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Abstract

Background: Complexity and noise in expression quantitative trait loci (€QTL) studies make it difficult to
distinguish potential regulatory relationships among the many interactions. The predominant method of identifying
eQTLs finds associations that are significant at a genome-wide level. The vast number of statistical tests carried out
on these data make false negatives very likely. Corrections for multiple testing error render genome-wide eQTL
techniques unable to detect modest regulatory effects.

We propose an alternative method to identify eQTLs that builds on traditional approaches. In contrast to genome-
wide technigues, our method determines the significance of an association between an expression trait and a
locus with respect to the set of all associations to the expression trait. The use of this specific information facilitates
identification of expression traits that have an expression profile that is characterized by a single exceptional asso-
ciation to a locus.

Our approach identifies expression traits that have exceptional associations regardless of the genome-wide signifi-
cance of those associations. This property facilitates the identification of possible false negatives for genome-wide
significance. Further, our approach has the property of prioritizing expression traits that are affected by few strong
associations. Expression traits identified by this method may warrant additional study because their expression level
may be affected by targeting genes near a single locus.

Results: We demonstrate our method by identifying eQTL hotspots in Plasmodium falciparum (malaria) and
Saccharomyces cerevisiae (yeast). We demonstrate the prioritization of traits with few strong genetic effects through
Gene Ontology (GO) analysis of Yeast. Our results are strongly consistent with results gathered using genome-wide
methods and identify additional hotspots and eQTLs.

Conclusions: New eQTLs and hotspots found with this method may represent regions of the genome or
biological processes that are controlled through few relatively strong genetic interactions. These points of interest
warrant experimental investigation.

Background

eQTL studies use gene expression data and genetic varia-
tion between individuals to calculate the association
between expression traits and genotypes. In the context
of eQTL studies an ‘expression trait’ refers to the quan-
tity of labeled (c)DNA hybridizing to a single probe on a
microarray. An eQTL is a strong association between one
locus in the genome and one expression trait. eQTLs
describe the global relationships, or regulatory architec-
ture between expression levels and genotypes in an
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organism [1]. eQTL studies determine the associations
between expression traits and loci on a genome-wide
scale, often involving millions of statistical tests [2,3].
This process leads to a multiple testing problem, where
as the number of statistical tests increases, more excep-
tionally unlikely observations are seen purely by chance.
eQTL studies are particularly susceptible to this problem,
especially when larger genomes, marker sets, or sets of
individual genotypes are considered.

It is common among eQTL studies to compensate for
multiple testing by using a permutation test [4,5]. A per-
mutation test enables measurement of genome-wide sig-
nificance for associations in eQTL studies by simulating
the null hypothesis of no differentially expressed genes.
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For each iteration of the permutation test each expres-
sion trait is associated with a random genotype and the
association between the genotype and expression trait is
recalculated. The maximum value for an iteration of the
permutation test is an estimate of the maximum associa-
tion that is expected purely by chance when there is no
significant association between genotype and expression
level. After a number of repetitions of this process the
maximum value for each repetition is used as one ele-
ment in the null distribution. This distribution represents
the relationship between genotype and expression level
under the assumption that there is truly no significant
association between genotypes and expression traits. The
intuition behind this process is that a truly differentially
expressed expression trait will have a stronger association
than even the largest associations that occur by chance in
the null distribution.

The stringent thresholds imposed by error correcting
methods such as the permutation test limit the ability of
traditional eQTL techniques to identify moderate
genetic effects. Finding false negatives by simply lower-
ing the threshold for significance would undermine the
error correction so we focus our approach on measuring
significance at the individual expression trait scale. Our
approach capitalizes on the fact that false negatives are
most likely to occur near the cutoff for significance and
should therefore be very significant relative to the vast
majority of observations. This information allows us to
create a model distribution that we expect describes the
‘association profile’ of an expression trait with interest-
ing genetic effects. Our approach uses Hellinger distance
to determine which traits most closely match this model
distribution. The approach builds on genome-wide tech-
niques by measuring the similarity between distributions
of genome-wide corrected p-values and allows us to
simultaneously utilize corrections for multiple testing
and detect associations that are moderate on a genome-
wide scale but significant for individual expression traits.

Results and Discussion

The foundation for this study was the work of Gonzales
et al. who performed eQTL analysis across the progeny
of the Hb3 drug resistant and the Dd2 drug sensitive
malaria parasites 18 hours post erythrocyte invasion [2].
Expression levels were measured using microarray ana-
lysis. The specific probes used in the microarray analysis
and the corresponding Hellinger distances are available
as Additional File 1. A permutation test was used to
transform the LOD scores for each marker/expression
trait combination into genome-wide corrected p-values.
False discovery rates of 24% and 14% were reported for
genome-wide significance levels of 5% and 1%, respec-
tively. Regulatory hotspots were determined by compar-
ing the number of expression traits mapping to each
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locus with a genome-wide corrected significance of 0.05
to the simulated null distribution. Regions surpassing
the 95th percentile frequency in the null distribution
were considered regulatory hotspots.

Plasmodium falciparum hotspot analysis

We obtained the data used in Gonzales et al. and
repeated the eQTL mapping and calculation of hotspots
[2]. We used the results as a baseline for comparison
with our Hellinger distance method. Plasmodium falci-
parum is a relatively understudied organism so we
prioritize identification of false negatives and report the
hotspots identified using the Hellinger distance statistic
without GO analysis. Expression traits with very signifi-
cant lowest corrected p-value show a great deal of varia-
tion in Hellinger distance in Figure 1. Variation in
Hellinger distance decreases as p-value increases. This
trend shows that while the genome-wide and Hellinger
distance methods tend to disagree about which traits are
most interesting, there is a much higher degree of agree-
ment about which traits are not interesting.

Figure 2 shows the distribution of Hellinger distances
for all 7665 expression traits. The small tail contains
expression traits that closely match the model distribu-
tion. The large tail contains expression traits that have
no association that distinguishes itself significantly from
the rest. We will use expression traits from both tails of
this distribution to demonstrate the significance of the
priority assigned to traits with different expression
profiles.
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Figure 1 Lowest corrected p-value versus Hellinger distance.
The Hellinger distance and p-value have a weak correlation,
indicating that genome-wide significance is not a major
consideration in the calculation of Hellinger distance. The * value
for the linear regression model on this data is 0.248. The pluses
represent expression traits for which the strongest association to a
locus is on the same chromosome as the trait.
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Figure 2 Distribution of hellinger distance for all expression
traits. A histogram displaying the distribution of Hellinger distances
across all 7665 expression traits. The larger Hellinger distances
represent expression traits that may be regulated equally by
multiple loci while the smaller Hellinger distances correspond to
expression traits which have single or few exceptionally strong
associations.

At a 0.05 significance level, only 914 expression traits
had eQTLs. We measured the overlap between these
expression traits and an equal number of expression
traits from the small tail of the distribution and then
from the large tail. We found that 292 or 31.9% of the
expression traits with the 914 smallest Hellinger dis-
tance statistics also had eQTLs. We calculated the over-
lap for the 914 expression traits with the largest
Hellinger distances and found that there were only 30
traits (3.28%) with eQTLs. The large difference in over-
lap between the traits with eQTLs and traits in either
tail of the Hellinger distance distribution demonstrates
that the Hellinger distance does provide a distinct order-
ing of traits. The relatively small overlap among traits
with significant Hellinger distance shows that many of
the expression traits without significant eQTLs never-
theless have an exceptional association with at least one
locus.

Expression traits with 95tk percentile Hellinger dis-
tance values were assigned to hotspots at the locus with
the smallest genome-wide corrected p-value. We identi-
fied twenty-two Hellinger distance hotspots and eleven
of the twelve hotspots reported by Gonzales et al,
shown in Table 1.

We compared the Hellinger distance hotspots in the
small tail of the distribution to the genome-wide hot-
spots at the marker level (Figure 3). The majority of the
hotspots found were consistent, verifying that hotspots
found using Hellinger distance strongly correspond to
genome-wide hotspots. While the Gonzales paper did
not report marker locations of eQTL hotspots, our
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Table 1 Hotspots on each chromosome found using
Hellinger distance (HD) and the genome-wide approach
(GW) and the proportion of cis-acting eQTLs in hotspots
on the chromosome

chromosome HD cis HD eQTLs GW cis GW eQTLs
3 5 0/27 1 0/29

4 2 5/9 0 0

5 6 6/191 8 12/439

7 2 0/M 0 0

8 2 0/14 0 0

9 1 0/7 1 1/12

10 1 0/4 0 0

12 2 0/12 1 0/18

14 1 0/4 0 0

Cis-acting eQTLs were defined as those which are most strongly associated to
markers on the chromosome they appear in.

results indicate that nine hotspots also match at the
marker level.

We also compared Hellinger distance hotpots in the
large tail of the distribution to eQTL hotspots. These
hotspots only overlap with four of the previously
reported eQTL hotspots. Hellinger distance hotspots in
the large tail should contain expression traits that have
no single exceptionally strong association to a locus.
Traits with multiple eQTL are expected to occur in the
large tail of the Hellinger distribution. We see this
expectation fulfilled in Additional File 2, Figure S1, in
which there are many hotspots that do not agree with
previously identified hotspots. The few hotspots that
overlap eQTL hotspots contain few traits compared to
the overlapping hotspots from the small tail.

A significant difference between our method and the
genome-wide approach is that the genome-wide
approach provides multiple statistics relating to each
expression trait. An expression trait may have multiple
associations with genome-wide significance but the Hel-
linger distance provides only one statistic that measures
the extent to which the smallest p-value is exceptional
among the expression trait’s associations. The result is
that there are less total Hellinger distance statistics than
p-values and the cutoff for significant hotspots by Hellin-
ger distance is lower that the cutoff for genome-wide sig-
nificant hotspots. While the scale considered in the two
approaches differs, the trends are similar.

At the chromosome level, all but one of the hotspots
found in the Gonzales study were identified as hotspots
in the small tail of the Hellinger distance distribution.
We found multiple additional hotspots on chromosomes
3, 10, 11, 12, and 14. Each new hotspot has the interest-
ing property of being the locus most strongly associated
with a significant number of expression traits. These
may be regulatory hotspots with significant regulatory
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effects that are unrecognized because of the low gen-
ome-wide significance of the individual associations.

Our results are similar to those found in a malaria study
by Huang et. al. in which a graph theoretic approach is
used as an alternative to traditional eQTL mapping [6].
The authors use a tripartite graph to model the relation-
ships between genes, strains, and genotype. Their
approach identifies eQTLs by finding maximal bipartite
cliques associated with a loci to the number in random
cliques. While the underlying method is different, the
general approach is the same; they consider the available
data in a novel way to identify additional hotspots. They
use the Gonzales et al. data and identified seventeen hot-
spots. The positions of the hotspots identified with their
new method appear largely consistent with the hotspots
found using our method.

Yeast Gene Ontology analysis

To more thoroughly examine the significance of the
new associations identified as significant by our
approach, we applied the above experiment to the well
studied organism yeast. We used expression and geno-
type data from Brem et. al to perform linkage analysis
and calculation of hotspots [7]. Yeast has the advantage
of having a thoroughly annotated genome. Therefore, in
addition to performing the steps covered in our exami-
nation of Plasmodium we performed GO enrichment
analysis and compared the GO terms found in expres-
sion traits with small Hellinger distances to the terms
found in expression traits with genome-wide eQTLs.
We used GO::TermFinder, an open-source GO term
analysis tool introduced in Boyle et. al [8].

Using the same eQTL mapping methods and permuta-
tion test we used for Plasmodium falciparum, at cutoff
for significance of 0.05, we identified 2719 expression
traits with significant eQTLs. We repeated the procedure
used to analyze the Plasmodium data. Again, we com-
pared expression traits in the small tail of the distribution
of all Hellinger distances to those in the large tail. As
seen in the Plasmodium falciparum analysis, more
expression traits in the small tail of the Hellinger distance
distribution overlapped expression traits with eQTLs
than those in the large tail. We found that 62.15% of the
expression traits in the small tail also had eQTLs while
29.82% of those in the large tail had eQTLs.

We found a similar trend for GO terms enriched in
traits with significant Hellinger distance. We found that
43 of the 102 process GO terms found among the 2719
expression traits with the smallest Hellinger distance
were not enriched in expression traits with eQTLs. In
contrast, there were a total of 8 terms enriched for the
expression traits with the 2719 largest Hellinger distance
statistics. We list the number of GO term results for
process, function, and component terms in Table 2. We
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expected and found a fairly large number of new pro-
cess terms enriched among the expression traits identi-
fied with small Hellinger distance. It is interesting to
note that although we found many new process terms,
we only found 5 new function and 4 new component
terms. However, because a single expression trait may
be related to multiple process, function, and component
categories, it is very difficult to determine the impor-
tance of the few additional function and component
terms. Regardless, the expression traits identified by
Hellinger distance are enriched for many processes that
are not enriched within expression traits with eQTLs
but are associated with many of the same functions and
components.

We identified cis and trans-acting eQTLs in both tails
of the Hellinger distance distribution. We defined cis-
acting eQTLs as those which are most strongly asso-
ciated to markers on the chromosome they appear in.
Conversely, trans-acting eQTLs appear on a different
chromosome than the one they are most strongly asso-
ciated with. We use this definition because it is a defini-
tive and non-arbitrary cutoff. In the small tail there
were 28 cis-acting expression traits out of 318. The
large tail contained 12 cis-acting expression traits out of
the total 318 in the tail.

GO similarity and gene essentiality analysis

We analyzed the GO term similarity and essentiality for
terms enriched in sets of traits identified with both
approaches.

GO similarity (or semantic similarity) measures the
similarity of pairs of terms by the distance between
them in a tree describing the hierarchy of GO terms.
The semantic similarity of GO terms was computed by
the Lin method via the GOSim package [9,10]. We used
t-tests to compare the GO similarity of a random set of
1000 Yeast GO terms and the GO similarity for the
traits with eQTL as well as the traits with the 5% smal-
lest Hellinger distances. The distribution of GO similari-
ties in both sets of expression traits were significantly
different from the random set at a significance level of
0.0001. We determined that the distributions of GO
similarity between the Hellinger distance set and the
eQTL set of traits were significantly different from each
other (p = 2.2e-16) with a two-sample Kolmogorov-
Smirnov test. We used the same test between the set of
traits with eQTLs and large Hellinger distance and the
set of traits with the 5% smallest Hellinger distance but
without eQTLs and found that they were significantly
different at a p-value of 1.05%e-13.

Gene essentiality refers to the necessity of a gene for the
survival of the organism [11]. We used a hypergeometric
test to determine that the traits with eQTLs but without
significant Hellinger distance had a marginal enrichment
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Figure 3 Comparison of eQTL hotspots using the genome-wide and Hellinger distance approaches. Marker positions on the genome
versus the frequency of significant associations or eQTLs. The dashed line represents the cutoff for significance. The first bar graph shows the
frequency of eQTLs by the genome-wide method while the second shows the frequency of expression traits with small Hellinger distance. Traits
with significant Hellinger distance are assigned to the marker they are most strongly associated with.

of essential genes with a p-value of 0.0113. Traits with
small Hellinger distance but without eQTLs were more
strongly enriched for essential genes at p = 0.0002.

Conclusions

We have demonstrated a novel approach to interpreta-
tion of eQTL data that builds on traditional approaches
to identify possible false negatives and new points of
interest for researchers. Our approach provides a statis-
tic that describes the extent to which the distribution of
associations connecting an expression trait to every loci
matches the distribution we expect for expression traits
with significant genetic effects. Expression traits identi-
fied through this method have associations which are
exceptional within the scope of all associations to that

expression trait. These associations may not be statisti-
cally significant at the genome-wide level but an excep-
tional association is very likely to indicate an interesting
regulatory relationship regardless of the p-value.

Table 2 Columns small tail and large tail indicate the
number of total GO terms found for expression traits in
the denoted tail of the Hellinger distance distribution
that are not enriched in expression traits with eQTLs

GO category small tail large tail
process 43 8
function 5 7
component 4 27

The small tail contained 28 cis-acting eQTLs and the large tail contained 12.
Each tail containted 318 eQTLs.
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Our approach addresses two potential sources of error
in conventional genome-wide association studies. Expres-
sion traits that are not typically identified in eQTL stu-
dies may still have some associations that are exceptional
among that expression trait’s associations. Such a case
may represent a false negative because, while an associa-
tion may not be statistically significant in a genome-wide
scope, its exceptional strength in the context of a single
expression trait may indicate an interesting and over-
looked regulatory effect. These expression traits may be
identified by inspecting those with associations near the
cutoff for genome-wide significance that also have a sig-
nificant Hellinger distance.

A second potential source of error in eQTL studies
comes from expression traits that are associated
strongly with multiple loci. Due to the chaotic nature of
recombination and uncertainty in linkage analysis, it is
often the case that an expression trait is found to be
strongly associated with multiple adjacent loci. Our
approach minimizes the impact of this uncertainty by
providing a single statistic per expression trait. We have
demonstrated a strong agreement between our method
and traditional genome-wide techniques for hotspot and
GO analysis. Even more interesting are the points of
disagreement between the two methods. New hotspots
and GO terms found with this method may represent
regions of the genome or processes which are con-
trolled through few relatively strong genetic interac-
tions. These points of interest warrant experimental
investigation.

Methods

We use the Hellinger distance statistic to measure the
similarity between a model distribution and the distribu-
tion of associations linking an expression trait to each
locus.

Hellinger distance is a nonparametric statistical test
for distributional divergence [12]. It carries the following
properties: dH(P, Q) is in [0, /2 ]. Hellinger distance is
symmetric and non-negative, implying that dH(P,Q) =
dH(Q,P). Finally, squared Hellinger distance is the lower
bound of KL divergence. Hellinger distance essentially
compares the shape but not the scale of the magnitude
of the two distributions.

This is achieved by first splitting each distribution into
an equal number of bins. This step is essentially build-
ing a histogram of each distribution. Each bin contains
some proportion of the total values in one distribution.
The next step compares the proportion held in each bin
to the proportion held in the corresponding bin in the
other distribution. This proportional comparison is how
Hellinger distance measures divergence without regard
to scale. A more precise definition follows:
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b
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Where P, and Q, are the counts for corresponding
bins for the two distributions and |P| and |Q| indicate
the total number of values in the distributions.

eQTL mapping calculates the association between each
expression trait and each locus. The result is a set or distri-
bution of associations for each expression trait. The permuta-
tion test provides a genome-wide corrected p-value for each
association. Our method is based on calculating the Hellinger
distance between each expression trait’s p-value distribution
and a reference distribution. As Hellinger distance does not
make any assumptions about the shape or scale of the distri-
butions being compared any reference distribution can be
used while preserving the meaning of the statistic.

However, the fact that false negatives are more likely to
occur near the cutoff for significance allows us to tailor
the reference distribution to reflect our expectation for
false negatives. Associations near the cutoff for signifi-
cance, while not statistically significant, are still a great
deal more significant than the vast majority of the asso-
ciations. Therefore we expect there to be a large, rela-
tively empty range between the strongest association and
the majority of the associations. We use the reference
distribution of values defined by y = x> over the integers
from 1 to the number of loci to model this expectation.
This reference distribution provides a balance between
linear ordination and ease of interpretation. It allows the
Hellinger distance statistic to be interpreted as evidence
that a trait is controlled by a single locus or few loci.

We calculated the Hellinger distance using numbers of
bins ranging from 10 to 100 in intervals of 10. Over that
inverval there are between 30 and 3 observations in each
bin for the Plasmodium data. As the bin number
approaches either extreme of the interval the hellinger dis-
tance becomes less able to reliably distinguish differences
between distributions. This occurs because either too
many or too few observations fall in each bin. The number
of bins used did not make a significant difference to the
results. We use thirty bins to provide an empirically accep-
table binning granularity. The bin width is calculated as:

binwidth = (max(distribution) — min(distribution)) / 30

The bin-width for each distribution is calculated
separately.

This approach to determining the number of bins
must be repeated for each additional data set. A poten-
tial alternative and more general method of determining
the number of bins would be to use a kernel density
bandwidth optimization technique [13].
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The large difference between exceptional p-values and
typical p-values causes the bulk of the values in the distri-
bution to appear in the smaller bins in the histogram.
The effect is that a greater difference between the most
significant association and the bulk of the associations
results in a lower Hellinger distance. The degree to
which the strongest association in the distribution is
exceptional is the primary factor in the shape of the dis-
tribution and therefore the Hellinger distance. In other
words, the Hellinger distance statistic describes the
extent to which an expression trait’s most significant
association is exceptional among all of its associations.
Our choice of reference distribution reflects the expecta-
tion that the highest frequency occurs in the smallest
bins and tapers off towards the largest association.
Because we chose a reference distribution that we expect
describes an expression trait that is controlled primarily
at a single locus, the Hellinger distance measures the
importance of that locus to the trait’s expression.

One key difference between the genome-wide approach
and our Hellinger distance based approach is that they
measure significance on different scales. The genome-
wide approach, in combination with a permutation test,
provides statistics measuring the significance of each
trait/locus association with respect to all associations
between expression traits and loci. Our approach differs
in that, for each expression trait, the Hellinger distance
approach measures significance with respect to all the
associations between a single trait and every locus. The
result is that the genome-wide approach provides a sta-
tistic for each indvidual trait/marker association while
the Hellinger distance provides a single statistic per
expression trait. However, in the interpretation of Hellin-
ger distance statistics it is important to consider that the
calculation is based on distributions of genome-wide cor-
rected p-values. Though Hellinger distances measure sig-
nificance at an expression trait level, the elements of the
underlying distribution are already corrected for multiple
testing error at a genom-wide level.

Additional material

Additional file 1: Probes and the corresponding Hellinger distances
for Plasmodium falciparum.

Additional file 2: Comparison of eQTL hotspots using the genome-
wide and Hellinger distance approaches (Figure S1). Traits with large
Hellinger distance versus traits with eQTLs. Marker positions on the
genome versus the frequency of significant associations or eQTLs. The
dashed line represents the cutoff for significance. The first bar graph
shows the frequency of eQTLs by the genome-wide method while the
second shows the frequency of expression traits with small Hellinger
distance. Traits with significant Hellinger distance are assigned to the
marker they are most strongly associated with.
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