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Predicting outcomes for locally 
advanced rectal cancer treated 
with neoadjuvant chemoradiation 
with CT‑based radiomics
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Faye Lynette Wei Tching Lim, Connie Siew Poh Yip, Michael Lian Chek Wang, Wenlong Nei & 
Hong Qi Tan*

A feasibility study was performed to determine if CT-based radiomics could play an augmentative 
role in predicting neoadjuvant rectal score (NAR), locoregional failure free survival (LRFFS), distant 
metastasis free survival (DMFS), disease free survival (DFS) and overall survival (OS) in locally 
advanced rectal cancer (LARC). The NAR score, which takes into account the pathological tumour 
and nodal stage as well as clinical tumour stage, is a validated surrogate endpoint used for early 
determination of treatment response whereby a low NAR score (< 8) has been correlated with better 
outcomes and high NAR score (> 16) has been correlated with poorer outcomes. CT images of 191 
patients with LARC were used in this study. Primary tumour (GTV) and mesorectum (CTV) were 
contoured separately and radiomics features were extracted from both segments. Two NAR models 
(NAR > 16 and NAR < 8) models were constructed using Least Absolute Shrinkage and Selection 
Operator (LASSO) and the survival models were constructed using regularized Cox regressions. Area 
under curve (AUC) and time-dependent AUC were used to quantify the performance of the LASSO 
and Cox regression respectively, using ten folds cross validations. The NAR > 16 and NAR < 8 models 
have an average AUCs of 0.68 ± 0.13 and 0.59 ± 0.14 respectively. There are statistically significant 
differences between the clinical and combined model for LRFFS (from 0.68 ± 0.04 to 0.72 ± 0.04), DMFS 
(from 0.68 ± 0.05 to 0.70 ± 0.05) and OS (from 0.64 ± 0.06 to 0.66 ± 0.06). CTV radiomics features were 
also found to be more important than GTV features in the NAR prediction model. The most important 
clinical features are age and CEA for NAR > 16 and NAR < 8 models respectively, while the most 
significant clinical features are age, surgical margin and NAR score across all the four survival models.

Colorectal cancer is the fourth commonest cancer and the second leading cause of cancer-related death 
worldwide1. In patients with locally advanced rectal cancer (LARC), multidisciplinary treatment involving 
neoadjuvant chemoradiotherapy (NACRT) followed by total mesorectal excision (TME) has been the standard 
of care2. Neoadjuvant options include short course radiotherapy (SCRT) alone3, SCRT with chemotherapy4–6 
or long course chemoradiation before or after systemic treatment7–9, each with its associated risks and benefits. 
Treatment strategies and responses remain heterogenous and the current selection strategies are not robust. Real 
world data suggests that we may be overstaging patients and this may lead to the exposure of a more intensi-
fied treatment strategy and their associated toxicities10. Classically, about 20% of patients achieve pathological 
complete response (pCR) after NACRT​11 and with the recent PRODIGE and RAPIDO trials, this rate is higher 
at 28%11,12. With these patients, the non-operative watch-and-wait approach to spare morbidity without sacrific-
ing disease control may have been a reasonable option13,14. Hence, the ability to risk stratify patients and predict 
outcomes to guide treatment strategies pre-operatively would be beneficial.

There are various surrogate markers that predict well for survival outcomes for treatment in LARC. These 
include magnetic resonance imaging (MRI) post NACRT, neoadjuvant pathologic stage groups (ypTNM), 
neoadjuvant rectal (NAR) score, tumour regression grade (TRG) and pCR15–19. However, these markers rely 
on postoperative findings to predict outcome and so, are not useful agents to counsel patients preoperatively. 
Radiomics is an emerging innovation with promising utility as a non-invasive imaging biomarker for tumour 
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response and can be used in LARC pre-operatively to guide treatment strategies. It involves extraction and 
analysis of radiological image features from conventional imaging to assess for tumour characteristics such as 
texture, shape and heterogeneity20. Recently, more complex prediction models using machine learning classifiers 
and deep learning have been developed with its oncological application in the prediction of pathology, genomics, 
therapeutic response and clinical outcomes21.

Radiomics prediction models for LARC are mainly MRI-based with heterogenous protocols and imaging 
parameters, which may limit the applicability and reproducibility of these models22–27. Computed tomography 
(CT) images may be more uniform and easily available. Most radiomics models also mainly predicted for pCR, 
which is a widely used surrogate for endpoints such as improved local control25,28,29. The NAR score on the other 
hand has a greater predictive ability than pCR for overall survival (OS) and has been proposed by the NRG 
oncology as a primary end point to assess preoperative treatment efficacy in clinical trials in rectal cancer19. 
Previous CT- and MRI-based radiomics studies in LARC have not correlated the predicted NAR score with 
clinical outcomes. Thus, in devising a predictive model, both NAR score and long term outcomes should be 
accounted for to allow future applicability of the radiomics model where there is confidence in both the short 
and long term outcomes.

The primary aim of our study was to investigate the predictive role of a radiomics model for the neoadjuvant 
rectal (NAR) score based on the pre-treatment radiotherapy planning contrasted CT of patients with LARC 
undergoing neoadjuvant treatment. The secondary aim was to investigate the predictive role of a radiomics 
model on locoregional failure free survival (LRFFS), distant metastasis free survival (DMFS), disease free survival 
(DFS) and overall survival (OS).

Materials and methods
Patients and endpoints.  This is a single centre, retrospective study involving patients who had locally 
advanced rectal adenocarcinoma and received neoadjuvant chemoradiation with subsequent TME between 
2006 and 2017. Retrospective chart review of these patients was conducted for basic demographic, disease stag-
ing (based on the AJCC, 7th edition) chemoradiation and surgical details as well as the pathology where avail-
able. The CT data from 191 patients were used for this radiomics study.

The endpoints of interest were NAR score, locoregional failure free survival (LRFFS), distant metastasis free 
survival (DMFS), disease free survival (DFS) and overall survival (OS). The NAR score was calculated and two 
different binary outcomes based on NAR > 16 (high risk) and NAR < 8 (low risk) were used in this work19. The 
extreme range of the NAR was chosen as it represents the best and worst survivorship. This study was approved 
with waiver of informed consent from Singhealth centralised institution review board and all methods were 
performed in accordance with relevant guidelines and regulations.

Image acquisition, segmentation and radiomics feature extraction.  Images with contrast were 
captured with two different CT scanners located in the centre’s radiotherapy department. The first CT scanner 
was the GE LightSpeed RT16 and the second was Siemens SOMATOM definition AS. All images were acquired 
with 120 kVp X-ray with slice thickness 2.0 mm (Siemens scanner) and 2.5 mm (GE Scanner). The default stand-
ard and B31f convolution kernels were used for the GE and Siemens scanner respectively. The in-slice resolution 
was 512 by 512 for all images. The patients were allocated randomly to the two different CT scanners subjected 
to the availability of the scanners.

The segmentations were performed manually by the radiation oncologist (F. Q. Wang) without knowledge of 
the pathologic outcome of the patient. Two segmentations consisting of the primary tumour (GTV) and meso-
rectum (CTV) were contoured using the CT image and there were no overlaps in these segmentations. These 
segmentations were used for shape calculation and was known as the morphological mask in Image Biomarker 
Standardization Initiative (IBSI)30. The manually contoured segmentations were subsequently re-segmented to 
remove any voxel with HU below -50 HU. This was to remove part of contours which encompassed the air in 
the rectum and was known as the intensity mask in IBSI.

The radiomics features were extracted using Pyradiomics v331. It comprised of shape, first order and second 
order textural features (GLRLM, GLSZM, NGDTM and GLCM). These features were IBSI compliant30. The CT 
image was first interpolated with 1 mm isotropic voxel before feature extraction32,33. The radiomics features were 
extracted from the original CT image and the filtered CT image. LoG (Laplacian of Gaussian) filter with sigma 
1.0, 2.0 and 3.0 mm and wavelet filters were applied on the image. This gives a total of 1130 radiomics features 
per CTV and GTV segmentation. A constant bin width of 10 HU was used for textural calculation. The bin 
width was chosen to give between 16 to 128 bins for the calculation of textural features. The resulting numbers 
of bins should be large enough to capture the heterogeneity within the ROI and small enough to be insensitive 
to the noise within the image34,35.

We designed a procedure to select a subset of features from the original 1130 radiomics features which 
are robust to CT scanner variation and inter-rater variation in CTV and GTV contouring36. The contouring 
variability is simulated by performing morphological dilatation and erosion operations of up to 2.0 mm on the 
segmentation (this generated four additional structures per patient). The CT scanner variability is simulated by 
adding an independent Gaussian, Poisson and Uniform noise to the CT image where the mean of the Gaussian, 
Poisson and Uniform noise distributions and the standard deviation of the Gaussian and Uniform distribu-
tion were both 20 HU. These parameters were estimated from a phantom study on the two CT machines in the 
institution as shown in Figs. S1 and S2. The process of adding the noise to the original CT image was repeated 
five times for each distribution, resulting in fifteen different CT image for each patient. Overall, the morphologi-
cal operations and noise addition generated 19 additional sets of radiomics features per patient. Details of the 
measurement are shown in the Figs. S1 and S2. Intraclass Correlation Coefficients (ICC) with a threshold of 0.7 
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is used to select the robust features. This yields a final set of 404 and 254 robust radiomics features for the GTV 
and CTV respectively. The radiomics features from the CTV and GTV were combined to form the radiomics 
features for model building in the next section. It is interesting to note that this is not the only method to instill 
robustness in the model. Other method to instill robustness to contouring variability include removing radi-
omics features that are correlated to the GTV/CTV volumes or having different readers to contour the CT and 
eventually selecting features which are insensitive to the different readers. The latter method requires access to 
manpower hours—a luxury not all centers can afford.

Model building: constructing the NAR and survival model.  Two prediction models were con-
structed, namely the NAR model which is based on radiomics and clinical features available pre-operatively 
and the survival model which is based on radiomics and both clinical and pathologic features available pre- and 
post-operatively. The analysis pipelines for the NAR and survival model are illustrated in Fig. 1. A nested cross 
validation approach is used to ensure an objective manner of choosing the parameter λ, and to reduce both vari-
ance and bias in the model compared to using a single internal hold-out test set. All statistical tests and analyses 
were performed using R statistical software (version 3.4.2; R Foundation for Statistical Computing)37. A two-
sided P-value < 0.05 was considered significant.

NAR modelling.  The NAR model was constructed from radiomics and clinical features available pre-opera-
tively. The clinical features comprised of cT, cN and carcinoembryonic antigen (CEA) values at diagnosis. cT, 
cN and CEA were regarded as a continuous variable in this model. Feature reduction was performed by firstly, 
removing correlated features with Spearman correlation greater than 0.60 and secondly, using Relief Algorithm. 
The final subset of radiomics and clinical features were input into LASSO (Least Absolute Shrinkage and Selec-

Figure 1.   The schematics of the covariates and analysis pipeline used in this manuscript. The covariates are 
used to construct 4 survival models (DMFS, LRFFS, DFS, OS) and 2 binary classification models (NAR > 16 and 
NAR < 8). Pre-surgical and radiomics features are used to construct the NAR models while an additional post-
surgical features are used for the survival models.
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tion Operator) algorithm to construct the final combined model. The optimal lambda parameter in the LASSO 
model was selected based on minimum deviance from tenfold cross validation. To compare the contribution of 
the GTV and CTV features towards NAR prediction, we calculated the global feature importance using DALEX 
toolbox in R. Each of the feature has its values randomized one at a time, and the loss function value of the 
model was compared to the original loss function value of the full model. The difference in the value of the loss 
function is an indication of the importance of the feature in the model. The union of the set of features after 
the feature selection phases for all the ten folds were fed into the DALEX pipeline for calculating global feature 
importance. The final NAR models to be used in actual clinical testing is obtained by running the entire pipeline 
above through the entire dataset. The probability cutoff is selected using the Youden’s index38 and the sensitivity, 
specificity, positive predictive value (PPV) and negative predictive value (NPV) are reported.

Survival modelling.  The OS, DFS, DMFS and LRFFS survival models were constructed from (1) radiomics 
features, (2) clinicopathologic features and (3) combination of both radiomics and clinicopathologic features. 
These result in three different models for each survival type. Robust radiomics features were first selected based 
on the method outlined in previous section. Univariate analysis with Cox Proportional Hazard Regression was 
performed on the radiomics, clinical and combined features in each model. Significant features with log-rank 
test P < 0.1 were retained in the model. Due to a large dimensional radiomics feature space, a further feature 
reduction technique based on retaining uncorrelated features was performed (removing features with Spearman 
correlation greater than 0.6). The radiomics model was constructed with Cox regression with a L1 regulariza-
tion term (LASSO). The linear predictor from the radiomics model was defined as the “radiomics score” and 
was added to the significant clinical features to form the features for the combined model. The “radiomics score” 
approach is used in survival modelling due to the large number of clinical predictors as compared to in NAR 
models, and this approach could better lead to a parsimonious model. Both the clinical and combined models 
were constructed with Cox regression with a L2 regularization term (ridge regression). The optimal lambda 
parameter in the LASSO and ridge regression model was selected based on minimum deviance from tenfold 
cross validation. The regularized Cox regression was performed using glmnet_2.0–18 package in R39. The LASSO 
and ridge regularization are selected by setting α = 1 and α = 0 respectively.

Assessing model performance.  A nested tenfold cross validation was used to assess the performance 
of the NAR and survival model. Cross validation was employed in the training fold to determine the optimal 
parameters for the LASSO and ridge regression models as outlined in the previous section. The fold was selected 
to have the same number of events within. Feature reductions were applied strictly to the training fold to ensure 
no data leakage. The performance of the training model for NAR applied to the testing fold was evaluated using 
AUC. A final single ROC curve and AUC value was obtained for the NAR model by averaging over all ROC 
curves from the 10 folds. The performance of the training model on the four survival types were evaluated on 
the testing fold by using time-dependent AUC​40. A final integrated AUC across all time point was reported for 
each testing fold. The time-dependent AUC was calculated using survAUC_1.0–5 package in R. The AUCs of the 
clinical model was then compared to the combined model using pairwise t-test with Bonferroni’s correction for 
multiple testing, to show if the combined model performs better than pure clinical model.

Results
Patients and endpoints.  In total, 191 patients were included in the study. There were 140 men (73.3%) 
and 51 women (26.7%). The median age was 63 years (range, 28 to 85). There were 11, 141 and 39 patients with 
T2, T3 and T4 initially staged rectal tumors, respectively. Ninety percent (168/191) of the patients had initial 
CEA levels available, ranging from 0.8 to 709.8 ng/mL (IQR 2.7–16.025; median, 5.9 ng/mL). The missing CEA 
levels were imputed using the median value across the available data. The median follow-up time was 60 months. 
The patient baseline characteristics are summarized in Tables 1 and 2.

In terms of neoadjuvant chemotherapy, all patients received concurrent capecitabine, or 5-flourouracil. All 
but one patient received 3DCRT to a dose of 50.4 Gy in 28 daily fractions delivered in two phases. The median 
interval between completing neoadjuvant treatment and surgery was 71 days (range, 38 to 315 days; IQR, 62–91). 
77% (147/191) of patients had a low anterior resection, and 23% (44/191) had an abdominoperineal resection. 
ypT was 0, 1, 2, 3, and 4 in 14% (27/191), 6% (11/191), 18% (34/191), 52% (99/191), and 10% (19/191) of patients, 
respectively. ypN was 0, 1, and 2 in 61% (116/191), 32% (61/191), and 7% (13/191) of patients, respectively. 14% 
(27/191) of patients had a pCR after NACRT.

The NAR score ranged from 0 to 65 (IQR, 8–30; median, 15). When binned into categories 0 (0 > 8), 1 (8–16), 
and 2 (> 16), there were 19% (36/ 132), 42% (81/132), and 39% (74/191) of categories 0, 1, and 2, respectively. For 
this study, we focused on building predictive radiomics model for the high NAR (> 16) and low NAR (< 8) cohort. 
Kaplan–Meier survival curves were plotted in Fig. 2 for the DFS and OS of NAR > 16 vs NAR < 16 and NAR > 8 vs 
NAR < 8. A log-rank test shows statistically significant difference in the OS and DFS of the two cohorts (P < 0.01). 
This shows deriving a clinico-radiomics model for NAR prediction is helpful for determining the high-risk and 
low risk group during diagnosis. The breakdown of patients of high NAR (> 16) and low NAR (< 8) groups are 
also summarized in Table 1. The patient survival characteristics are summarized in Table 2.

Image acquisition, segmentation and radiomics feature extraction.  150 patients were scanned 
with GE CT Scanner while the remaining 41 patients were scanned with Siemens scanner. All the 191 patients 
have the GTV and CTV segmented. Figure 1 shows the schematics of the analysis pipeline including covari-
ates definitions and modelling methodologies. Radiomics features comprising of first order, textural and shape 
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descriptors are extracted from the manually segmented GTV and CTV. Features that pass the robustness frame-
works are input into the survival and NAR models together with the clinical features.

NAR and survival model building and performance.  NAR model.  The coefficients of the NAR > 16 
model based on LASSO logistic regressions are shown in Fig. 3A. cN is the only clinical feature selected by 
LASSO algorithm in two of the folds. Two of the radiomics features show strong relation to the outcome and are 
consistently selected in all the folds—GLCM_MCC_ctv and GLDM_DependenceVariance. The ROCs of all the 
folds are shown in Fig. 3B. Similarly, the coefficients and ROC curves of the NAR < 8 are shown in Fig. 3C and D 
respectively. There are more features compared to the NAR > 16 model due to lesser events and greater variation 
in the selected features in each fold. All the four clinical features (CEA, cT, age and cN) are selected frequently 
in the model. The feature importance plots for NAR > 16 and NAR < 8 is shown in Fig. 4A and B respectively. 
The features at the top of the plot are more important in the model and correspond to higher AUC loss when the 
values are randomized. Radiomics features from the CTV are ranked higher than those extracted from GTV in 
both models. This shows that CTV radiomics features are more important than the GTV features for the NAR 
model. The most important clinical features in the combined models as seen from the feature importance plots 
in Fig. 4, are age and CEA for NAR > 16 and NAR < 8 models respectively. The average AUC of all the folds in 
the NAR > 16 and NAR < 8 model are 0.68 ± 0.13 and 0.59 ± 0.14 respectively. The probability cutoff for the final 
NAR < 8 model is 0.3048 and the sensitivity, specificity, PPV and NPV are 0.75, 0.55, 0.28 and 0.91 respectively. 
The probability cutoff for the final NAR > 16 model is 0.3936 and the sensitivity, specificity, PPV and NPV are 
0.68, 0.72, 0.60 and 0.78 respectively. These final models are trained and evaluated on the entire dataset. An ad-
ditional analysis is also conducted to compare the current approach in NAR modelling with the radiomics score 

Table 1.   Baseline NAR characteristics of the patients. *P < 0.1, †P < 0.05. The data are shown as the number 
(percentage) or median (interquartile range). CEA carcinoembryonic antigen.

No. of patients

NAR > 16 NAR < 8

No (%) OR (95% CI) P-value No (%) OR (95% CI) P-value

Total no. of patients
62.6 (11.7) 191 74 – – 36 – –

Clinical diagnosis

Age, years 191 62.6 (11.7) 1.01 (0.98 to 1.04) 0.477 58.8 (11.5) 0.97 (0.93 to 1.00) 0.046*,†

cT stage

 T2 11 3 (4.05) Ref. Ref. 3 (8.33) Ref. Ref

 T3 141 58 (78.4) 1.80 (0.49 to 8.97) 0.393 29 (80.6) 0.67 (0.18 to 3.40) 0.597

 T4 39 13 (17.6) 1.30 (0.30 to 7.09) 0.737 4 (11.1) 0.31 (0.05 to 1.97) 0.203

cN stage

 N0 43 8 (10.8) Ref. Ref. 11 (30.6) Ref. Ref.

 N1 110 47 (63.5) 3.20 (1.41 to 8.08) 0.005*,† 21 (58.3) 0.69 (0.30 to 1.63) 0.384

 N2 38 19 (25.7) 4.25 (1.60 to 12.2) 0.003*,† 4 (11.1) 0.35 (0.09 to 1.17) 0.091*

CEA at diagnosis 191 21.6 (41.6) 1.00 (1.00 to 1.00) 0.740 4.23 (5.76) 0.92 (0.86 to 0.99) 0.019*,†

Treatments

Adjuvant chemotherapy

 Yes 144 58 (78.4) Ref. Ref. 29 (80.6) Ref. Ref.

 No 47 16 (21.6) 0.77 (0.38 to 1.52) 0.455 7 (19.4) 0.71 (0.26 to 1.67) 0.441

Surgical margin

 Close 8 2 (2.70) 0.55 (0.07 to 2.58) 0.470 2 (5.56) 1.31 (0.17 to 6.22) 0.763

 Positive 26 11 (14.9) 1.16 (0.48 to 2.69) 0.738 1 (2.78) 0.17 (0.01 to 0.86) 0.028*,†

 Clear 157 61 (82.4) Ref. Ref. 33 (91.7) Ref. Ref.

 Time RT to surgery, 
days 191 69.1 (26.0) 1.00 (0.99 to 1.00) 0.572 73.9 (61.3) 1.00 (0.99 to 1.01) 0.820

Pathology

pT stage

 T0 27 1 (1.35) Ref. Ref. 25 (69.4) Ref. Ref.

 T1 11 0 (0.00) 2.31 (0.06 to 95.3) 0.615 9 (25.0) 0.35 (0.03 to 3.77) 0.361

 T2 34 11 (14.9) 10.8 (1.84 to 279) 0.005*,† 2 (5.56) 0.01 (0.00 to 0.04)  < 0.001*,†

 T3 99 48 (64.9) 20.8 (4.16 to 506)  < 0.001*,† 0 (0.00) 0.00 (0.00 to 0.01)  < 0.001*,†

 T4 19 14 (18.9) 48.3 (7.53 to 1330)  < 0.001*,† 0 (0.00) 0.01 (0.00 to 0.05)  < 0.001*,†

pN stage

 N0 116 2 (2.70) Ref. Ref. 35 (97.2) Ref. Ref.

 N1 61 58 (78.4) 853 (177 to 7709)  < 0.001*,† 1 (2.78) 0.05 (0.00 to 0.22)  < 0.001*,†

 N2 13 13 (18.9) 533 (69.6 to 15,143)  < 0.001*,† 0 (0.00) 0.19 (0.01 to 1.03) 0.055*
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approach (which is used in survival modelling). The result is shown in Fig. S3 where no significant difference is 
observed between the two approaches.

Survival model.  The coefficients of the combined ridge regression models in the survival modelling are shown 
in Fig. 5. In all the survival modelling, radiomics score has a consistently high coefficient value in all the folds, 
which corresponds to a high hazard ratio. The plots of the coefficients of radiomics features for this model are 
shown in Fig. S4. The significant clinical features which are selected consistently in at least 7 of the 10 folds are 
age, NAR score and margins across all the various survival outcomes.

The time dependent AUCs of the clinical, radiomics and combined models in all the folds are shown in Fig. 6. 
The AUCs of the clinical, radiomics and combined model of LRFFS are 0.68 ± 0.04, 0.63 ± 0.05 and 0.72 ± 0.04 
respectively. The AUCs of the clinical, radiomics and combined model of DMFS are 0.68 ± 0.05, 0.63 ± 0.08 
and 0.70 ± 0.05 respectively. The AUCs of the clinical, radiomics and combined model of DFS are 0.64 ± 0.11, 
0.57 ± 0.12 and 0.66 ± 0.12 respectively. The AUCs of the clinical, radiomics and combined model of OS are 
0.64 ± 0.06, 0.62 ± 0.09 and 0.66 ± 0.06 respectively. The violin plot of the AUCs of the clinical, radiomics and 
combined models for the four different survivor outcomes is shown in Fig. 6. Pairwise t-tests show statistically 
significant improvement in AUC for LRFFS, DMFS and OS after inclusion of radiomics features on top of clini-
cal features. Even though there is only a modest increase in the mean AUCs of DMFS and OS of 0.02, the paired 
t-test is statistically more power than unpaired test and able to detect differences amid large variation between 
the different folds.

Discussion
In this study, we investigated the feasibility of predicting NAR score and survival outcomes for LARC patients 
using deep machine learning and radiomics modelling constructed from radiotherapy planning contrasted CT 
images. The results indicate that the radiomics features can augment the predictive power of clinical models for 
OS, DMFS and LRFFS. The model was able to predict these outcomes with moderate accuracy.

Table 2.   Baseline survival characteristics of the patients. *P < 0.1, †P < 0.05. The 5-years survivals are expressed 
as percentage. The P-values are calculated from the log-rank test of the stratified Kaplan–Meier curves.

No. of patients

LRFFS DMFS DFS OS

5 years P-value 5 years P-value 5 years P-value 5 years P-value

Total no. of patients 191

Clinical diagnosis

cT stage 0.031*,† 0.075 0.051 0.062

 T2 11 100 100 100 100

 T3 141 79.7 80.0 79.9 79.6

 T4 39 60.4 67.3 62.4 64.9

cN stage 0.304 0.272 0.280 0.250

 N0 43 87.4 87.8 87.5 86.7

 N1 110 71.4 73.1 71.6 72.7

 N2 38 83.0 81.4 83.7 81.5

Treatments

Adjuvant chemotherapy 0.035*,† 0.063* 0.050* 0.048*,†

 Yes 144 80.0 81.6 80.6 80.7

 No 47 67.6 68.4 67.6 68.1

Surgical margin  < 0.001*,†  < 0.001*,†  < 0.001*,†  < 0.001*,†

 Close 8 70.0 75.0 75.0 72.9

 Positive 26 41.7 46.8 36.5 48.5

 Clear 157 82.5 83.3 83.1 82.5

Pathology

pT stage 0.001*,†  < 0.001*,†  < 0.001*,†  < 0.001*,†

 T0 27 100 100 100 100

 T1 11 90.0 90.0 90.0 90.0

 T2 34 89.7 90.9 90.9 90.0

 T3 99 68.7 71.4 69.8 70.9

 T4 19 58.1 57.2 55.1 49.7

pN stage 0.002*,† 0.001*,† 0.001*,† 0.003*,†

 N0 116 85.0 86.7 85.2 86.0

 N1 61 67.1 67.0 66.8 67.7

 N2 13 55.6 55.1 55.1 55.6
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The challenge with LARC is that most validated predictive and prognostic models are based on post-operative 
parameters, limiting the ability for pre-operative treatment decisions. There is emerging data that the response 
to standard NACRT is heterogenous4. With about 20% of patients achieving pCR after standard NACRT, the 
indications for life changing surgery for this group of patients require justification, especially with data support-
ing good outcomes when a watch-and-wait strategy was adopted13,14. On the other hand, some patients do not 
respond adequately to standard NACRT. For these patients, an intensified strategy such as that described in the 
RAPIDO trial or adjuvant chemotherapy may be more appropriate11. This is where the radiomics prediction 
model can be utilized for personalized patient-centred pre-operative treatment decision making.

This study also showed that the radiomics model predicted the NAR score with moderate accuracy. Further-
more, in our study, we correlated the NAR score with survival outcomes and this congruently indicated that 
the higher the NAR score, the poorer the outcome. Most radiomics studies in LARC predict for pCR which is a 
dichotomous histopathologic variable achieved in only about 20% of patients post-NACRT​16,22. In comparison, 
the NAR score which is derived from more variables, may provide more information. The NAR score is a widely 
used surrogate in clinical trials19. It was developed and widely validated as a short-term endpoint to act as sur-
rogate for DFS and OS in rectal cancer to allow more rapid determination of success or failure of an experimental 
intervention in LARC​19,41–44. The NAR score has a greater predictive ability than pCR for OS19,42. From the NSABP 
R-04 randomised phase 3 trial patient dataset, the authors conclude that the 5 year OS for NAR < 8 (low), NAR 
8–16 (intermediate) and NAR > 16 (high) were 92%, 89% and 68% respectively42. In the German CAO/ARO/
AIO-04 randomised phase 3 trial patient dataset, they found that the 3 year DFS was 91.7%, 81.8% and 58.1% 
for low, intermediate and high NAR score respectively44. However, the NAR score can only be calculated after 
neoadjuvant treatment and resection and is therefore not available to clinicians for making the decision to offer 
neoadjuvant treatment at the outset. Again, this is where the radiomics model for predicting NAR score can be 
useful in guiding pretreatment counseling but it may also lend its use in clinical trials.

Our results show that the model has a relatively good discriminatory ability when predicting for high 
NAR > 16 with an AUC of 0.68 ± 0.11. On the other hand, the NAR < 8 model shows large variation in AUC 
from 0.383 to 0.792 in Fig. 3D across the 10 folds and can be unstable for clinical use now. Further work involv-
ing training with larger datasets or conducting more extensive validations are required before actual clinical 
application. Despite this shortcoming, we applied the NAR < 8 model to a contemporaneous cohort of patients 
(N = 31) who declined surgery and found that the majority of the patients (N = 29) were predicted to have NAR > 8 
and had poorer overall survival (Fig. S4). Here, the NAR model can be used as an added layer of assessment in 
deciding on neoadjuvant treatment strategies as discussed. Barring the possibility of contraindications, in this 
group of patients, surgical intervention may have benefited them. Whilst the OS was not statistically significant 

Figure 2.   The Kaplan–Meier Survival Curve for (A) DFS for NAR > 16 versus NAR < 16, (B) OS for NAR > 8 
versus NAR < 8, (C) OS for NAR < 16 versus NAR > 16 and (D) DFS for NAR > 8 versus NAR < 8.
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between patients with NAR < 8 vs NAR > 8, the limitation here was the small sample size and large proportion of 
patients with NAR > 8 (n = 29) vs NAR < 8 (n = 2) for it to be meaningful and representative. Testing this model 
on a larger sample size is required but was beyond the scope of this study.

In this study, we demonstrated that the CT based mesorectal (CTV) imaging features contribute significantly 
to the accuracy of the final model compared to the intratumoral features (Fig. 4). The distinction between intra-
tumoral and peritumoral radiomics has been studied in different cancers45–49. Like Shaish et al., we also derived 
value in the mesorectal compartment in predicting response and prognosis23. Most other radiomics studies in 
LARC often looked at only the gross tumour whilst the mesorectum which contains important information has 
often been overlooked. The information contained in the peri-tumoral region may inform on immune response, 
angiogenesis and invasion beyond the usual radiotherapy or surgical fields which in turn can be analysed to 
additionally predict for survival outcomes45–49. This suggests its inclusion in future rectal based radiomics studies 
with a consideration for further investigations to clinical regions beyond such as the pelvic side wall. The latter 
may serve as a predictive tool in guiding the need for pelvic lymph node dissection.

We have undertaken several rigorous approaches to ensure the quality of the study. For example, the whole 
tumour volume and surrounding mesorectum was analysed individually, instead of working with a single seg-
mentation. A robust procedure was designed to select a subset of features from the original 1130 radiomics 
features to account for CT scanner variation and inter-rater variation in CTV and GTV contouring. A further 
feature reduction technique based on retaining uncorrelated features was performed. With the eventual final set 
of 404 and 254 robust radiomics features for the GTV and CTV respectively, this increased the credibility of the 
study and reduces overfitting with the model. For the model performance, a nested tenfold cross validation was 
used. Feature reductions were applied strictly to the training fold to ensure no data leakage. The IBSI guide was 
used in the construction of the model30. The overall radiomics quality score (RQS) for our model was 38.89% 
(Fig. S6), a higher score than most CT-based radiomics where the range is from 0 to 47% with majority falling 
below 20%50,51.

Figure 3.   (A,C) The LASSO coefficients of the radiomics and clinical features in the NAR model for each of the 
fold in cross validation. Each red dot represents the coefficient of the feature in the model for a particular fold. 
The blue dotted line corresponds to coefficient 0. (B,D) This figure shows the 10 ROC curves for each of the 10 
folds and final average ROC curve and the associated 95% confidence interval band in gray.
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There are several additional strengths to our study. To our knowledge, this is the first machine learning 
study using contrasted CT-based radiomics of the rectum and mesorectum for the prediction of NAR score and 
survival outcomes in LARC. We created two radiomics models—the NAR score model and survival model, and 
compared the relationship between clinical, radiomics and combined features in model performance. The NAR 
score was also correlated to survival outcomes. Most other CT-based radiomics studies looked at pCR, some of 
which could not show the added value of radiomics data in predicting pCR or did not additionally predict for 
survival outcomes22,52–56. The international multicentre MRI-based radiomics study by Shaish et al. is the only 
other radiomics study in LARC predicting for NAR score23. Their model had a similar performance (AUC of 0.66) 
and the study also evaluated the mesorectal compartment. Nevertheless, the methodology was heterogenous with 
variable MRI scanner, MRI protocol and neoadjuvant chemotherapy used over the accrued time and between 

Figure 4.   The global feature importance plots using the DALEX package for (A) NAR > 16 and (B) NAR < 8 
prediction model. The radiomics feature with a “ctv” suffix represents features extracted from the CTV 
segmentation while those without are extracted from the GTV segmentation.
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institutions. The authors however felt that the heterogenous image data was a strength of their study as they 
showed that after controlling for imaging parameters in multivariate analysis, the radiomics features bear most 
of the predictive strength, driving the outcome-response R2 and improves the generalizability of the model. The 
results obtained from the study may be too optimistic due to data leakage from performing feature selection in 
a single fold while evaluating the performance using random train-test split.

Most radiomics studies for predicting treatment response and survival in LARC have been MRI-based28. 
Translation of MRI-based radiomics application in real world is often limited by cost, lack of resources, difficulty 
with reproducibility and lack of multi-centred validation. Even though all imaging modalities do suffer from this 
data inconsistency problem due to different models and vendors, this is less of an issue with CT imaging and CT-
based radiomics as the voxel value (known as Hounsfield Units) has an actual physical interpretation relating to 
the X-ray attenuation coefficient. The absolute voxel values thus need to have specific values for specified materi-
als when checked during regular quality assurance process; all CT scanners must conform to this international 
practice57. This ensures certain degree of consistency between CT images acquired across different scanners and 
provides an advantage for using CT-based radiomics. Furthermore, our model is more readily deployable due to 
the utilization of routinely performed pre-radiation therapy CT scan. The use of contrasted scans in our study 
may also provide additional textural features58.

There are several limitations to this study. All segmentations were performed by a single radiation oncologist 
which may introduce bias but were nonetheless performed without knowledge of the pathologic outcome of the 
patient. To account for intra-rater variation in contouring, we mimicked the contouring by dilating and eroding 
the contours from the single radiation oncologist. This was described in detail in the Supplementary Method. 
As this was an exploratory study, a retrospective methodology was used, sample size was small and the study 
was conducted in a single centre with no external validation cohort. Although we used nested cross-validation 
which is more rigorous than a single hold-out internal test set, this was not as rigorous as external validation. 
Future work will involve applying the model to CT data acquired from a different institution to assess the gen-
eralizability of the model. Finally, we recognize that different institutions may use different software platforms 

Figure 5.   The coefficients of the combined ridge regression models for (A) LRFFS, (B) DMFS, (C) DFS and 
(D) OS for the 10 folds cross validations. Each red dot represents the coefficient of the feature in the model for a 
particular fold. The blue dotted line corresponds to coefficient 0.
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making it difficult to compare or reproduce results. We recommend standardization of radiomics workflow, use 
commercially available software and avoid in house applications between institutions.

There are two main recommended ways our model can be used in the real world setting. At the outset, discus-
sions such as more intensified neoadjuvant treatment or the possibility of ‘watch-and-wait’ approach post-neoad-
juvant treatment can be better guided using both the NAR and survival model. The NAR model can additionally 
be used in prospective studies or trials when investigating a new neoadjuvant treatment especially when there is 
difficulty in recruiting participants. This model can be used to predict for NAR score for the included patients, 
forming the control arm. The same cohort of patients will undergo the experimental treatment and will derive 
a final NAR score, forming the experimental arm. Comparisons of the NAR score can then be made between 
the two groups. Future studies also calls for external validation and collaboration among various institutions to 
create a large annotated dataset to facilitate the establishment of reliable radiomics models. Further evaluation 
in randomized clinical trials followed by its implementation within treatment planning systems in radiation 
oncology to better personalize treatments should be considered.

Radiomics is part of the novel multi-omics approach in understanding and improving the management of 
cancer. An innovative application of these data includes combining one -omic feature with another to enhance 
the overall performance of data models that guide therapeutic decisions59. For example, radiogenomics is a grow-
ing field whereby radiomics data is mined to detect correlations with genomic patterns to provide diagnostic 
and prognostic imaging biomarkers to guide personalized treatment. In rectal cancer, preliminary studies have 
shown promising associations between radiomic features and genetic profiles which in turn predict for treatment 
response and prognosis59–61. Whilst multi-omics studies has been conducted in other cancer subsites such as 
lung cancer62, there are no studies looking at the integration of radiomics with other -omics such as proteom-
ics, metabolomics and transcriptomics in rectal cancer. These represent an unmined field with great potentials.

Conclusions
A radiomics model using pretreatment radiotherapy planning CT images can predict for NAR score and survival 
outcomes in patients with locally advanced rectal adenocarcinoma undergoing neoadjuvant treatment and total 
mesorectal excision. Both the tumor and surrounding mesorectal compartments contain important informa-
tion for predicting response. The resulting information can aid clinicians in risk stratifying patients which may 
improve patient selection to the different treatment options such as varying the neoadjuvant approach, adding 
or intensifying adjuvant therapy, altering the surgical approach and determining surveillance interval. Further 
prospective studies are required to validate this model and evaluate its implementation within treatment plan-
ning systems.

Figure 6.   The violin plot of the time-dependent AUCs obtained for radiomics, clinical and combined models 
for the 4 types of survival. The P values are shown on top between the clinical and combined models. DMFS, 
LRFFS and OS show statistically significant difference between the combined and clinical model.
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