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T cells play an important role in antitumor immunity, and the T cell immunoglobulin domain and the mucin domain protein-1
(TIM-1) on its surface, as a costimulatory molecule, has a strong regulatory effect on T cells. TIM-1 can regulate and enhance type 1
immune response of tumor association. Therefore, TIM-1 costimulatory pathways may be a promising therapeutic target in future
tumor immunotherapy. This review describes the immune regulation and antitumor effect of TIM-1.

1. Introduction

Immune suppression is an important factor for immune
evasion of tumor. Generally, the immune systems of tumor
patients often have excessive inhibitory functions, which
are induced by regulatory T cells (Tregs), myeloid-derived
suppressor cells (MDSCs), or the secretion of immunosup-
pressive cytokines, such as tumor growth factor-𝛽 (TGF-𝛽)
and interleukin-10 (IL-10). These conditions constitute an
extremely favorable microenvironment for tumor progres-
sion [1–4]. Therefore, it is important to find novel targets for
reversing immunosuppression microenvironment.

The identification of new classes of costimulatory mole-
cules provides new exciting opportunities for inducing and
enhancing effective endogenous immune response to cancer.
TIM-1, a key member and costimulatory molecule in the
T cell immunoglobulin mucin (TIM) family, is expressed
on the surface of T cells. It can promote the activation and
proliferation of T cells and the secretion of cytokines, which
play critical roles in tumor immunity [5–9]. Our preliminary
studies have shown that TIM-1 may be a novel candidate
tumor therapeutic costimulatory molecule, because it may
directly enhance the functions of CD8+ T cells and/or NK
cells, as well as altering the tumor microenvironment for
more effective antitumor immune response (data not shown).
This review tries to describe how TIM-1 regulates immune

function and takes part in antitumor immune responses and
illustrates the mechanism of immune regulation.

2. Structure and Basic Function of TIM-1

In human, there are three members (TIM-1, TIM-3, and
TIM-4) located in the human chromosome 5q33.2 region. In
mouse, the TIM family consists of eight members (TIMs 1–8)
located in the 11B1.1 region of chromosome. The human and
mouse TIM family genes are highly homologous [8, 10]. Like
other TIMmembers, TIM-1 is similar in structure to the type
1 membrane protein, which consists of an N-terminal Cys-
rich immunoglobulin variable- (IgV-) like domain, a mucin-
like domain, a transmembrane domain, and an intracellular
tail [11, 12]. The intracellular tail of TIM-1 contains tyrosine
phosphorylation motifs that are involved in transmembrane
signal [8, 13–15].

The expression of human TIM-1 was first detected in
damaged kidney and named human kidney injurymolecule-1
(KIM-1) [16–19]. Previous studies have indicated that in vivo
TIM-1 gene mutations in human and mouse are associated
with some allergic diseases [8, 20]. Abnormal expression of
TIM-1 is related to some autoimmune diseases [21–27]. In
recent years, study found that TIM-1 is mainly expressed
on the surfaces of CD4+ T cells, CD8+ T cells, NK cells,
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macrophages, DCs, B cells, andmast cells [28]. Moreover, it is
also found that TIM-1 is expressed in lymphoid tissues [8, 29]
and confirmed that TIM-1 can promote the production of
cytokines and enhance the antigen induced immune response
of T cells [30–35]. Therefore, TIM-1 may be a potential cos-
timulatorymolecule to enhance antitumor immune response
[8, 23, 35–38].

3. Immune Regulation of TIM-1

TIM-1 is a highly efficient costimulatory molecule, which can
enhance the formation of CD3-TCRwith agonistic anti-TIM-
1 antibody involved in the activation of T cells [7, 8, 37, 39].
Themain ligands of TIM-1 are TIM-4 and phosphatidylserine
(PS) [36, 40, 41]. TIM-4 is expressed on the surface of antigen
presenting cells (APCs) such as macrophages and dendritic
cells, working as an endogenous ligand of TIM-1 [5, 42,
43]. TIM-4 can promote T cell activation, proliferation, and
cytokine production by binding to TIM-1, which mediates
the positive regulation of T cells and triggers the immune
response with costimulatory effect [30, 40]. PS is another
important ligand of TIM-1 and can activate NKT cells by
binding to TIM-1 on the surface of NKT cells [12, 44,
45]. In addition, P-selectin and S-selectin are also potential
ligands for TIM-1 and may play roles in inflammation and
autoimmune diseases.This signal pathway is closely related to
the migration of Th1 andTh17 cells in blood vessels [38, 46].

The biological function of TIM-1 mainly depends on
lymphocytes. TIM-1 in CD4+ T cells can upregulate the
activation signal of T cells by interacting with T cell receptor
(TCR), which promotes the synergistic effect of TIM-1 [8, 47].
In immune regulation, the positive and negative regulation of
TIM-1 are essential for the maintenance of immune home-
ostasis. The immune regulation of TIM-1 mainly depends
on its ligands [8]. It has been reported that agonistic TIM-1
mAbs (clone 3B3 and clone 1H8.2) augment T cell-mediated
immune responses, whereas an antagonistic antibody inhibits
immune responses through regulatory B cells [48]. Agonistic
TIM-1 monoclonal antibody can promote the proliferation of
CD8+ T cells in vitro and enhance their biological function
[49]. The different effects of agonistic and antagonistic TIM-
1 mAbs in vivo may be due to the fact that different TIM-1
mAbs deliver qualitatively and quantitatively different signals
to T cells and B cells. The TIM-1 signaling on B cells is
important inmaintaining normal homeostasis of the immune
system and preventing systemic autoimmunity [50, 51]. In
CD4+ T cells, the TIM-1 molecules bound with agonistic
TIM-1 mAbs [39] or other agonistic ligands can produce a
strong costimulation signal to activate T cells, promote the
differentiation and proliferation of T cells in vivo, activate the
production of cytokines, and enhance the antigen induced
immune response of T cells [30–34]. Previous studies have
found that the inhibition of TIM-1 signal of CD4+ T cell can
reduce the level of white blood cells and the production of
inflammatorymediators, which can reduce the tissue damage
caused by excessive inflammatory reactions [30, 35, 52, 53].

The negative regulation of immune function of TIM-1
in B cells plays a key role in preventing immune rejection

[51, 54]. The inhibition of TIM-1-Fc signaling inhibits the
differentiation and function of CD4+ T cells and further
reduces chronic rejection reactions [55]. Zhang et al. have
found that the suppression of the TIM-1 signal in CD4+ T
cells can inhibit the activity of macrophages and reduce the
injury of transplanted liver in a mouse model [56]. TIM-1 is
also a key molecule in the regulation of immune rejection of
allogeneic transplantation [49], and functional deficiency of
TIM-1 is also one of the mechanisms of autoimmune diseases
[50]. The expressions of TIM-3 and TIM-1 on the surface
of mouse mast cells promote the secretion of IL-13, IL-6,
and IL-4, indicating that mast cells also regulate immune
function through TIM members [57]. Study also found that
the inhibition of TIM-1 signal can reduce infiltration of T cells
into allergic skin tissues and tissues of autoimmune diseases
[38], and deficiency of TIM-1 reduces the incidence of allergic
asthma in a mouse model [58]. Therefore, TIM-1 may also be
related to the molecular mechanism of allergic diseases.

4. TIM-1 for Cancer Immunity

Type 1 immune response, mediated by Th1 cells, cytotoxic
T lymphocytes (CTLs), NK cells, NKT cells, and gamma
delta T cells, is considered as a critical component of
cell-mediated immunity against tumor. CD8+ T cells are
important T cell subsets in specific immune response. They
are the final effector cells to kill tumor and inhibit tumor
progression in vivo, which are widely used in tumor adoptive
immunotherapy [59, 60]. In human, the presence of Th1
cells and CTLs in tumor can be a favorable prognostic
indicator [61]. However, many tumor infiltrating Th1 and
CD8+ T cells are in a status of nonresponsiveness due to local
and systemic mechanisms of immune suppression in cancer
patients as well as in tumor-bearing mice and even play a
protective role for tumor [62, 63]. The lack of costimulation
of type 1 lymphocytes is the major mechanism underlying
tumor-induced immune tolerance [64, 65]. Thus, agonistic
antibodies against costimulatory receptors such as 4-1BB and
CD40 have shown promising antitumor effects in various
preclinical tumor models, which are evaluated in clinical
trials. The costimulation signal plays an important role in
CD8+ T cells [64]. In the model of acute renal injury induced
by cisplatin, blocking of TIM-1 signal can significantly reduce
the number of CD8+ T cells and inhibit the secretion of IFN-
𝛾, indicating that TIM-1 costimulation signal can enhance the
effect of CD8+ T cells [66].

In the TIM family, to date, it has been confirmed that
TIM-3 is related to tumor [67, 68] and found that the
expression of TIM-3 has an important influence on tumor
microenvironment [69, 70]. However, we still have a lot of
unknowns regarding the effects of tumor immunity of TIM-
1. There are only a few articles that can be retrieved, which
are about antitumor effect of TIM-1 [5, 6], but it has been
determined that TIM-1 can promote the proliferation and
differentiation of T cells by binding to different agonistic
ligands [15, 30, 40, 71]. A study has demonstrated that TIM-1
tyrosine phosphorylation can recruit the PI3K adaptors p85,
which stimulates the activation and function of T cells [15].
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Figure 1: Tumor cells release signals, which are received by dendritic cells (DCs). Tumor antigens are processed to MHC antigens and then
presented to the T cell receptor (TCR) for activation. TIM-4 (or phosphatidylserine) on DCs binds to TIM-1 on T cells to form the CD3-
TCR complex, which participates in TCR-mediated T cell activation and initiates the intracellular PI3K signal pathway. PI3K signal pathway
consists of the interaction between TIM-1 and ligands, tyrosine phosphorylation of the intracellular region of TIM-1, the recruitment of PI3K,
the activation of Akt by PI3K, and the activation of mTOR by Akt. Activated mTOR can regulate the biological functions of T cells.

In tumor microenvironment, the effector cells, such as CD8+
T cells, directly participate in immune response and can
enhance antigen recognition, proliferation, and differentia-
tion of other effector cells.

Ligation of the transmembrane protein TIM-1 can cos-
timulate T cell activation by the PI3K signaling pathway.
Agonistic antibodies to TIM-1 are also capable of inducing T
cell activation without additional stimuli; PI3K is an impor-
tant factor in mediating TIM-1 signaling [15]. It has been
known that the PI3K/Akt/mTOR signaling pathway plays a
crucial role in the regulation of cell growth, proliferation, and
metabolism. The immune cells and tumor cells compete for
energy. The activation of some signaling molecules closely
related to energy metabolism regulates T cell activation, dif-
ferentiation, and function and further enhances the antigen
recognition, proliferation, and the differentiation of T cells.
So far, PI3K/Akt/mTOR signaling pathway is a target of
tumor therapy [72–77].

The transcription factor T-bet/Eomes is involved in the
regulation of CD8+ T cell function and induces the differ-
entiation of CD8+ T cells to effector and central memory T
cells [78, 79].The expression level of TIM-1 and T-bet/Eomes
has important effects on regulating the biological function of
T cells, and the expression of T-bet is closely related to the
prognosis of tumor patients [24, 80]. We have analyzed 152
cases of gastric cancer patients and found that the expression
of T-bet is closely related to the survival of tumor patients.The
number of T-bet positive T cells in tumor tissues has a signifi-
cant effect on the prognosis of the patients [81]. T-bet/Eomes,
which stimulates the activation and differentiation of CD8+
T cells, is significantly upregulated in the tumor of the third

day after radiofrequency ablation (RFA), and the expression
level of TIM-1 in infiltrating CD8+ T cells is significantly
upregulated. In T-bet/Eomes double knockout tumor model
mice, it has been found that the expression of TIM-1 is very
low in infiltrating CD8+ T cells stimulated by tumor antigen,
and in wild type mice it is significantly upregulated (data
not shown). At present, TIM-1 is considered to improve the
secretion of some cytokines such as IL-4 and IFN-𝛾 [82].
Type 1 immune response of TIM-1-mediated T cell activation
is associated with tumor immunity through transcription
factor T-bet/Eomes [71, 83] and the PI3K signal pathway [15]
(Figure 1).

5. Prospect

We speculate that TIM-1, a new costimulatory candidate
molecule for tumor treatment, not only directly enhances the
antitumor effect of CD8+ T cells andNKcells but also changes
the tumor microenvironment to induce more effective anti-
tumor immune response. As a target molecule, it may have
a good application prospect in clinical cancer research. In
addition, agonistic anti-TIM-1 monoclonal antibody or other
ligands can enhance the function of T cells [39, 82], increase
CD8+ T cells and NK cells, reduce MDSC in tumor tissues,
and inhibit tumor growth (data not shown). It is important
to define the mode of action and determine whether CD8+
T cells and NK cells mediate the antitumor effect of agonistic
TIM-1 mAbs in vivo. These may provide a theoretical basis
to construct a new tumor therapy model of TIM-1 signal
interference.
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