for mycoplasma.

Cell line (H.
sapiens)

MCF-7 Ctl This paper Grown in 0.1% DMSO media.
Derived from MCF-7 cells
obtained from the American
Type Culture Collection
(ATCC). Negative for
mycoplasma.

Cell line (H.
sapiens)

MCF-7 D100 This paper Resistant to 100 nM
doxorubicin. Derived from
MCF-7 cells obtained from the
American Type Culture
Collection (ATCC). Negative
for mycoplasma.

Cell line (H.
sapiens)

MCF-7 E100 This paper Resistant to 100 nM epirubicin.
Derived from MCF-7 cells
obtained from the American
Type Culture Collection
(ATCC). Negative for
mycoplasma.

Antibody Human PGC-1a
(mouse,
monoclonal)

Calbiochem Cat #: ST1202;
RRID:AB_2237237

Immunoblots, (1:1000)

Antibody Human PGC-1b
(rabbit,
polyclonal)

Millipore Cat #: ABC218
RRID:AB_2891214

Immunoblots, (1:1000)

Antibody Human Actin
(goat, polyclonal)

Santa Cruz Biotechnology Cat #: sc-1616
RRID:AB_630836

Immunoblots, (1:2000)

Antibody anti-mouse (goat,
polyclonal)

KPL Cat #: KP-074-
1806

Immunoblots, (1:10000)

Antibody anti-rabbit (goat,
polyclonal)

KPL Cat #:KP-074-1506 Immunoblots, (1:10000)

Antibody anti-goat
(donkey,
polyclonal)

Abcam Cat #: ab6881
RRID:AB_955236

Immunoblots, (1:10000)

Antibody Human Tom20
(rabbit,
polyclonal)

Proteintech Cat #:11802-1-AP
RRID:AB_2207530

Immuno-fluorescence

Continued on next page
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Appendix 1—key resources table continued

Reagent
type
(species) or
resource Designation Source or reference Identifiers Additional information

Antibody anti-rabbit
conjugated to
Alexa Fluor 568
(goat, polyclonal)

Thermo Fisher Scientific Cat #: A-11011
RRID:AB_143157

Immuno-fluorescence

Antibody Human PGC-1a
(rabbit,
polyclonal)

Santa Cruz Biotechnology Cat #: sc-13067
RRID:AB_2166218

ChIP

Antibody Human ERRa
(rabbit,
monoclonal)

Abcam Cat #: Ab76228
RRID:AB_1523580

ChIP

transfected
construct
(H. sapiens)

ON-TARGETplus
Non-targeting
Control Pool
siRNA

Dharmacon Cat #: D-001810-
10-05

40 nM pool of siRNA

transfected
construct
(H. sapiens)

ON-TARGETplus
Human
PPARGC1A
siRNA

Qiagen Cat #: FlexiTube-
Gene
SolutionGS10891

Combined 40 nM
pool of four siRNA

transfected
construct
(H. sapiens)

ON-TARGETplus
Human
PPARGC1B
siRNA

Qiagen Cat #: FlexiTube-
Gene
SolutionGS133522

Combined 40 nM
pool of four siRNA

transfected
construct
(H. sapiens)

FDA shRNA
library

The McGill Platform for Cell
Perturbation (MPCP) of the
Rosalind and Morris Goodman
Cancer Research Centre and
Biochemistry department at
McGill University

Developed by YX, GM, and SH

sequence-
based
reagent

RT-qPCR primers See Supplementary file 2

sequence-
based
reagent

ChIP primers See Supplementary file 3

commercial
assay or kit

Aurum Total RNA
Mini Kit

Bio-Rad

commercial
assay or kit

iScript cDNA
Synthesis kit

Bio-Rad

commercial
assay or kit

iQ SYBR Green
Supermix

Bio-Rad

commercial
assay or kit

BCA protein
assay kit

Thermo Fisher Scientific Cat #: PI123225

commercial
assay or kit

Seahorse XFe96
Analyzer

Agilent Technologies RRID:SCR_019545

commercial
assay or kit

BioProfile 400
Analyzer

BioNova

chemical
compound,
drug

Doxorubicin AbMole Biosciences Cat #: M1969

chemical
compound,
drug

Epirubicin Sigma Aldrich Cat #: E9406

Continued on next page
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Appendix 1—key resources table continued

Reagent
type
(species) or
resource Designation Source or reference Identifiers Additional information

chemical
compound,
drug

L-buthionine-
sulfoximine

Sigma Aldrich Cat #: B2515

chemical
compound,
drug

Phenformin Sigma Aldrich Cat #: P7045

chemical
compound,
drug

Oligomycin Sigma Aldrich Cat #: O4876

chemical
compound,
drug

FCCP (Carbonyl
cyanide 4-
(trifluoromethoxy)
phenylhydrazone)

Sigma Aldrich Cat #: C2920

chemical
compound,
drug

Rotenone Sigma Aldrich Cat #: R8875

chemical
compound,
drug

Myxothiazol Sigma Aldrich Cat #: T5580

chemical
compound,
drug

Monensin Sigma Aldrich Cat #: M5273

chemical
compound,
drug

CM-H2DCFDA Thermo Fisher Scientific Cat #: C6827

chemical
compound,
drug

Clarity ECL Bio-Rad Cat #: 1705060

chemical
compound,
drug

HCS CellMask
Green stain

Thermo Fisher Scientific Cat #: H32714

chemical
compound,
drug

Lipofectamine
RNAiMax

Thermo Fisher Scientific Cat #: 13778-50

chemical
compound,
drug

ProLong Glass
Antifade
Mountant

Thermo Fisher Scientific Cat #: P36982

software,
algorithm

Autoquant X2
software

MediaCybernetics RRID:SCR_002465

software,
algorithm

Imaris v8 Bitplane RRID:SCR_007370

software,
algorithm

GraphPad Prism GraphPad Software, Inc RRID:SCR_002798

software,
algorithm

Microsoft Excel Microsoft Corporation RRID:SCR_016137

software,
algorithm

R Project for
Statistical
Computing

R Foundation for
Statistical Computing,
(R Development Core Team,
2019)

RRID:SCR_001905

software,
algorithm

R Bioconductor DOI:10.1186/gb-2004-5-10-r80 RRID:SCR_006442

Continued on next page

McGuirk et al. eLife 2021;10:e65150. DOI: https://doi.org/10.7554/eLife.65150 28 of 29

Research article Cancer Biology

https://scicrunch.org/resolver/B2515
https://scicrunch.org/resolver/P7045
https://scicrunch.org/resolver/O4876
https://scicrunch.org/resolver/C2920
https://scicrunch.org/resolver/R8875
https://scicrunch.org/resolver/T5580
https://scicrunch.org/resolver/M5273
https://scicrunch.org/resolver/C6827
https://scicrunch.org/resolver/1705060
https://scicrunch.org/resolver/H32714
https://scicrunch.org/resolver/13778-50
https://scicrunch.org/resolver/P36982
https://scicrunch.org/resolver/SCR_002465
https://scicrunch.org/resolver/SCR_007370
https://scicrunch.org/resolver/SCR_002798
https://scicrunch.org/resolver/SCR_016137
https://scicrunch.org/resolver/SCR_001905
http://doi.org/10.1186/gb-2004-5-10-r80
https://scicrunch.org/resolver/SCR_006442
https://doi.org/10.7554/eLife.65150


Appendix 1—key resources table continued

Reagent
type
(species) or
resource Designation Source or reference Identifiers Additional information

software,
algorithm

Shiny GAM https://artyomovlab.wustl.
edu/shiny/gam/
Sergushichev et al., 2016;
DOI:10.1093/nar/gkw266

software,
algorithm

Cytoscape Shannon et al., 2003;
DOI:10.1101/gr.1239303

RRID:SCR_003032

software,
algorithm

In-house
algorithm for
isotopic
corrections

In-house algorithm of
the St-Pierre laboratory,
first described in
McGuirk et al., 2013;
DOI:10.1186/2049-3002-1-22

Developed by SM

software,
algorithm

Masshunter
Quantitative
Analysis software

Agilent Technologies RRID:SCR_015040

software,
algorithm

Chemstation
software

Agilent Technologies RRID:SCR_015742

software,
algorithm

Transcriptome
Analysis Console

Affymetrix RRID:SCR_016519

software,
algorithm

Gene Set
Enrichment
Analysis

Mootha et al., 2003;
Subramanian et al., 2005;
DOI:10.1038/ng1180,
10.1073/pnas.0506580102

RRID:SCR_003199

software,
algorithm

Gene Expression
Omnibus

NCBI Edgar et al., 2002;
DOI:10.1093/nar/30.1.207

RRID:SCR_005012

software,
algorithm

MAGeCK (v0.5.5) Li et al., 2014;
DOI:10.1186/s13059-014-0554-
4

other GEO patient
dataset

GSE43816 Gruosso et al.,
2016;
DOI:10.15252/emmm.
201505891

Gene expression of human
breast cancer tumors biopsies
prior to and after treatment
with four cycles of epirubicin
and cyclophosphamide,
followed by four cycles of
docetaxel

other GEO cell line
dataset

GSE125187; this paper Gene expression of Control,
DoxR, and EpiR cells

McGuirk et al. eLife 2021;10:e65150. DOI: https://doi.org/10.7554/eLife.65150 29 of 29

Research article Cancer Biology

https://artyomovlab.wustl.edu/shiny/gam/
https://artyomovlab.wustl.edu/shiny/gam/
http://doi.org/10.1093/nar/gkw266
http://doi.org/10.1101/gr.1239303
https://scicrunch.org/resolver/SCR_003032
http://doi.org/10.1186/2049-3002-1-22
https://scicrunch.org/resolver/SCR_015040
https://scicrunch.org/resolver/SCR_015742
https://scicrunch.org/resolver/SCR_016519
http://doi.org/10.1038/ng1180
http://doi.org/10.1073/pnas.0506580102
https://scicrunch.org/resolver/SCR_003199
http://doi.org/10.1093/nar/30.1.207
https://scicrunch.org/resolver/SCR_005012
http://doi.org/10.1186/s13059-014-0554-4
http://doi.org/10.1186/s13059-014-0554-4
http://doi.org/10.15252/emmm.201505891
http://doi.org/10.15252/emmm.201505891
https://doi.org/10.7554/eLife.65150

