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Both fungal and bacterial communities in soils play key roles in driving forest ecosystem
processes across multiple time scales, but how seasonal changes in environmental
factors shape these microbial communities is not well understood. Here, we aimed to
evaluate the importance of seasons, elevation, and soil depth in determining soil fungal
and bacterial communities, given the influence of climate conditions, soil properties
and plant traits. In this study, seasonal patterns of diversity and abundance did not
synchronize between fungi and bacteria, where soil fertility explained the diversity and
abundance of soil fungi but soil water content explained those of soil bacteria. Model-
based clustering showed that seasonal changes in both abundant and rare taxonomic
groups were different between soil fungi and bacteria. The cluster represented by
ectomycorrhizal genus Lactarius was a dominant group across soil fungal communities
and fluctuated seasonally. For soil bacteria, the clusters composed of dominant genera
were seasonally stable but varied greatly depending on elevation and soil depth.
Seasonally changing clusters of soil bacteria (e.g., Nitrospira and Pelosinus) were
not dominant groups and were related to plant phenology. These findings suggest
that the contribution of seasonal changes in climate conditions, soil fertility, and plant
phenology to microbial communities might be equal to or greater than the effects of
spatial heterogeneity of those factors. Our study identifies aboveground–belowground
components as key factors explaining how microbial communities change during a year
in forest soils at mid-to-high latitudes.

Keywords: forest ecosystems, model-based clustering, soil bacteria, soil fungi, temporal dynamics

INTRODUCTION

Learning about the temporal patterns and processes of microbial communities can help us
understand the drivers of community stability and ecosystem functioning (Shade et al., 2012).
Some studies have found that temporal dynamics can be identified in microbial communities
as well as other biological communities (Faust et al., 2015; Buscardo et al., 2018). Indeed, the
temporal dynamics of microbial communities has been observed across different time scales:
rapid responses associated with dissolved organic matter within minutes (Fenchel, 2002), seasonal
periodicity (Gilbert et al., 2012), and succession over several years or decades relating to growth
and development of host organisms (Koenig et al., 2011; Clemmensen et al., 2015). Among them,
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clarifying the seasonal dynamics of soil microbial communities is
of particular importance for improving ecosystem management
policy, as well as understanding microbial community assembly.
In mid-to-high latitude areas, seasonal climatic events drive
forest ecosystems through plant photosynthetic activities (e.g.,
nutrient uptake and litter production) and soil freeze–thaw cycles
(Groffman and Tiedje, 1989; Scott-Denton et al., 2003). The
carbon (C) cycle in mid-to-high latitude forests is also expected
to have more pronounced effects on global warming than in other
areas of the globe (Lal, 2005). Because soil microbial communities
play a major role in regulating climate feedbacks to the C
cycle (Bardgett et al., 2008), predicting the impacts of seasonal
changes in climate conditions on the diversity and composition
of soil microbes should be a high priority for management of
these forested areas (Allison and Treseder, 2008). Nevertheless,
how periodic seasonal changes in environmental factors shape
soil microbial communities remains poorly understood in forest
ecosystems at mid-to-high latitudes.

Soil microorganisms, especially fungi and bacteria, are the
main actors driving forest ecosystem functioning, given the
immense diversity and abundance of these taxonomic groups. In
comparison to soil fauna, fungal and bacterial communities show
high respiration rates (Setälä et al., 1988) and transcription of
carbohydrate-active enzymes (Žifčáková et al., 2017). For fungi
and bacteria, the composition of both community members
can change dramatically with the seasons because taxonomic
groups of soil microbes differ in response to soil properties and
plant phenology (Schmidt et al., 2007). For example, although
the fungal genus Russula dominated during the plant growing
season, the fungal genus Mortierella dominated during autumn
and winter (Voříšková et al., 2014; Santalahti et al., 2016). In
temperate forest soils, the relative abundance of the bacterial
phylum Actinobacteria increases during winter, which can be
offset by a decrease in the abundance of Acidobacteria and
Proteobacteria (Kuffner et al., 2012). In comparison to soil
bacteria, soil fungi tend to utilize recalcitrant organic matter
in soils and plant litters, highlighting that seasons can also
influence the relative abundance of fungi and bacteria through
plant litter inputs and soil properties (Bardgett et al., 2005).
However, because most soil microbial studies on seasonal
dynamics have been conducted during distinct seasons (e.g.,
spring, summer, autumn, and winter; Voříšková et al., 2014;
Žifčáková et al., 2017), continuous seasonal patterns in soil
fungal and bacterial communities are not well understood. There
is a lack of knowledge about how soil microbial communities
continuously change and what the roles of environmental factors
are in shaping soil fungal and bacterial communities through all
seasons. Because fungi and bacteria have different physiological
traits and related functional roles in forest ecosystems (Bååth
and Anderson, 2003; Schneider et al., 2012), these features might
create the differences in seasonal dynamics between soil fungi
and bacteria. However, continuous seasonal patterns have not
been explored simultaneously for both soil fungi and bacteria
in forest ecosystems. In forest soils, clarifying the differences
in seasonal dynamics of the diversity, taxonomic composition,
and abundance between fungi and bacteria are essential for
understanding microbial community assembly.

Not only seasons but also spatial variations can be important
factors determining microbial diversity and community
structures in forest soils (Ettema and Wardle, 2002). For
soil bacteria, Fierer and Jackson (2006) found that spatial
differences in community structures could be explained by soil
pH, shaping biogeographical patterns. In our previous study,
elevational diversity gradients of soil bacteria were controlled
by the indirect effects of climate conditions, via plant functional
diversity and soil properties (Shigyo et al., 2019). Even in the
study of elevational diversity gradients of fungal and bacterial
communities in forest soils, there was evidence that elevation
has differential effects on soil fungal and bacterial communities
(Peay et al., 2017). Besides, because of the uneven distribution of
microbially available nutrients and plant roots, the contributions
of soil depth can be higher than those of geographical differences
for soil microbial communities (Eilers et al., 2012). Recently,
Engelhardt et al. (2018) pointed out that drying–rewetting cycles
depending on soil depth influence the diversity and community
structures of soil fungi and bacteria. Clarifying whether a
particular taxonomic group of microbes depends on spatial or
temporal dynamics is not only essential for understanding the
ecology of focal taxa, but also for the processes of microbial
community assembly. Despite a growing number of studies
considering both space and time that are used to explain soil
microbial communities (Lazzaro et al., 2015; Siles et al., 2017),
there has been no study to examine the importance of seasonal
dynamics in comparison to elevation and soil depth.

Several abiotic and biotic conditions have direct contributions
to both temporal and spatial dynamics of soil microbial
communities in forests. First, climate conditions, particularly soil
temperature (ST) and soil water content (SWC), can be crucial
factors driving the seasonal dynamics of microbial communities
in forest soils because of the physiological responses of microbes
to climate conditions (Baldrian et al., 2013). For example, Allison
and Treseder (2008) conducted soil warming experiments in
boreal forests and found an increase in fungal diversity with
soil ammonium and nitrate availability in response to warming
and drying, where the relative abundance of thelephoroid fungi
decreased while those of Ascomycota and Zygomycota increased.
Second, the seasonal changes in soil microbial communities can
be dependent on changes in soil chemical properties. In forest
ecosystems at mid-to-high latitudes, for example, increasing the
supply of inorganic nitrogen (N) at snow melting season can
affect soil microbial communities (Schmidt et al., 2007). Finally,
plant phenology can influence the seasonal dynamics of soil
microbial communities because plants affect C and N availability
for soil microbes as a result of exudation of labile C through roots
and substrate input by litterfall (Bardgett et al., 2005). To identify
the processes structuring the seasonal dynamics of soil microbial
communities, it is necessary to consider the possible factors
including climate conditions, soil properties, and plant traits.

This study aimed to clarify the seasonal dynamics of soil fungal
and bacterial communities and their taxonomic differences in
cool-temperate montane forests. At four soil layers in three
elevation sites, soil samples were collected every month for a
year. Both fungal and bacterial communities were investigated
by high-throughput sequencing. In this study, we addressed the
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following three questions: (i) How do the soil fungal and bacterial
communities change with seasons? (ii) How significant are these
changes relative to those of elevation and soil depth? (iii) How
are seasonal dynamics in soil fungal and bacterial communities
affected by climate conditions, soil fertility, and plant phenology?

MATERIALS AND METHODS

Study Site
The study was conducted at three elevations in cool-temperate
and sub-alpine forests in the University of Tokyo Chichibu
Forest (35◦56′ N, 138◦52′ E) in central Japan. The study area
was composed of a mosaic of old-growth and secondary forest
stands with a minimum age of about 50 years. The understory
was sparsely covered by the dwarf bamboos Sasa borealis and
S. hayatae in this area. In 2011, three survey plots (30 m× 30 m),
hereafter referred to as high, middle and low elevation plots,
were established at 1831.8, 1334.2, and 880.4 m above sea level
(a.s.l.), respectively (Supplementary Table S1). Each of the three
survey plots was divided into nine 10 m × 10 m grids, and
the central grid was chosen for sampling and environmental
measurements. Although the high elevation site was located in
sub-alpine forests dominated by Tsuga diversifolia, the middle
and low elevation sites were located in cool-temperate forests
dominated by Carpinus tschonoskii (Supplementary Table S1).
Because the species composition of trees in the study area is
similar to that in nearby areas (Franklin et al., 1979; Shigyo
et al., 2017; Umeki et al., 2018), these sites represent typical forest
types widely distributed in this part of cool-temperate and sub-
alpine forests. The mean annual temperature and precipitation
for 15 years from 1996 to 2010 at Tochimoto (740 m a.s.l.),
the nearest meteorological station, were 11.0◦C and 1514.2 mm,
respectively. Mean annual temperature decreases with increasing
elevation at this site, while mean annual precipitation does not
vary consistently with elevation across the study area.

Field Sampling and Environmental
Measurements
Soil Sampling and Soil Properties Measurements
At the beginning of every month from July 2016 to June 2017,
three soil cores were collected with a root auger (DIK-102A-
A1, Daiki Rika Kogyo, Saitama, Japan) from the central grids
in three survey plots and split into four soil depths (0–5, 5–
10, 10–20, and 20–30 cm). For soil and microbial analyses,
soil samples of three cores at the same depth were well mixed
and pooled for each month. A total of 144 soil samples
(3 plots × 12 months × 4 depths) were collected. To investigate
soil properties, pH, C:N ratio, anions, and cations were measured
for these samples. Soil pH was measured using a glass electrode
(Eutech pH700, Eutech Instruments Pty Ltd., Singapore) in a
1:2.5 soil-to-water extract. The concentrations of total C and N
were measured using a CN analyzer (Sumigraph NC-22, Sumika
Chemical Analysis Service Ltd., Tokyo, Japan) and then the
C:N ratio of each sample was calculated for statistical analyses.
The concentrations of water-soluble anions, chloride (Cl−),
nitrite (NO2

−), nitrate (NO3
−), phosphate (PO4

3−) and sulfate

(SO4
2−), and cations, sodium (Na+), ammonium (NH4

+),
potassium (K+), calcium (Ca2+) and magnesium (Mg2+), were
measured using ion chromatography (IC 761 Compact, Metrohm
AG, Herisau, Switzerland). Water-soluble anions and cations of
each soil sample were extracted by sonication of 3 g of soil
with 30 ml of deionized water for 20 min and then filtered
using a 0.2 µm membrane filter (GL Chromatodisc 25A, GL
Science, Tokyo, Japan). Anions and cations were measured using
Metrosep A Supp 5 and C 4 columns (Metrohm AG). For
microbial analyses, soil samples were stored at −80◦C until
DNA was extracted.

Climate Conditions
For each survey plot, ST (◦C) at 10-cm depth was measured at 90-
min intervals from July 2016 to June 2017, using a button-type
temperature sensor (Thermochron G-type, KN Laboratories,
Osaka, Japan). The mean value of ST measured during the 10 days
before each soil sampling time was used as a representative value
for each month. SWC (%) was measured gravimetrically for each
soil sample by drying the soil at 80◦C for 72 h.

Plant Sampling, Measurements and Canopy
Conditions
At the same time as the soil sampling was conducted, leaves
and shoots of under-canopy were collected from three trees
in the same grids. Leaves and current-year shoots of each
sample were freeze-dried for 24 h and then powdered by a
bead beater-type homogenizer. Leaf C concentration (%), leaf
N concentration (%), shoot C concentration (%) and shoot
N concentration (%) were analyzed using the CN analyzer
(Sumigraph NC-22) and then the C:N ratio of each sample was
calculated for statistical analyses. For investigating the seasonal
change of canopy conditions in each survey plot, hemispherical
photographs were taken with a fisheye camera (Coolpix 950,
Nikon; Fisheye Converter FC-E8, Nikon Corp., Tokyo, Japan) at
the height of 1.3 m above the ground in the central grids. Canopy
openness was calculated from photographs using SOLARCALC
7.0 (Mailly et al., 2013).

Microbial Community Analyses
DNA Extraction, PCR Amplification, and Sequencing
Extraction of DNA from fresh soil samples (0.5 g) was
performed using the NucleoSpin Soil DNA kit (Macherey-
Nagel GmbH & Co., KG) with recommended amounts of
the buffer SL2 and enhancer SX. The DNA yields were
measured with Qubit dsDNA BR assay (Thermo Fisher Scientific,
Waltham, MA, United States). Soil fungal communities were
characterized by amplifying fragments of the internal transcribed
spacer 2 (ITS2) region using the forward primer gITS7 (5′-
GTGARTCATCGARTCTTTG-3′; Ihrmark et al., 2012) and the
reverse primer ITS4ngs (5′-TTCCTSCGCTTATTGATATGC-3′;
Tedersoo et al., 2014) on a thermal cycler (GeneAtlas G,
ASTEC, Fukuoka, Japan). Soil bacterial communities were also
characterized by amplifying fragments of the V4 hypervariable
region of the 16S ribosomal RNA (rRNA) gene using the
forward primer 515F (5′-GTGCCAGCMGCCGCGGTAA-3′;
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Caporaso et al., 2012) and the reverse primer 806R (5′-
GGACTACHVGGGTWTCTAAT-3′; Caporaso et al., 2012) on
the thermal cycler.

For both primer sets, a two-step tailed PCR method was
employed for high-throughput sequencing. The first PCR
reactions were carried out in 25 µl reaction mixtures containing
5 ng of soil DNA, 0.25 µM each forward and reverse primers,
12.5 µl of 2 × Gflex PCR Buffer, and 0.5 µl of Tks Gflex
DNA polymerase (Takara Bio Inc., Shiga, Japan). For fungal
communities, the protocol for the first PCR was 94◦C for 2 min,
followed by 35 cycles of 10 s at 98◦C, 15 s at 56◦C, and 30 s at
68◦C, with a final extension at 68◦C for 7 min. The first PCR
protocol for bacterial 16S rRNA was 94◦C for 2 min, followed
by 35 cycles of 10 s at 98◦C, 15 s at 50◦C, and 30 s at 68◦C,
with a final extension at 68◦C for 5 min. AMPure XP beads
(Beckman Coulter, Brea, CA, United States) were used to purify
the ITS2 and 16S rRNA amplicons and remove free primers
and primer dimers. The first PCR products were quantified by
Qubit dsDNA HS assay (Thermo Fisher Scientific, Waltham,
MA, United States). The second PCR was carried out in 25 µl
reaction mixtures including 10 ng of the template DNA amplified
in the first PCR, 0.25 µM each forward and reverse primers for
the second PCR, 2.5 µl of 2 × PCR Buffer for KOD -Multi &
Epi-, and 0.5 µl of KOD -Multi and Epi- (Toyobo Co., Ltd.,
Osaka, Japan). In the second PCR, PCR amplification added
multiplexing index sequences to the overhang adapters using a
multiplex primer pair combination for each sample. The thermal
cycling conditions were 94◦C for 2 min, ten cycles of 98◦C for
10s, 60◦C for 15s, 68◦C for 30 s, and final extension 68◦C for
5 min. The second PCR products were cleaned using AMPure
XP beads and quantified by Qubit dsDNA HS assay. Finally,
all samples were pooled together in equimolar concentrations.
Sequencing for fungal and bacterial communities was performed
on a MiSeq platform (Illumina, San Diego, CA, United States)
using 2 × 300 bp and 2 × 250 bp paired-end reads, respectively
(FASMAC Co., Ltd., Kanagawa, Japan).

Bioinformatic Analyses
For ITS2 amplicons, the sequencing data were processed using
the PIPITS 1.5.0 pipeline (Gweon et al., 2015). Briefly, the
forward and reverse paired-end sequences were merged using
VSEARCH (Rognes et al., 2016), and then quality-filtering was
undertaken with the FASTX-Toolkit (Gordon and Hannon,
2010). The fungal ITS2 region was extracted with ITSx software
(Bengtsson-Palme et al., 2013). The 97% similarity level was
finally established for the operational taxonomic units (OTUs)
using VSEARCH. Taxonomic assignments were conducted using
the RDP classifier algorithm (Wang et al., 2007) against the
UNITE fungal ITS database (Abarenkov et al., 2010). For 16S
rRNA amplicons, the sequencing data were processed using
QIIME v. 1.9.1 pipeline (Caporaso et al., 2010). The paired-
end sequences were merged, and then quality filtered using
PANDAseq (Masella et al., 2012). A closed reference-based OTU
picking approach was used to cluster reads into OTUs at 97%
sequence similarity using the UCLUST algorithm (Edgar, 2010).
Taxonomy was assigned using the RDP classifier algorithm
against the Greengenes v13_8 database (DeSantis et al., 2006).

For statistical analyses of fungal and bacterial communities,
sequences of each sample were rarefied to 21,307 and 19,998
sequences, respectively, based on the sample with the lowest
sequencing depth.

Quantitative PCR Analyses
The abundance of soil fungi and bacteria was assessed
by quantitative polymerase chain reaction (qPCR), using
fungal ITS region primers ITS1 (5′-TCCGTAGGTGAACCTGC
GG-3′; Gardes and Bruns, 1993) and 5.8s (5′-CGCTGCGTTCTT
CATCG-3′; Vilgalys and Hester, 1990) and bacterial 16S
rRNA encoding gene primers Eub338 (5′-ACTCCTACGGG
AGGCAGCAG-3′; Lane, 1991) and Eub518 (5′-ATTACCGCG
GCTGCTGG-3′; Muyzer et al., 1993), respectively. The qPCR was
performed on 96 well plates using the QuantStudio 3 real-time
PCR system (Applied Biosystems, Carlsbad, CA, United States).
The quantification of the 16S rRNA gene for bacteria and the
ITS gene for fungi to estimate the total microbial abundance was
performed using 1 µl of template DNA, 10 µl KOD SYBR qPCR
Mix, 0.2 µM each forward and reverse primers, 0.4 µl 50× ROX
Reference Dye, and water to adjust to a final volume of 20 µl
(Toyobo). The qPCR conditions were initial denaturing at 98 for
2 min, followed by 40 cycles for 10 s at 98◦C, 53◦C for 10 s,
68◦C for 30 s, and a final step for the melting curve. Plasmid
standards for quantification of fungal ITS and bacterial 16S rRNA
gene copy numbers were selected from the clone library. Plasmids
standards for fungal ITS and bacterial 16S rRNA were prepared
by cloning amplified genomic DNA of Serpula himantioides and
Pseudomonas aeruginosa, respectively. Fungal ITS and bacterial
16S rRNA gene copy numbers were generated using regression
equations relating copy numbers to the cycle threshold (Ct)
values. All of the qPCR reactions were run in triplicate with the
DNA extracted from each sample.

Statistical Analyses
Statistical analyses were conducted for both fungal and bacterial
communities. All statistical analyses were performed using
the R environment for statistical computing version 3.4.2 (R
Development Core Team, 2017). Multiple linear regression
analyses were performed to determine how the diversity and
abundance of soil microbes varied seasonally and spatially. In
these analyses, the response variables were the number of genera
and gene copies of soil fungi and bacteria, and the explanatory
variables were seasons, elevation, and soil depth. The variables
on seasons were represented as cos(2π d/365) and sin(2π d/365),
Sc and Ss, respectively, where d is the number of days counted
from first soil sampling date (i.e., July 3, 2016). The coefficients of
Sc and Ss can take positive or negative values depending on how
the number of genera and gene copies responds to the season.
In multiple linear regression analyses including both of these
two variables, all days can be placed as a peak (Supplementary
Figure S1). The elevation variable (Ele) was calculated from
airborne LiDAR point cloud data (Shigyo et al., 2017). The
soil depth variable (Dep) was treated as a numerical one; 0–
5 cm = 2.5 cm, 5–10 cm = 7.5 cm, 10–20 cm = 15 cm, and
20–30 cm = 25 cm. All explanatory variables were standardized
to mean zero and unit variance. Then, a likelihood ratio test was
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applied to evaluate the relative importance of seasons (Sc and
Ss), elevation, and soil depth by comparing the model with null
models without these variables. The fit of the regressions was
assessed using R2 and the variance explained by each explanatory
variable (1R2).

Finite mixtures of negative binomial regression models
with an algorithm for model-based clustering were used to
identify clusters in fungal and bacterial communities at the
genus level and to assess the relative importance of seasons
(Sc and Ss), Ele, and Dep for each cluster. This approach
uses the expectation-maximization (EM) algorithm to obtain
the maximum likelihood parameter estimates (Leisch, 2004),
allowing the simultaneous grouping and quantification of the
responses of multiple microbial genera to seasonal changes. The
EM algorithm has two steps, finding the expected value of the
likelihood function (E-step) and maximization of the likelihood
function (M-step). Although this approach has not often been
used in microbial community ecology, it is known to be effective
in analyzing the niche partitioning of multiple species along
environmental gradients (Dunstan et al., 2011; Ouédraogo et al.,
2013). In the current study, finite mixtures with two to 20
clusters were fitted for fungi and bacteria. For each number of
clusters, the EM algorithm was repeated five times with random
initialization. The Bayesian information criterion (BIC) was used
to determine the optimal number of clusters. To assess model
fit and predictive accuracy, the percentage of explained deviance
(D) was computed for each model: D = 100 × (null deviance
− residual deviance)/null deviance (Guisan and Zimmermann,
2000). The explained deviance by each explanatory variable
(1D) was also calculated. These models were calculated using
the flexmix (Leisch, 2004) and countreg (Kleiber and Zeileis,
2016) packages running on R. Furthermore, to find an indicator
genus for each cluster, we conducted the compositional indicator
genus analyses using the labdsv package (Roberts, 2010). Here,
an indicator value for each genus was calculated by using the
mean similarity among all samples in a cluster. The P-value of
an indicator value was calculated by comparing that value to the
distribution of mean similarities for a randomly generated set
with the same size.

Generalized linear models (GLM) were used to identify
environmental variables, including climate conditions (ST and
SWC), soil chemical properties (pH, soil C, soil N, soil C:N
ratio, Cl−, NO2

−, NO3
−, PO4

3−, SO4
2−, Na+, NH4

+, K+,
Ca2+, and Mg2+), and plant traits (canopy openness, leaf C,
leaf N, leaf C:N ratio, shoot C, shoot N, and shoot C:N ratio),
correlated with the number of genera and gene copies, and
genus level sequence counts of each cluster. In the models,
principal component analysis (PCA) was applied to reduce
the number of explanatory variables for soil properties and
plant traits. The first principal component (PC) axes were
selected for soil properties, explaining 27.0% of the total variance
(Supplementary Table S2). The first PC (Soil PC1) negatively
correlated with soil pH and NO2

−, SO4
2−, and Ca2+ and

positively correlated with C, N, C:N ratio, NO3
−, PO4

3−, NH4
+,

and K+. Here, Soil PC1 is interpreted as an organic material
driven fertility gradient. For plant traits, the first PC axis (Plant
PC1) was positively correlated with canopy openness and shoot

N and negatively correlated with leaf C, leaf N, leaf C:N ratio,
shoot C and shoot C:N ratio. Plant PC1 explained 64.3% of
the variance in plant traits (Supplementary Table S3). For
examining the potential influence of multicollinearity, variance
inflation factors (VIF) were calculated for each explanatory
variable in the models, but all VIF values were <10, implying
that there was no variable highly correlated with any other
variables. GLMs were fitted with the Gaussian distribution for
the number of genera and gene copies, and the negative binomial
distribution for sequence counts of each cluster. Finally, for
each model, the stepwise model selection was performed based
on the Akaike information criterion (AIC), using backward
selection to identify the minimum adequate model. For all
GLMs, D and 1D were calculated to assess model fit and
predictive accuracy.

Additionally, multiple linear regression analyses were
performed to determine how the environmental variables varied
seasonally and spatially. In these analyses, the response variables
were ST, SWC, Soil PC1, and Plant PC1, and the explanatory
variables were seasons (Sc and Ss), Ele, and Dep.

RESULTS

In this study, the amplicon sequencing of soil fungal ITS2
sequences resulted in the identification of a total of 5312
OTUs with 523 genera of fungi. Soil fungal communities
were dominated by Basidiomycota, followed by Ascomycota
and Mortierellomycota. The most abundant fungal genera
were Lactarius (Basidiomycota), Russula (Basidiomycota), and
an unidentified genus of the order Helotiales (Ascomycota).
For the amplicon sequencing of soil bacterial 16S rRNA
sequences, we detected a total of 8074 OTUs with 797 genera
of bacteria. Bacterial communities in soils were dominated by
Proteobacteria, followed by Acidobacteria and Actinobacteria.
The most abundant bacterial genera were an unidentified
genus of the order Ellin6513 (Acidobacteria), an unidentified
genus of the family Rhodospirillaceae (Proteobacteria) and
Hyphomicrobiaceae (Proteobacteria).

Multiple regression analyses showed a significant relationship
between the number of fungal genera and seasons, where the
peak of the number of fungal genera was observed in April, and
the minimum occurred in October (Figure 1A and Table 1).
Although the number of fungal genera was negatively associated
with soil depth, the relative importance of seasons was higher
than that of soil depth (Table 1). The number of copies of the
fungal ITS gene showed a positive association with elevation and
a negative association with soil depth and Ss, where elevation
had stronger correlations than soil depth and seasons (Table 1).
For soil bacteria, the number of genera showed significant
associations with elevation and soil depth, where the relative
importance of elevation was the highest (Figure 1B and Table 1).
The number of copies of the 16S rRNA gene had significant
associations with soil depth and seasons, where the variable with
the highest relative importance was soil depth (Figure 1B and
Table 1). The peak of the number of bacterial 16S rRNA gene
copies was apparent in April, and the minimum was observed
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FIGURE 1 | Seasonal dynamics of the number of genera and gene copies of soil fungi (A) and bacteria (B). The time series starts on July 3, 2016. The importance of
seasons (cosine and sine function with 1-year periodicity; Sc and Ss), elevation, and soil depth are denoted (e.g., Elevation > Depth shows that elevation has higher
relative importance than soil depth). Solid lines represent fitted equations from multiple regression analyses based on Sc and Ss. ∗∗∗P < 0.001 and ∗P < 0.05.

TABLE 1 | Results of multiple linear regression analyses.

Sc Ss Ele Dep R2

Coefficient P-value 1R2 Coefficient P-value 1R2 Coefficient P-value 1R2 Coefficient P-value 1R2

(A) Fungi

Number of genera −0.24 0.87 0 −6.61 < 0.001 0.13 −0.88 0.54 0 −3.12 0.03 0.03 0.16

Number of gene copies −1.11E + 07 0.19 0.01 −1.67E + 07 0.05 0.02 2.01E + 07 0.02 0.03 −3.62E + 07 < 0.001 0.11 0.18

(B) Bacteria

Number of genera −5.46 0.07 0.01 -0.36 0.91 0 −32.61 < 0.001 0.42 −13.23 < 0.001 0.07 0.50

Number of gene copies −2.49E + 07 0.94 0 −8.77E + 08 0.01 0.04 −6.28E + 08 0.07 0.02 −1.42E + 09 < 0.001 0.10 0.16

Seasons (cosine and sine functions with 1-year periodicity; Sc and Ss), elevation (Ele), and soil depth (Dep) to explain the number of genera and gene copies of soil fungi
(A) and bacteria (B). Significant slope values (P < 0.05) are highlighted in bold.
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in October (Figure 1B and Table 1). In these analyses, except
for the number of bacterial genera, showed relatively low R2

(Table 1). However, the 1R2 of the Ss explaining the number of
fungal genera was higher than that of Ss explaining the number
of bacterial genera (Table 1).

Finite mixtures of negative binomial regression models
showed that the fungal and bacterial sequence count data were
best classified into 10 clusters (Figure 2 and Table 2). For
fungi, sequence counts in clusters 2, 4, 5, 6, 8, 9, and 10 were
significantly associated with seasons. The importance of seasons
was higher than elevation and soil depth in clusters 4, 6, and
9 (Figure 2A and Table 2). However, fungal clusters 1, 3, and
7 were not significantly explained by seasons, elevation, or soil
depth (Figure 2A and Table 2). The explained deviance was less
than five percent, except for fungal clusters 2, 4, 9, and 10. The
genus level sequence counts of soil bacteria in clusters 1, 3, 4,
6, 7, and 9 were significantly related to seasons (Figure 2B and
Table 2). For all bacterial clusters, the relative importance of
seasons was lower than elevation or soil depth (Figure 2B and
Table 2). The explained deviance for bacterial clusters 2, 4, 5,
and 8 was less than five percent. Furthermore, soil microbial
taxa were defined by compositional indicator genus analyses for
each cluster (Table 3). The indicator genera are taxa that best
represent the response to the seasonal dynamics of each cluster.
For both fungal and bacterial communities, the genus level rank
abundance distribution was left-skewed with a few dominant
genera and many rare genera (Figure 3). Notably, fungal clusters

4, 5, and 9, and bacterial clusters 3, 4, and 9 were rare while
fungal clusters 6 and 8, and bacterial clusters 2 and 5 were
consistently dominant.

The generalized linear models showed the relationships
between environmental variables and the number of genera and
gene copies, and sequence counts for fungal and bacterial clusters
(Table 4). The number of fungal and bacterial genera showed a
positive association with Soil PC1 and Plant PC1. The number
of bacterial genera was negatively related to SWC. For both
fungi and bacteria, the number of gene copies had negative
relationships with ST and SWC and was positively associated
with Soil PC1. In addition, the number of fungal ITS gene copies
was negatively correlated with Plant PC1 (Table 4). SWC was
the most important factor for explaining the number of bacterial
genera and gene copies. However, for soil fungi, the relative
importance of Soil PC1 was higher than that of ST, SWC, and
Plant PC1. In terms of the most significant variable for each
cluster, ST was positively associated with sequence counts in
fungal clusters 1 and 3. SWC was positively associated with
sequence counts in fungal cluster 7 and bacterial clusters 3 and
8 although it had a negative relationship with bacterial sequence
counts in cluster 5. For fungal cluster 10 and bacterial cluster 2,
sequence counts were positively related to Soil PC1. Soil PC1 was
also negatively associated with fungal sequence counts in cluster
5. For fungi and bacteria, several clusters had strong relationships
with Plant PC1, where fungal cluster 9 and bacterial cluster 10
had negative associations but fungal clusters 2 and 8, and bacterial

FIGURE 2 | Seasonal dynamics of the predicted sequence counts of soil fungi (A) and bacteria (B) based on finite mixtures of negative binomial regression models.
The time series starts on July 3, 2016. The clusters are colored differently. Solid, dashed, and dotted lines represent high, middle, and low elevation sites, respectively.
Width of lines increases from shallow to deep soil depth. The importance of seasons (cosine and sine function with 1-year periodicity; Sc and Ss), elevation, and soil
depth are denoted (e.g., Elevation > Depth shows that elevation has higher relative importance than soil depth). ∗∗∗P < 0.001, ∗∗P < 0.01, and ∗P < 0.05.
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TABLE 2 | Results of finite mixtures of negative binomial regression models.

Sc Ss Ele Dep D

Coefficient P-value 1D Coefficient P-value 1D Coefficient P-value 1D Coefficient P-value 1D

(A) Fungi

Cluster 1 0.06 0.19 0.06 0.05 0.30 0.04 −0.05 0.35 0.04 −0.07 0.12 0.09 0.22

Cluster 2 −0.12 0.16 0.20 0.34 < 0.001 1.99 −2.98 < 0.001 56.55 0.08 0.36 0.06 58.81

Cluster 3 0.03 0.33 0.05 0.07 0.07 0.14 −0.06 0.06 0.14 0.01 0.72 0.01 0.33

Cluster 4 −0.01 0.90 0.55 0.81 < 0.001 4.50 −0.29 < 0.01 0.87 0.15 0.13 0.20 6.12

Cluster 5 −0.18 0.01 0.28 0.21 < 0.01 0.61 −0.02 0.76 0.00 0.31 < 0.001 1.13 2.03

Cluster 6 0.04 0.12 0.45 −0.05 0.06 0.56 0.03 0.22 0.23 −0.01 0.61 0.04 1.29

Cluster 7 0.03 0.68 0.01 0.11 0.09 0.12 0.07 0.43 0.02 −0.10 0.13 0.10 0.24

Cluster 8 0.03 0.29 0.03 −0.07 0.01 0.35 −0.13 < 0.001 1.17 0.03 0.22 0.08 1.63

Cluster 9 −0.07 0.45 0.09 0.59 < 0.001 4.04 0.31 < 0.001 1.16 0.05 0.57 0.01 5.31

Cluster 10 −0.25 0.02 2.02 0.34 < 0.01 0.58 1.44 < 0.001 12.98 −0.20 0.05 0.40 15.98

(B) Bacteria

Cluster 1 −0.17 0.05 0.20 0.13 0.10 0.00 0.19 0.05 0.00 1.18 < 0.001 16.76 16.96

Cluster 2 −0.02 0.21 0.04 −0.00 0.87 0.00 0.08 < 0.001 0.70 −0.10 < 0.001 0.77 1.52

Cluster 3 −0.16 < 0.01 0.13 0.06 0.24 0.40 −0.15 0.03 0.05 1.17 < 0.001 16.95 17.54

Cluster 4 −0.13 0.01 0.07 0.15 < 0.01 0.32 −0.56 < 0.001 4.47 0.09 0.07 0.12 4.99

Cluster 5 0.02 0.47 0.03 0.00 0.96 0.00 0.04 0.04 0.19 −0.03 0.22 0.07 0.29

Cluster 6 0.03 0.08 0.01 0.04 0.03 0.06 −0.50 < 0.001 9.92 0.10 < 0.001 0.53 10.52

Cluster 7 −0.05 0.04 0.00 0.08 < 0.001 0.02 −0.96 < 0.001 21.12 −0.05 0.02 0.08 21.22

Cluster 8 −0.05 0.02 0.12 −0.01 0.70 0.01 0.24 < 0.001 1.56 −0.07 < 0.001 0.14 1.83

Cluster 9 −0.08 < 0.001 0.03 0.02 0.31 0.01 −1.34 < 0.001 27.87 −0.25 < 0.001 1.10 29.01

Cluster 10 −0.03 0.22 0.24 −0.02 0.40 0.09 0.58 < 0.001 13.76 −0.08 < 0.001 0.28 14.36

Seasons (cosine and sine functions with 1-year periodicity; Sc and Ss), elevation (Ele), and soil depth (Dep) to identify clusters in fungal (A) and bacterial (B) sequence
counts. Significant slope values (P < 0.05) are highlighted in bold. D represents the percentage of explained deviance, and 1D shows the explained deviance by each
explanatory variable.

clusters 4, 6, 7, and 9 had positive relationships. No relationship
with environmental variables was detected for sequence counts in
fungal cluster 6 (Table 4). In these models, the explained deviance
for fungal clusters 1 and 3 to 9, and bacterial clusters 2, 4, 5 and 8
was less than five percent.

Also, for multiple regression analyses, ST had a positive
relationship with Sc and Ss, but was negatively associated
with Ele (Supplementary Table S4). SWC was negatively
related to Sc and Dep although it had a positive association
with Ele (Supplementary Table S4). Soil PC1 was negatively
correlated with Ss and Dep, but positively correlated with Ele
(Supplementary Table S4). Plant PC1 was negatively associated
with Sc, Ss, and Ele (Supplementary Table S4).

DISCUSSION

The seasonal dynamics of the observed diversity and abundance
of soil fungi and bacteria showed various patterns. In this study,
the patterns of diversity and abundance did not synchronize
between fungi and bacteria. The observed fungal diversity showed
seasonally larger fluctuation than bacterial diversity, as the
coefficient of determination of the seasonal variable (i.e., Ss)
for fungal diversity was more significant than that for the
bacterial diversity. These findings suggest that the seasonal
dynamics of fungal and bacterial communities are caused by

different processes in forest soils, which is consistent with
previous studies showing the relationships between seasonal
changes in environmental factors and community structures
of belowground microbes (Berg et al., 1998). For example,
Buckeridge et al. (2013) found that soil fungal biomass was at least
double that of bacteria during winter seasons at high latitudes,
implying that fungi and bacteria might have different roles in
biogeochemical cycles. One possible reason that soil fungi and
bacteria have different seasonal diversity patterns is that soil fungi
exhibit a narrower range of physiologies than do bacteria. Indeed,
soil fungi are all heterotrophs, whereas soil bacteria can be
photoautotrophs, heterotrophs or chemoautotrophs (Waid, 1999;
Lladó et al., 2017). However, the results of the present study show
that the abundance of soil fungi is stable across seasons although
the diversity of soil fungi was characterized best by seasons rather
than by elevation and soil depth. The mycelial network, which
is highly conservative in terms of nutrient use (Boddy, 1999),
might contribute to maintaining the abundance of soil fungi
across seasons. Our results suggest that these differences between
fungi and bacteria in response to seasons could be determined by
environmental factors such as climate conditions, soil properties,
and plant traits.

Climate conditions, soil properties, and plant traits, reflecting
temporal variations, can have direct effects on soil microbial
communities (Bardgett et al., 2005; Baldrian et al., 2013; Buscardo
et al., 2018). The observed patterns show that the diversity and
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TABLE 3 | List of the most reliable indicator taxa for fungal (A) and bacterial (B) clusters.

Clusters Phylum Class Order Family Genus Indicator value P-value

(A) Fungi

Cluster1 Basidiomycota Unidentified Unidentified Unidentified Unidentified 0.39 0.01

Cluster2 Ascomycota Pezizomycotina GS35 Unidentified Unidentified 0.40 0.01

Cluster3 Basidiomycota Tremellomycetes Cystofilobasidiales Cystofilobasidiaceae Mrakia 0.51 0.01

Cluster4 Ascomycota Sordariomycetes Hypocreales Ophiocordycipitaceae Haptocillium 0.78 0.02

Cluster5 Ascomycota Sordariomycetes Xylariales Apiosporaceae Arthrinium 0.21 0.01

Cluster6 Basidiomycota Agaricomycetes Russulales Russulaceae Lactarius 0.74 0.01

Cluster7 Basidiomycota Agaricomycetes Agaricales Mycenaceae Xeromphalina 0.25 0.01

Cluster8 Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolales Rhodotorula 0.64 0.01

Cluster9 Ascomycota Dothideomycetes Pleosporales Leptosphaeriaceae Leptosphaeria 0.24 0.01

Cluster10 Basidiomycota Agaricomycetes Agaricales Strophariaceae Naucoria 0.20 0.01

(B) Bacteria

Cluster1 WS3 PRR-12 Sediment-1 Unidentified Unidentified 0.34 0.01

Cluster2 AD3 JG37-AG-4 Unidentified Unidentified Unidentified 0.65 0.01

Cluster3 Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 0.26 0.01

Cluster4 Firmicutes Clostridia Clostridiales Veillonellaceae Pelosinus 0.50 0.01

Cluster5 Proteobacteria Deltaproteobacteria Syntrophobacterales Syntrophobacteraceae Unidentified 0.75 0.01

Cluster6 Nitrospirae Nitrospira Nitrospirales Nitrospiraceae Nitrospira 0.56 0.01

Cluster7 Chloroflexi Ktedonobacteria JG30-KF-AS9 Unidentified Unidentified 0.50 0.01

Cluster8 Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Acidocella 0.41 0.01

Cluster9 Proteobacteria Deltaproteobacteria Myxococcales OM27 Unidentified 0.46 0.01

Cluster10 Chloroflexi TK17 Unidentified Unidentified Unidentified 0.48 0.01

For each cluster, indicator values for each genus were calculated by using the mean similarity among all samples in a cluster. The P-value of an indicator value was
calculated by comparing that value to the distribution of mean similarities for a randomly generated set with the same size.

abundance of soil fungi are associated with soil fertility and
that soil bacterial diversity and abundance are closely related
to soil water contents. The results imply that the contribution
of these factors to soil fungi and bacteria can result in distinct
seasonal patterns. Indeed, Berg et al. (1998) investigated seasonal
belowground fungal and bacterial biomass and found that
water content and temperature were critical factors. Besides
climate conditions, soil organic matter and pH clearly explained
seasonal dynamics of soil microbial communities, as shown
in previous studies (Siles et al., 2017; Buscardo et al., 2018).
For example, in their study on the seasonal dynamics of soil
microbial communities along elevational gradients in mixed
deciduous and coniferous forests, Siles et al. (2017) found that
soil fungal communities were related to the seasonal dynamics
of the chemical composition of soil organic matter. Because the
soil variable, reflecting K+ and PO4

3−, explained the observed
patterns of fungal and bacterial communities (Table 4 and
Supplementary Table S2), the current study also indicated that
both the spatial and seasonal dynamics of water-soluble ions
can shape soil microbial communities. For microorganisms, K+
is necessary as a regulator of both cytoplasmic pH and cell
turgor (Booth, 1985) and PO4

3− is involved in the control
of energy metabolism and cell structures (Bergkemper et al.,
2016). Overall, our results highlight differing drivers for seasonal
dynamics of fungal and bacterial communities in cool-temperate
forest soils. The observed bacterial diversity and abundance
were largely explained by elevation and soil depth rather than
seasons, implying that spatial differences rather than seasonal

dynamics are more important in determining soil bacterial
community structures.

Elevation is a crucial factor in regulating soil microbial
communities (Peay et al., 2017; Shigyo et al., 2019). Although
soil fungal communities showed large seasonal dynamics in this
study, elevation was also important in determining soil microbial
communities. Specifically, the observed diversity of soil bacteria
decreased while fungal abundance increased with increasing
elevation (Table 1). Elevated soil C:N ratio at the higher
elevations might have contributed to these observed patterns.
Indeed, high soil C:N ratio is often related to fungal-dominated
communities (Fierer et al., 2009). Litter at higher elevations
is typically more recalcitrant because of increased nutrient
limitation and leaf thickness (Bruijnzeel and Veneklaas, 1998).
These patterns could favor soil fungi, which can decompose
more recalcitrant organic matter than soil bacteria (Schneider
et al., 2012). Besides elevation, the difference in soil depth
explained the abundance of both soil fungi and bacteria (Figure 1
and Table 1), leading to lower diversity and abundance at
deeper depths. According to the relationships between soil depth
and environmental variables (Supplementary Table S4), the
influence of soil water contents that change with soil depth
are considerable. In experimental studies, soil water conditions
along soil depth are important factors determining soil bacterial
diversity and community structures (Wang and Or, 2013;
Engelhardt et al., 2018). This study highlights the importance
of soil water contents for soil bacterial communities, which is
consistent with previous studies (Eilers et al., 2012).
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FIGURE 3 | Genus level rank abundance distribution and the range of genus rank per cluster for fungal (A) and bacterial (B) communities.

At the genus level, the taxonomic composition of both
observed fungi and bacteria showed notable seasonal dynamics.
The observed fungal clusters with high sequence counts
demonstrated clear seasonal dynamics. For example, the
ectomycorrhizal genus Lactarius was abundant during the plant
growing season (cluster 6 in Figure 2A), which is consistent
with a previous study showing seasonal changes of soil fungal
communities in boreal forest ecosystems (Santalahti et al., 2016).
However, the cluster was not associated with the observed plant
traits (Table 4), which implies that unconsidered variables such
as phenology of root growth might shape seasonal patterns
of abundant fungal communities. Although bacterial clusters

with high sequence counts were seasonally stable (clusters 2
and 5 in Figure 2B), the subdominant cluster represented by
Nitrospira showed seasonal dynamics (cluster 6 in Figure 2B).
Similarly, rare microbial groups (clusters 4 and 9 in Figure 2A
and clusters 3 and 4 in Figure 2B) fluctuated seasonally
more than dominant ones, implying that an increase in the
compositional variety of soil organic matter through litterfall
might facilitate growth of diverse rare microbes. Indeed, plant
phenology can, directly and indirectly, affect the seasonal
dynamics of soil microbial communities because plants influence
C and N availability for soil fungi and bacteria as a result of
exudation of labile C through the roots and substrate input by
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TABLE 4 | Results of backward selection of generalized linear models using environmental variables, soil temperature (ST), soil water content (SWC), and principal
component (PC) axes of soil chemical properties and plant traits, to explain the number of genera and gene copies, and sequencing counts for each cluster as identified
by finite mixture modeling.

ST (◦C) SWC (%) Soil PC1 Plant PC1 D

Coefficient 1D Coefficient 1D Coefficient 1D Coefficient 1D

(A) Fungi

Number of genera – – – – 4.86 3.69 2.87 1.91 5.61

Number of gene copies −2.21E + 07 5.26 −3.20E + 07 7.70 5.82E + 07 7.35 −2.04E + 07 2.09 22.40

Cluster 1 0.06 0.07 – – – – – – 0.07

Cluster 2 1.16 2.15 −1.24 35.75 −0.60 0.66 2.13 13.17 51.73

Cluster 3 0.05 0.19 – – −0.05 0.09 – – 0.27

Cluster 4 0.32 2.94 – – −0.25 0.04 −0.23 0.02 2.96

Cluster 5 −0.17 0.00 – – −0.33 0.54 −0.16 0.17 0.71

Cluster 6 – – – – – – – – –

Cluster 7 0.13 0.02 0.17 0.27 – – – – 0.29

Cluster 8 – – – – −0.06 0.81 0.09 0.49 1.29

Cluster 9 – – – – – – −0.55 2.85 2.85

Cluster 10 −0.35 2.65 – – 0.93 7.15 −0.74 3.89 13.70

(B) Bacteria

Number of genera – – −31.06 17.20 19.95 2.67 15.27 6.95 26.82

Number of gene copies −6.73E + 08 1.37 −3.45E + 09 16.08 3.23E + 09 2.73 – – 20.18

Cluster 1 – – 2.02 0.00 −1.86 10.71 0.47 1.54 12.25

Cluster 2 – – – – 0.12 1.64 −0.03 0.06 1.70

Cluster 3 0.19 0.19 1.90 0.01 −1.70 12.02 0.57 0.00 13.39

Cluster 4 0.30 0.49 0.16 1.29 −0.18 0.14 0.45 1.51 3.43

Cluster 5 – – −0.09 0.00 0.07 0.16 −0.05 0.21 0.37

Cluster 6 0.23 1.18 – – −0.13 4.83 0.39 4.52 10.54

Cluster 7 0.51 1.59 – – 0.09 3.77 0.87 11.07 16.42

Cluster 8 −0.04 0.37 0.11 1.40 0.09 0.09 −0.10 0.19 2.05

Cluster 9 0.48 1.23 −0.71 9.45 0.55 1.60 0.98 6.33 18.60

Cluster 10 −0.20 2.87 – – 0.25 7.53 −0.36 3.75 14.15

D represents the percentage of explained deviance, and 1D shows the explained deviance by each explanatory variable.

litterfall (Bardgett et al., 2005). According to the differences in
the range of physiologies between soil fungi and bacteria, soil
fungi are more dependent on fixed sources and environments
than bacteria and might not have many available niches across
seasons. Importantly, the seasonal dynamics of both dominant
and rare taxonomic groups were different between fungal and
bacterial communities. Although this study does not consider the
interactions between soil fungal and bacterial communities, such
different seasonal dynamics imply that the seasonal assembly
processes are fundamentally different between soil fungal and
bacterial communities.

Soil microbial communities are incredibly diverse and often
contain many rare taxa. Recently, these microbial taxonomic
groups have been named conditionally rare taxa (CRT; Shade
and Gilbert, 2015). Because CRT can explain up to 97% of
temporal dynamics in microbial community structures (Shade
et al., 2014), a better understanding of CRT might provide a more
complete picture of microbial community ecology and ecosystem
functioning (Shade and Gilbert, 2015). Indeed, Aanderud et al.
(2015) found that a soil-rewetting event resuscitated bacterial
CRT and reduced the net production of methane, highlighting
the contribution of rare microbial taxa to ecosystem functioning.

In the current study, because the taxonomic groups were
composed of genera with high rank, such as fungal clusters
4 and 9, and bacterial clusters 3 and 4, and they showed
remarkable seasonal patterns, these groups were considered
to be CRT. Among them, Pelosinus, detected as an indicator
genus in cluster 4, is known as an iron-reducing bacterium
(Hansel et al., 2008), which is consistent with other studies that
have shown that rare microbial taxa exhibit unique functions
and biogeographical patterns along environmental gradients
(e.g., Gies et al., 2014). Furthermore, Haptocillium, an indicator
genus in fungal cluster 4, are endoparasites of nematodes and
Bifidobacterium, an indicator genus in bacterial cluster 3, are
beneficial gut microbiota. These results imply that the seasonal
dynamics of animal communities in forests might contribute
to unexplained variations of seasonality of these microbial taxa.
However, because seasonal patterns of CRT clusters were not
synchronized with those of the number of genera (Figures 1, 2
and Supplementary Table S5), CRT might not account for the
seasonal dynamics of the overall diversity. Therefore, whether
CRT play a significant role in forest ecosystems and microbial
communities is still controversial. Future research needs to
clarify how seasonal changes in CRT contribute to the whole
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microbial diversity and how the functions of CRT contribute to
forest ecosystems.

Given the magnitude of climate change predicted for soil
ecosystems in mid-to-high latitudes forests, it is crucial to identify
whether the seasonal dynamics of soil microbial communities
in these forests are unique. The observed seasonal patterns of
the dominant fungal taxa (i.e., Lactarius) tended to be similar to
those of temperate (Voříšková et al., 2014) and boreal (Santalahti
et al., 2016) forests in other regions. However, the seasonal
patterns of subdominant and rare fungal taxa in those forests
showed a different tendency in comparison to the results from
the current study. In contrast to soil fungi, Kuffner et al. (2012)
found an increase of the rare phylum Nitrospira in summer
in a temperate montane forest, which is consistent with our
results. However, there are no studies focusing on the seasonal
dynamics of dominant and rare bacterial taxa in mid-to-high
latitude forests (e.g., Schmidt et al., 2007; Žifčáková et al., 2017).
These differences between the current and other studies can be
explained by differences in climate conditions. In colder regions,
seasonal snow cover might have the potential to influence soil
microbial communities, resulting in the distinct seasonal patterns
of taxonomic composition of soil microbes (Schmidt et al.,
2007). However, snowfall seldom remains without melting in
this study area (Franklin et al., 1979; Maruta et al., 1997),
which might result in no changes in microbial community
composition in the winter season. Our findings suggest that the
rapid decline of soil temperature without snow cover shapes the
unique seasonality of soil microbial communities, including both
dominant and rare taxa.

This study provides the first comprehensive analysis of the
seasonal and spatial dynamics of soil microbial communities
in cool-temperate montane forests. Our findings were that:
(i) the seasonal dynamics of the diversity and abundance of soil
microbes was distinguished between fungi and bacteria, where
the diversity and abundance of soil fungi were explained by soil
fertility but those of soil bacteria were associated with soil water
contents; (ii) the relative importance of seasons to soil fungal
communities tended to be higher than that of elevation and
soil depth, although soil depth clearly explained the abundance
and taxonomic composition of soil fungi and bacteria; and
(iii) seasonal dynamics of both abundant and rare groups were
different between fungal and bacterial taxonomic compositions,
and these differences were primarily explained by climate
conditions, soil fertility, and plant phenology. These results
imply that the contribution of seasonal changes in environmental
factors to microbial communities might be equal to or greater
than the effects of spatial heterogeneity of those factors. However,

further studies are needed to determine what environmental
factors affect the seasonal patterns of soil microbial communities,
because the explanatory power of our models for most of the
microbial taxa was relatively low. Overall, the presented results
provide insight into the influences of environmental changes
on soil fungal and bacterial communities exerted via seasonal
dynamics of aboveground–belowground components and could
serve to guide future studies on soil microbial ecology for
improved forest ecosystem performance.
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