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Abstract: This study aimed at valorisation of sea buckthorn pomace (SBP) for the production of
extracts containing valuable bioactive compounds. For this purpose, SBP defatted by supercritical
CO2 was subjected to consecutive fractionation with pressurized ethanol and water, which yielded
11.9% and 4.8% of extracts, respectively. The extracts were evaluated for their antioxidant potential,
phytochemical composition and antiproliferative effects against cancer cells. Water extracts exhibited
remarkably higher values in Folin-Ciocalteu assay of total phenolic content, oxygen radical absorbance
capacity (ORAC), ABTS•+/DPPH• scavenging and cellular antioxidant activity (CAA) assays and
more efficiently inhibited proliferation of HT29 cells at non-cytotoxic concentrations measured in
non-tumoral Caco2 cells. Among 28 detected and 21 quantified phytochemicals, flavonols with
the structures of isorhamnetin (five compounds), quercetin (three compounds), kaempferol (three
compounds) glycosides and catechin (six compounds) were the most abundant in the extracts.
In conclusion, the applied method of fractionation of SBP produces promising natural antioxidant
complexes with antiproliferative properties that could find potential applications in nutraceuticals,
functional foods and cosmeceuticals.

Keywords: defatted sea buckthorn pomace; pressurized liquid extraction; antioxidant capacity;
antiproliferative activity; flavonoids

1. Introduction

Processing of horticultural crops generates large amounts of by-products, which nowadays are
used inefficiently or even discarded as a waste. It is estimated that globally 30–50% of agro-food
materials (approximately 1.3 billion tons per year) are wasted, while fruits and vegetables constitute
44% of the total losses [1]. Consequently, the residues of fruits and vegetables processing represent
a serious disposal problem for the industry; on the other hand, they are cheap sources of valuable
nutrients and other materials, which may find various applications.

The scopes of R&D and commercialization in the area of bio-refining of agro-food processing
by-products have been increasing over the last decades. However, large amounts of berry pomace
rich in bioactive compounds, retained after juice pressing, are still insufficiently valorised for a wider
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industrial implementation of their processing technologies and commercialization of the products
obtained. Numerous studies demonstrated that berry processing by-products may contain higher
amounts of valuable nutrients than the whole fruits or their main products [2]. Therefore, a detailed
knowledge on by-products composition and physicochemical properties is essential for developing
preferable methods of their recovery and further application in foods and other products.

Sea buckthorn (Hippophaë rhamnoides) berries (SB) are not consumed as fresh fruits; however,
they have become popular as raw materials of jams, beverages, candies, juices, etc. [3]. SB have been
widely studied; their chemical composition and health benefits have been reported in numerous
original articles and reviews [4]. The fruits are well known as a rich source of dietary antioxidants
belonging mainly to the class of phenolic compounds, primarily proanthocyanidins, gallocatechins
and flavonol glycosides [5,6]. To date, most SB-related studies have focused on health effects of juice
and polyphenolic extracts produced from the whole fruits [7–9], while SB pomace (SBP) have been less
investigated. The majority of studies focused on the isolation of tocopherol-rich lipophilic fraction from
the seeds [10–12]. Issartier et al. [13] applied solvent free microwave-assisted extraction of antioxidants
from SB press-cakes, while Varshneya et al. [14] recovered antioxidants from seedless pomace with
methanol, water and their mixture. More recently, SBP and seeds were fractionated by multistep
biorefining procedure [15]. However due to a lack of comprehensive and systematic valorisation
studies, large amounts of SBP are discarded as a waste, thus, causing the loss of a significant fraction of
valuable nutrients and biologically active compounds.

Consequently, recovery of polyphenols and other nutrient-rich extracts from SBP and development
of the standardized functional ingredients is of great interest for food, nutraceutical and cosmeceutical
industries. Biological berry matrix is highly heterogeneous and complex; therefore selection of
effective extraction/fractionation processes is an important step in separation and recovery of bioactive
compounds from the pomace. Moreover, nowadays in order to avoid undesirable changes of sensitive
bioactive compounds and considering high environmental and toxicological requirements for food
grade substances, green separation techniques are preferred to conventional liquid-solid extraction
with hazardous organic solvents. From this point of view, supercritical fluid extraction with carbon
dioxide (SFE-CO2), pressurized liquid extraction (PLE) with ethanol (EtOH) and water (H2O) have
gained popularity in recent years [16,17]. It was demonstrated that SFE-CO2 is an effective method for
recovery of lipophilic berry compounds, while extraction with EtOH and H2O produces the extracts
containing higher polarity constituents such as phenolics, sugars and others [18–21]. The majority of
polar plant origin polyphenolic compounds are strong radical scavengers and may inhibit oxidative
processes in food and, possibly, provide some defense against damaging effects of excessive radical
species, which may form in the cells due to the oxidative stress. Numerous studies have supported
the hypothesis that dietary antioxidants may reduce the risk of oxidative stress related diseases
and disorders and thereby might provide anticancer, anti-aging, antimicrobial, anti-inflammatory,
anti-neurodegenerative and other health beneficial effects [22].

Bioactivities of dietary antioxidants could be measured by the in vitro extracellular and cellular
assays. Many studies reported that the values measured by the chemical assays, e.g., widely used free
radical (DPPH•, ABTS•+) scavenging, oxygen radical absorbance capacity (ORAC), ferric reducing
antioxidant power (FRAP) and others, often do not correlate with the results obtained by the more
physiologically relevant methods both in vitro and in vivo. [23,24]. A Caco-2 cell model has been
reported to be a simple and useful system for investigating bioavailability of food phytochemicals
by determining the uptake of the main compounds. To improve biological relevance of antioxidant
activity results the cellular antioxidant activity (CAA) method was developed [25].

The aim of the present work was to expand our knowledge on the possibilities of recovery of
the defatted by SFE-CO2 SBP polyphenolics by consecutive PLE with green solvents and valorisation
of the extracts by the assessment of their phytochemical composition, antioxidant capacity and
antiproliferative activities. ORAC, DPPH, ABTS and CAA assays were conducted to evaluate the
extracellular and cellular antioxidant activities, while human epithelium colon cancer cells HT29 and
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human colon cancer cells Caco-2 were employed to test the antiproliferative activity and cytotoxicity
of obtained extracts. The results are expected to serve in developing valuable natural ingredients for
functional foods, nutraceuticals and cosmeceuticals.

2. Materials and Methods

2.1. Chemicals and Cells

Human Caco-2 and HT29 cell lines were purchased from DSMZ (Braunschweig, Germany) and
ATCC (Manassas, VA, USA), respectively. The cell culture medium and supplements were purchased
from Invitrogen (Gibco, Paisley, UK). Phosphate buffered saline was obtained from Sigma-Aldrich
(St. Louis, MO, USA) and cell viability was assessed using a CellTiter 96® AQueous One Solution Cell
Proliferation Assay (Promega, Madison, WI, USA).

The Folin-Ciocalteu reagent, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox),
2,2-diphenyl-1-picrylhydrazyl radical (DPPH•, 98%), gallic acid, KH2PO4, KCl, NaCl,
formic acid (98%), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS, 98%), K2S2O8,
2′,2′-azo-bis-(2-amidinopropane) dihydrochloride (AAPH), HPLC grade and LS-MS grade acetonitrile
were obtained from Sigma-Aldrich (Darmstadt, Germany). Disodium fluorescein, Na2HPO4·2H2O
and ethanol (99.9%) were from TCI Europe (Antwerp, Belgium), Riedel-de-Haen (Seelze, Germany)
and Scharlau (Barcelona, Spain), respectively. Na2CO3, 2′,7′-dichlorofluorescin diacetate (DCFH-DA),
quercetin (95%) were from Sigma-Aldrich (St. Quentin Fallavier, France). Ultra-pure water was
produced in a Simplicity 185 system (Millipore, Billerica, MA, USA). Analytical grade methanol and
acetone were purchased from StanLab (Lublin, Poland). The standards used for UPLC analysis (malic
acid, izorhamnetin, quinic acid, rutin, citric acid) were from Supelco Analytical (Bellefonte, PA, USA),
catechin, epigallocatechin from Extrasynthese (Genay Cedex, France).

2.2. Proximate Analysis of Sea Buckthorn Pomace (SBP)

The chemical composition of SBP was determined according to the procedures established by
the Association of Official Analytical Chemists [26]: moisture by drying at 105 ◦C to constant weight;
ash by mineralizing in a muffle furnace F-A1730 (Thermolyne Corp., Dubuque, IA, USA) at 500 ◦C
for 3 h; proteins by Kjeldahl method in a nitrogen analyzer (Leco Instruments Ltd., Mississauga, ON,
Canada) using a conversion factor of 6.25; crude lipids by Soxhlet extraction with hexane for 6 h.
The rest of dry matter was assigned to carbohydrates. Each determination was carried out in triplicate.

2.3. Sea Buckthorn Pomace Preparation and Extraction

Frozen Hippophaë rhamnoides SBP were obtained from local farmer, immediately freeze-dried and
ground in a laboratory mill Vitek (An-Der, Austria) by using 0.5 mm size sieve (further indicated in all
calculated values as dry weight powder, DWP). SBP powders were extracted by SFE-CO2 in a 100 mL
extractor (Applied Separations, Allentown, PA, USA) to remove lipophilic fraction. PLE of defatted
pomace powder (10 g) was mixed with diatomaceous earth (4 g), placed in 66 mL extraction cells and
consecutively extracted with ethanol (SBP-E) and water (SBP-W) in an accelerated solvent extraction
apparatus ASE350 (Dionex, Sunnyvale, CA, USA) at constant 10.3 MPa pressure and temperature
(70 ◦C for SBP-E and 120 ◦C for SBP-W) using 15 min static and 90 s purge time for each extraction
cycle (in total 3 cycles). EtOH was evaporated in a Rotavapor R-114 (Büchi, Flawil, Switzerland),
while residual water was removed by freeze-drying in a Maxi Dry Lyo (Hetto-Holton AIS, Allerod,
Denmark). The extracts were weighed and stored at −18 ◦C in a freezer until further analysis.

2.4. Total Phenolic Content (TPC) and Antioxidant Capacity Evaluation Analysis

TPC, DPPH, ABTS and ORAC assays were selected for the characterisation of SBP extracts. Detailed
description of these methods is provided elsewhere [27]. Briefly, for TPC assay extract solutions were
mixed with Folin–Ciocalteau reagent and 7% Na2CO3 in a 96-well microplate. The absorbance was
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measured at 765 nm after 30 min in a FLUOstar Omega Reader (BMG Labtech, Offenburg, Germany).
TPC was expressed in mg of GAE/g dry extract weight (DWE) and DWP.

For ABTS•+ decolourisation 6 µL of sample were added to 294 µL of ABTS•+ working solution,
while for DPPH• scavenging 8 µL of sample were mixed with 292 µL of DPPH•methanolic solution.
The absorbance was measured in 96-well microplates using a FLUOstar Omega Reader (BMG Labtech,
Ortenberg, Germany) during 30 min at 734 nm and 60 min at 515 nm for ABTS•+ and DPPH•,
respectively. Trolox was used as a standard, antioxidant capacity of the extracts was determined from
the calibration curves and the results were expressed as µM TE/g DWE and DWP. Each analysis was
carried out in six replicates.

For ORAC assay 25 µL of sample and 150 µL (14 µM) fluorescein solutions were placed into the
wells of a black 96-well microplate. Then the mixture was preincubated in a FLUOstar Omega Reader
for 15 min at 37 ◦C and 25 µL of AAPH (240 mM) were pipetted into each well. The fluorescence was
recorded every cycle (in total, 120 cycles) using 485 excitation and 530 emission fluorescence filters.
Antioxidant curves (fluorescence versus time) were first normalized and from the normalized curves
the net area under the fluorescein decay curve (AUC) was measured. The results were expressed in
µM TE/g DWE and DWP.

2.5. Analysis of Recovered Phytochemicals

2.5.1. HPLC-DPPH• Scavenging Online Analysis

HPLC analysis was performed on a Waters HPLC system (Waters Corporation, Milford, MA, USA)
equipped with a Waters 996 photodiode array detector, 1525 binary pump, column oven, and Rheodyne
7125 manual injector (Rheodyne, Rohnert Park, CA, USA), using a Hypersil C18 analytical column
(250 × 0.46 cm, 5 µm; Supelco Analytical, Bellefonte, PA, USA). The mobile phase was 0.4% aqueous
formic acid (v/v, A) and acetonitrile (B), with a gradient elution of 95% A, then changing to 90% in 5 min,
after that, in 11 min A was decreased to 84%, then in 29 min to 60% A, in 5 min to 5% A and then it was
hold at 5% for 3 min and in 2 min it was returned to initial conditions and column was equilibrated
for 5 min. The flow rate was 0.8 mL/min, the injection volume 20 µL, and column temperature was
maintained at 30 ◦C. UV spectra of compounds eluted from the column was recorded in the range from
220 to 450 nm and after the UV detection freshly prepared DPPH• (6 × 10−5 M) solution subsequently
was introduced to the main eluent flow and directed to the reaction coil (15 m, 0.25 mm ID) at a flow rate
of 0.6 mL/min by using Aligent 1100 series pump (Agilent Technologies, Inc. Santa Clara, CA, USA).
The decrease of absorbance at 515 nm was recorded as negative peaks by a Shimadzu SPD-20A UV
detector (Shimadzu Corporation, Kyoto, Japan), which appeared due to reaction of radical scavenging
compounds with DPPH•. Finally, identification of compounds was performed by using Waters Acquity
UPLC system (Milford, MA, USA). Chromatographic conditions were as described above, while mass
spectrometry parameters were as described under UPLC-QTOF-MS analysis condition (Waters Acquity
UPLC system).

2.5.2. Composition and Content of Phytochemicals (UPLC-QTOF-MS)

The extracts were analysed on a Waters Acquity UPLC system (Milford, MA, USA), comprising
a MaXis 4G Q-TOF mass spectrometer, a sample manager, PDA detector, binary solvent manager and
controlled by HyStar 3.2 (SR2 software, Bruker Daltonics, Bremen, Germany). The MS spectra were
recorded in the range from 80 to 1200 m/z. The samples were eluted with a gradient of solvent A (1%
formic acid in ultrapure water) and B (acetonitrile) on a 1.7µm, 100 mm× 2.1 mm i.d. Acquity BEH C18
column (Waters) over 14 min at a flow rate of 0.4 mL/min. The injection volume was 1 µL and column
temperature was maintained at 40 ◦C. Gradient elution was performed as follows: 95% A in 0–4 min,
95–90% A in 4–6 min, 90–70% A in 6–10 min, 70–5% A in 10–12 min, 5–95% A in 12–14 min. The MaXis
4G Q-TOF mass spectrometer used electron spray ionization (ESI) source, and the samples were
analysed in a negative-ion mode. Two scan events were applied, namely full-scan analysis followed by
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data-dependent MS/MS of the most intense ions. The data-dependent MS/MS used −30.0 V collision
energies (source voltage); capillary voltage was 4 kV; end plate offset 0.5 kV; flow rate of drying (N2)
gas 10.0 L/min; nebulizer pressure 2.5 bar. Selected phenolics were quantified by UPLC-QTOF from
calibration curves prepared using different concentrations (0.1–5µg/mL) of isorhamnetin, rutin, quinic
acid, citric acid, epigallocatechin and catechin. Concentration/peak area curves followed the following
equations: catechin, y = 17.72x + 190.48; R2 = 0.999; rutin, y = 27.81x − 299.39; R2 = 0.997; isorhamnetin,
y = 49.48x − 10596.35; R2 = 0.997; malic acid, y = 6.55x + 50.41; R2 = 0.999; quinic acid, y = 12.36x +

5696.40; R2 = 0.995; epigallocatechin, y = 15.08x − 810.644; R2 = 0.999; citric acid, y = 1275.96x + 282.07;
R2 = 0.999.

2.6. Cell Culture and Sample Preparation

Water and ethanol SBP extracts were solubilized in DMSO (200 mg/mL) and ethanol (100 mg/mL),
respectively and stored at –20 ◦C protected from light. Cell-based assays were performed using
a maximum concentrations of solvents, 1% and 5% for DMSO and ethanol, respectively.

Cell lines were cultured in RPMI-1640 medium supplemented with 10% of heat-inactivated foetal
bovine serum (FBS) and 1% penicillin-streptomycin (PS), in the case of Caco-2. Cells were maintained
at 37 ◦C with 5% CO2 in a humidified incubator and routinely grown as a monolayer in 75 mL
culture flasks.

2.7. Cytotoxicity Assay in Caco-2 Cell Monolayer

Cytotoxicity was assessed using confluent and non-differentiated Caco-2 cells as a model of the
human intestinal epithelium [28]. Briefly, Caco-2 cells were seeded into 96-well plates at a density
of 2 × 104 cells/well and grown for 7 days with medium renewal every 48 h. At day 7, the cells
were incubated with the samples diluted in RPMI culture medium supplemented with 0.5% FBS.
The cells incubated only with culture medium were considered as a control. After 24 h, the cells were
washed twice with PBS and their viability was assessed using CellTiter 96® Aqueous One Solution Cell
Proliferation Assay containing MTS reagent, according to the manufacturer’s instructions. Absorbance
was measured at 490 nm using a Spark® 10 M Multimode Microplate Reader (Tecan Trading AG,
Männedorf, Switzerland) and cell viability was expressed of percentage of living cells relative to
the control.

2.8. Cellular Antioxidant Activity (CAA) Assay

The CAA assay was carried out by the procedure of Wolfe and Liu [29]. Caco-2 monolayers (2 ×
104 cell/well) were obtained after 6 days of culture in a 96-well plate and washed twice with pre-warmed
PBS (10 mM, pH 7.4, 37 ◦C). Then, 50 µL of PBS, sample and standard (quercetin, 2.5–20 µM) solution
and 50 µL of DCFH-DA solution (50 µM) were added and incubated for 1 h at 37 ◦C, 5% CO2.
Afterwards, 100 µL of AAPH (12 mM) solution were added to each well containing PBS/quercetin
standards/samples, while 100 µL of PBS were added to the blank wells. Fluorescence kinetics was
recorded every 5 min during 60 min by using a Microplate Fluorimeter FL× 800 (Bio-Tek Instruments,
Winooski, VT, USA) using 485 nm excitation and 540 nm emission wavelengths. CAA values were
expressed as µM of quercetin equivalents per g of extract.

2.9. Antiproliferation Assay

Antiproliferative effect of SBP extracts and standard compounds was evaluated in HT29 cells as
described elsewhere [30]. The cells were seeded at a density of 1 × 104 cells/well in 96-well plates.
After 24 h they were incubated with different concentrations of the samples diluted in culture medium
or in pure culture medium (control). Cell proliferation was measured after 24 h using MTS reagent,
as mentioned above. Results were expressed in terms of percentage of living cells relative to the control.
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2.10. Statistical Data Handling

All results are presented as means ± standard deviations (SD) and all experiments were repeated
at least three times. The differences between means were evaluated by one-way ANOVA using the
statistical package GraphPad Prism 6 software (GraphPad, San Diego, CA, USA) to identify significant
differences by using statistical unpaired t test with p < 0.05.

3. Results and Discussion

3.1. Proximate Analysis, Total Yield and Antioxidant Capacity of SBP Extracts

Berries are generally composed of their skin, soft and fleshy pericarp, intracellular juice and
seeds. The distribution of the different fractions, however, largely depends on berry cultivar and
preparation method: for example, in SB, the respective mass fractions for skin and seeds were reported
31.9% and 10.7%, respectively [31]. In this study SBP was composed of seeds, skin and residual
pulp. The content of crude protein in SBP was 16.74 ± 0.38% DWP, which is slightly higher than
previously reported by Nuernberg et al. [32] (14.6%) and Pavlović et al. [33] (14.78%) and lower than
determined Ben-Mahmoud et al. [34] (20.9%). Total ash content was 1.88 ± 0.02%, which is slightly
lower than previously reported, 2.02 to 3.59% [33–35]. The major part of SB fruit lipids are present in
their seeds, which remain in the pomace after pressing the juice. It was reported that triacylglycerols of
SB pulp are composed mainly of monounsaturated and saturated fatty acids, whereas seed oil is rich
in polyunsaturated fatty acids [36]. The content of lipids in the SBP investigated in our study was
20.78 ± 0.14%, while other authors in various SB fractions reported from 1.8 to 29.1% of lipids [4,37].
The moisture content in dried SBP in our study was 6.40 ± 0.18%. Other macrocomponents should
consist mainly of carbohydrates.

It was reported in many studies that berry pomace retain remarkable fraction of antioxidants [2,21];
therefore, evaluation of antioxidant properties of SBP extracts was an important task of our study.
Moreover, exhaustive recovery of antioxidants and other bioactives is very important for the
development of effective processes for utilization of by-products. For this purpose two antioxidant
potential characteristics were determined for each assay, namely antioxidant capacity of extracts
(expressed for DWE) and recovery of antioxidants from the dry SBP (expressed for DWP).

For the recovery of higher polarity antioxidants, SBP were defatted by SFE-CO2 at 35 MPa, 60 ◦C.
Afterwards, the residues were consecutively extracted by PLE with ‘green’ solvents ethanol and water.
The total extract yield obtained by ethanol was approximately 2.5 times higher comparing to water
(Table 1); however, antioxidant capacity values of SBP-W depending on assay method were 1.2–2 times
higher than those of SBP-E. On the other hand, ethanol due to remarkably higher yield recovered
1.4–2.3 times higher amounts of polyphenolic antioxidants from dry plant material (DWP). It is evident,
that the fractions of the highest polarity and less soluble in ethanol compounds were not recovered
during the 1st PLE step and remained in the residue [19,20]. In addition, the increased temperature
(PLE with water) also could foster the recovery of polyphenols due to the breakdown of the cell walls
and increase of membrane permeability. Furthermore, heating also might soften the plant tissue
and weaken the phenol–protein and phenol–polysaccharide interactions in the material, thus more
phenolics would diffuse into the solvent [17].

3.2. Composition and Content of Phytochemicals

Phytochemical profile of SBP extracts was analyzed by UPLC-Q/TOF, while the presence of
scavengers was screened by the on-line HPLC-UV-DPPH•method. The compounds were identified by
calculating molecular formulas from the obtained accurate m/z values, assessing fragmentation patterns
and comparing retention times with analytical standards and previously reported data. Twenty-eight
compounds were detected by UPLC in ESI/MS mode (Table 2). The characteristic chromatograms of
extracts are represented in Figure 1 (A—H2O, B—EtOH).
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Table 1. Yield, phenolic content and antioxidant capacity of SBP extracts.

Assay Material SBP-E SBP-W

ORAC, µM TE/g DWE 294.1 ± 6.53 a 371.8 ± 8.31 b

DWP 35.26 ± 2.41 a 15.84 ± 0.75 b

ABTS•+, µM TE/g DWE 268.5 ± 7.10 a 323.9 ± 10.33 b

DWP 32.19 ± 1.22 a 13.80 ± 2.36 b

DPPH•, µM TE/g DWE 102.3 ± 4.31 a 205.0 ± 6.62 b

DWP 12.27 ± 0.51 a 8.73 ± 0.33 b

TPC, mg GAE/g DWE 65.61 ± 4.80 a 98.10 ± 2.01 b

DWP 7.87 ± 0.31 a 4.71 ± 0.43 b

Yields, % 11.91 ± 0.03 a 4.80 ± 0.19 b

Values represented as mean ± standard deviation (n = 5); a,b: the mean values followed by different superscript
letters indicate significant differences between SBP-E and SBP-W for the same assay (p < 0.05). The extracts isolated
with ethanol and water are further referred by the abbreviation composed of the short name of sea buckthorn
pomace (SBP) and first letter of used solvent (E-ethanol; W-water).
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Peaks 1 and 4 gave m/z values of 191.0564 and 191.0199, fitting the molecular formulas C7H12O6 and
C6H8O7; based on these data and by comparing with the standards the compounds were identified as
quinic (1) and citric (4) acids, respectively. Compound 2 gave a molecular ion m/z 387 and two fragments,
m/z 341 and m/z 179, indicating the loss of [M −H − CO −H2O]− and [M −H − CO −H2O − 162]− units
from the parent molecule and suggesting 7-(α-d-glucopyranosyloxy)-2,3,4,5,6-pentahydroxyheptanoic
acid. Compound 3, with m/z 133 fitting C4H5O6 and perfectly matching retention time (tR 0.4) of
reference compound was identified as malic acid.

Compound 5 gave an ion m/z 263 matching C17H11O3 and several fragments (Table 2) suggesting
the structure of tanshinlactone or neo-tanshinlactone. These compounds are regio-isomers, differing
in the positions of the lactone carbonyl and oxygen groups and cannot be differentiated by MS.
In tanshinlactone, the lactone carbonyl is present at position 11 and oxygen at position 12 of the
diterpenoid, while in neo-tanshinlactone, the positions are reversed. Thus, compound 5 was tentatively
identified as tanshinlactone derivative [38,39].

Compound 6 with the quasi-molecular ion m/z 609 (C30H26O14) shows the diagnostic product
ion m/z 441, which was originated after the loss of [M − H − C8H8O4]− unit due to cleavage of ring
B from the flavan-3-ol through RDA (Retro Diels-Alder) reaction of ring C (Figure 2A). The loss of
water from the diagnostic product ion m/z 441 produced another minor ion, m/z 423. Another two ions,
m/z 591 and m/z 483 were the result of the loss of water from the parent ion (m/z 609), and [M − H −
108]− unit, due to heterocyclic ring fission (HRF), respectively. Hence, the base unit of this dimer was
tentatively assigned to epigallocatechin derivative. This sequence was confirmed through cleavage of
the interflavanoid bond into m/z 305 (lower terminal subunit) and m/z 303 (upper subunit). The chirality
at the flavan-3-ols C-3 cannot be established by MS, therefore it is impossible to distinguish whether
it is gallocatechin or epigallocatechin. The connection sequence of this compound was tentatively
proposed as epigallocatechin–epigallocatechin [40–42]. MS2 of the compound 7 (m/z 593; C30H26O13)
in negative ESI mode yielded five main fragments, namely: m/z 467, 425, 407, 303 and 289. The first
three ions were produced by the loss of a C6H6O3

−, [M −H − C8H8O4]− (RDA) and [M −H − C8H8O4

− H2O]− (water elimination), respectively.
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Table 2. Identification of phenolic compounds in SB pomace extracts by UPLC-Q/TOF.

Peak
No. Compound Abbrevation Molecular

Formula
tR

(min)
m/z,

[M − H]−
SBP-E SBP-W MS Fragments

1 Quinic acid a,d QA C7H12O6 0.3 191.0564 + + 85; 93; 127; 173

2 7-(α-d-Glucopyranosyloxy)-2,3,4,5,6-pentahydroxyheptanoic acid b,c,d - C13H24O13 0.3 387.1145 + + 179; 341

3 Malic acid a,d MA C4H6O6 0.4 133.0144 + + 89; 115; 133

4 Citric acid a,d CA C6H8O7 0.5 191.0199 − + 43; 71; 115

5 Tanshinlactone derivative TL C17H12O3 0.5 263.0710 + + 127; 153; 171; 217; 245

6 (e)Gallocatechin-(e)Gallocatechin b,d (e)GC-(e)GC C30H26O14 0.7 609.1254 − + 303; 305; 423; 441; 483; 591

7 (e)Catechin-(e)Gallocatechin b,c,d (e)C-(e)GC C30H26O13 1.5 593.1295 − + 289; 303; 407; 425; 467 285; 307; 429; 447

8 (e)Catechin-(e)Catechin b,d (e)C-(e)C C30H26O12 1.7 577.1351 + + 287; 289; 407; 425; 451

9 Epigallocatechin a,b,d EGC C15H14O7 1.7 305.0665 + + 137; 179; 287

10 Unknown - C21H32O10 2.0 443.1919 + + 153; 201

11 Catechina,b,d C C15H14O6 2.1 289.0716 + + 109; 125; 137;151; 165; 179; 245; 247; 271

12 Unknown - C12H22O9 2.2 309.1190 + − 97; 119; 161; 191; 263

13 Unknown - C12H22O9 2.3 309.1193 + + 97; 119; 161; 191; 263

14 Epicatechin b,d EC C15H14O6 3.5 289.0719 + + 109; 125; 137;151; 165; 179; 245; 247; 271

15 Quercetin-3-sophorotrioside-7-rhamnoside b,c,d Q-ST-Rha C39H50O26 3.5 933.2503 − + 301; 609; 771

16 Quercetin-3-sophoroside-7-rhamnoside b,c,d Q-3-S-7-Rha C38H40O21 3.8 771.1991 + + 301; 445; 625

17 Unknown - C25H40O14 3.9 563.2342 + − 191; 277; 517

18 Penta-hexoside c,d C17H32O12 4.0 427.1818 + + 191; 249

19 Kaempferol-3-sophorotrioside-7-rhamnoside b,c,d K-ST-Rha C39H50O25 4.1 917.2557 − + 285; 593; 755

20 Kaempferol-3-sophoroside-7-rhamnoside b,c,d K-3-S-7-Rha C33H40O20 4.4 755.2044 + + 285; 429; 609

21 Isorhamnetin-3-sophoroside-7-rhamnoside b,c,d I-3-S-7-Rha C34H42O21 5.0 785.2147 + + 315; 459; 639

22 Kaempferol-3-glucoside-7-rhamnosideb,c,d K-3-Gl-7-Rha C27H30O15 7.4 593.1512 + − 285 431; 477

23 Rutin a,b,d R C27H30O16 7.4 609.1453 + − 151; 179; 301; 463

24 Q-3-hexoside b,c,d - C21H20O12 7.5 463.0890 + − 151; 179; 301

25 Isorhamnetin-glucoside-rhamnoside derivative b,c,d I-Gl-Rha C28H32O16 7.6 623.1619 + + 315; 461; 477

26 Isorhamnetin-glucoside-rhamnoside derivative b,c,d I-Gl-Rha C28H32O16 8.3 623.1623 + + 315; 461; 477

27 Isorhamnetin-3-glucoside b,c,d I-3-Gl C22H22O12 8.4 477.1040 + − 285; 315

28 Isorhamnetin a,b,d IS C16H12O7 10.7 315.0508 + + 107; 151; 243; 300
a Confirmed by a standard; b Confirmed by a reference; c Confirmed by parent ion mass using free chemical database (Chemspider, PubChem); d Confirmed by MS/MS.
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Finally, the direct cleavage of the interflavanoid bond gave m/z 289 for the base unit and m/z 303
for the upper terminal unit. In accordance with literature data [40,42] this compound was tentatively
identified as epicatechin-epigallocatechin. The compound 8 (tR 1.7 min) exhibited molecular ion
m/z 577 (C30H25O12) and was assigned to epicatechin-epicatechin. Its main fragment m/z 425 is
obtained by the loss of 152 Da due to the cleavage of flavan-3-ol ring B through RDA fission of ring C.
Other characteristic fragment ion, m/z 407 (from RDA fission) produced by the loss of [M − H − H2O]–

from the main fragment m/z 425. Moreover, the loss of [M −H − C6H6O3]− produces m/z 451 due to
the cleavage of the two OH groups from B-ring (HRF). Further formation of m/z 289 and m/z 287 due
to the cleavage of interflavan bond (from the top and the base unit) suggests that the compound 8
is a singly linked proanthocyanidin dimer [41,43]. The compound 9 gave a molecular ion [M −H]−,
m/z 305 (C15H13O7), and the fragments of 287, 179 and 137 fitting C15H11O6, C9H7O4 and C7H5O3,
respectively. The loss of 18, 126 and 168 amu was attributed to the loss of [M − H − H2O]−, [M − H −
C6H6O3]− and [M −H − C8H8O4]−, respectively. Based on these data and by comparing it with the
standard, the compound 9 was identified as epigallocatechin [41].
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MS data for the compounds 10, 12, 13 and 17 was not sufficient for their identification.
Two compounds, 11 and 14 displayed a molecular ions [M −H]− with m/z 289 (C15H14O6) and the major
fragment ions, m/z 271, 247 and 245 due to the loss of [M − H − H2O]−, [M − H − CH2=CH–OH]– and
[M − H − HC≡C–OH]–, respectively. Furthermore, the presence of m/z 165, which may be formed due
to HRF by elimination it from ring A, was confirmed by the fragment m/z 125; while the presence of m/z
137, which was formed due to RDA of C-ring fission, was confirmed by the m/z 151. Finally, the loss of
dihydroxybenzene moiety [M −H − 109]– gave m/z 179, which was confirmed by the presence of m/z 109
[M−H− 179]–. Hence, the compounds 11 (additionally confirmed by a standard) and 14 were identified
as catechin and epicatechin, respectively [41,43]. The compound 15 displayed a molecular ion [M−H]−,
m/z 933 (C39H49O26) and several fragment ions in MS/MS mode. The ion m/z 771 (C33H39O21) was a basic
fragment arising from the loss of [M −H − glucosyl]− (162 amu), which by a further loss of another one
glucosyl moiety produces the fragment m/z 609 (C27H29O16). The ion m/z 301 can be derived by the loss
of 632 amu from the basic m/z 933 ion or from ion 609 ([M −H − glucosyl − rhamnosyl]−). Thus, 15 was
tentatively identified as quercetin-sophorotrioside- rhamnoside (Figure 2B) [44]. The fragmentation
pattern of 16, 20 and 21 with m/z 771, 755 and 785, respectively, was similar: the loss of 146,
326 and 470 amu may be attributed to the loss of [M − H − rhamnosyl]−, [M − H − rhamnosyl
− glucosyl − H2O]− and [M − H − rhamnosyl − 2 glucosyl]− units, respectively. Furthermore,
the formation of m/z 301, 285 and 315 indicates the presence of quercetin, kaempherol and isorhamnetin,
respectively. Based on these data and previously reported results the compounds 16, 20 and 21
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were assigned to quercetin-3-sophoroside-7-rhamnoside, kaempherol-3-sophroside-7-rhamnoside and
isorhamnetin-3-sophoroside-7-rhamnoside, respectively [5,45,46].

The compound 18 with m/z 427, (C17H32O12) and fragments m/z 249, 191, formed by the
subsequent loss of hexose and [M − H − 2 × CO]−, respectively, was tentatively assigned to
penta-O-hexoside. Molecular ion [M − H]− of 19, m/z 917 (C39H49O25), and fragments m/z 775
[M − H − hexose]−, 593 [M − H − 2 × hexose]− and 285 [M − H − 3 × hexose − pentose]− (m/z
of kaempferol), due to the loss of sugar and water molecules from the core skeleton suggest the
structure of kaempferol-sophorotrioside-rhamnoside [44]. The compound 22 ([M − H]–, m/z 593)
gave the most abundant fragment m/z 447 [M − H − 146]−, corresponding to the loss of rhamnose
from the C-7 of kaempferol. The daughter ion m/z 431 [M − H − 162]− resulting from the loss of
the C-3-bonded glucose was less abundant. The higher sensitivity of the glycosidic linkage at C-7
position toward collision-induced fragmentation was also noted by Llorach et al. [47]. The ion m/z
285 indicates kaempferol and may be formed by the loss of rhamnosyl from m/z 431. Consequently,
22 was assigned to kaempferol-3-glucoside-7-rhamnoside [46]. The compound 23 with a molecular
ion m/z 609 (C27H29O16) gave 463, (the loss of rhamnose) and 301 corresponding quercetin (after
the loss of rutinose); m/z 179, 151 are typical fragments of rutin. Rutin identity was confirmed by
the use of references; this flavonoid was previously reported in sea buckthorn [5,46]. In general,
glycosylated flavonoids are among the major polyphenols in the berries while hexose conjugates
are the most common representatives. Thus, MS/MS of 24 with [M − H]–, m/z 463.0890 (tR 7.5 min)
was identified as quercetin-3-hexoside: the loss of a hexosyl unit (162 amu), the fragment m/z 301
corresponding to deprotonated quercetin, as well as m/z 179 and m/z 151 confirm the structure of
quercetin [5]. The [M −H]− (m/z 623, C28H31O16) ions of 25 and 26 with m/z 477 and 461 indicate the
loss of rhamnose, [M − H − C6H10O4]− and glucose, [M − H − C6H10O5]− from C-7, while m/z 315,
[M − H − 146 − 162]– is characteristic to isorhamnetin; these data enabled to tentatively identify them
as isorhamnetin-glucoside-rhamnoside derivatives [46]. The glycoside 27 (m/z 477) exhibited the loss
of 162 amu in their MS2 fragmentation, showing the linkage between glucosyl moiety and phenolic
hydroxyl group. In case of 27, the deprotonated aglycone (isorhamnetin-H) ion at m/z 315 (base peak)
was observed. Moreover, the product ion m/z 285 [M − H − CO − 2H]– is attributable to the loss of
30 amu. Based on the above data the compound 27 was assigned to isorhamnetin-3-glucoside [46].
Based on the previously published data [5,45] and matching MS data with a standard, the compound
28 ([M − H]–, m/z 315) was identified as isorhamnetin.

The HPLC/UV/DPPH• chromatograms of ethanol and water extracts of SBP (negative peaks)
revealed the presence of numerous radical scavenging compounds (Figure 3). It may be assumed that
proanthocyanidins (6–9), flavan-3-ols (11, 14), flavonol glycosides (15, 16, 19–22, 24–27), flavonols (23,
28) terpenoid (5) were the most active radical scavengers in the investigated extracts.
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Figure 3. HPLC-UV-DPPH•-scavenging chromatograms of water (A) and ethanol (B) extracts of SBP.

In order to evaluate the potential of SBP as a source of valuable phytochemicals, the compounds
were quantified by UPLC/ESI-QTOF-MS. It may be observed that SBP extracts are composed
predominantly of organic acids, flavones, flavonoid monoglycosides, flavonoid diglycosides and
oligomeric flavonoids (Table 3). A diversity of detected compounds were in agreement with the
previously reported results [41,42,45,46,48–51]. QA and MA were the most abundant acids in the SBP
(Table 4). Similar organic acid composition of SB, despite variation in acid content, which may be due to
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genotype, origin, harvesting time and juice processing parameters, was reported previously [50,52,53].
QA was the major compound in the all analysed samples, followed by MA; while the amounts of CA
was found at lower levels. MA and QA are important contributors to the sour and astringent taste of
SB [54].

Table 3. Structures of flavonol glycosides and (neo)-tanshinlactone derivative.
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Flavonoid glycosides constituted other large group of quantified in SBP compounds; 15 and 19 

were quantified in SBP-W, 22 and 27 in SBP-E (Table 4).  

Table 4. Quantification of phytochemicals, in μg/g DWE and μg/g DWP. 

Peak No. Compounds 
SBP-W SBP-E 

DWE DWP DWE DWP 

1 QA 22020 ± 698.6 a 1076 ± 9.82 * 48839 ± 4331 b 6111 ± 104.2 ‡ 

3 MA 28842 ± 35.30 a 1402 ± 1.69 * 22091 ± 70.83 b 2648 ± 8.44 ‡ 

4 CA 138.4 ± 4.42 6.64 ± 0.21 - - 

5 TL derivative g 1906 ± 60.18 a 91.52 ± 2.89 * 515.9 ± 6.69 b 61.45 ± 0.80 ‡ 

6 (e)GC-(e)GC r 43.94 ± 3.1 2.11 ± 0.49 - - 

7 (e)C-(e)GC r 118.0 ± 7.76 5.50 ± 0.40 - - 

8 (e)C-(e)C r 9.53 ± 0.62 a 0.27 ± 0.03 * 237.76 ± 4.92 b 28.32 ± 0.59 ‡ 

9 EGC 400.5 ± 5.10 a 19.23 ± 0.24 * 238.8 ± 1.82 b 28.44 ± 0.22 ‡ 

11 C 422.4 ± 10.16 a 20.28 ± 1.18 * 369.6 ± 17.67 b 44.02 ± 2.10 ‡ 

14 EC c 150.8 ± 1.16 a 6.76 ± 0.50 * 123.2 ± 0.67 b 14.67 ± 1.11 ‡ 

15 Q-3-ST-7-Rha r 149.9 ± 6.72 17.85 ± 0.80 - - 

16 Q-3-S-7-Rha r 646.7 ± 9.42 a 31.04 ± 0.45 * 1220 ± 39.53 b 145.32 ± 4.71 ‡ 

19 K-3-ST-7-Rha r 64.39 ± 7.26 3.09 ± 0.35 - - 

20 K-3-S-7-Rha r 777.6 ± 14.13 a 37.32 ± 0.68 * 1739 ± 42.21 b 207.2 ± 5.03 ‡ 

21 I-3-S-7-Rha r 520.9 ± 21.45 a 25.00 ± 1.03 * 1166 ± 26.80 b 138.9 ± 3.19 ‡ 

22 K-3-Gl-7-Rha r - - 203.5 ± 5.42 24.24 ± 0.65 

23 R - - 162.9 ± 7.44 19.41 ± 0.89 

25 I-Gl-Rha derivative r 55.23 ± 3.75 a 2.50 ± 0.29 * 530.2 ± 10.76 b 63.14 ± 1.28 ‡ 

26 I-Gl-Rha derivative r 145.2 ± 8.46 a 6.66 ± 0.61 * 539.4 ± 9.00 b 64.24 ± 1.07 ‡ 

27 I-3-Gl r - - 139.8 ± 0.78 16.65 ± 0.09 

28 IS 71.36 ± 0.64 a 3.43 ± 0.03 * 195.1 ± 4.12 b 23.23 ± 0.49 ‡ 

r, c and g based on calibration curve obtained by using rutin, catechin and epigalocatechin, respectively; 

Values expressed as mean standard deviation (n = 3); (a, b) and (*, ‡): means not sharing common 

letters and symbols for the same compound are significantly different (p < 0.05). 
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3 MA 28842 ± 35.30 a 1402 ± 1.69 * 22091 ± 70.83 b 2648 ± 8.44 ‡ 

4 CA 138.4 ± 4.42 6.64 ± 0.21 - - 

5 TL derivative g 1906 ± 60.18 a 91.52 ± 2.89 * 515.9 ± 6.69 b 61.45 ± 0.80 ‡ 
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Flavonoid glycosides constituted other large group of quantified in SBP compounds; 15 and 19
were quantified in SBP-W, 22 and 27 in SBP-E (Table 4).
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Table 4. Quantification of phytochemicals, in µg/g DWE and µg/g DWP.

Peak
No.

Compounds SBP-W SBP-E
DWE DWP DWE DWP

1 QA 22020 ± 698.6 a 1076 ± 9.82 * 48839 ± 4331 b 6111 ± 104.2 ‡

3 MA 28842 ± 35.30 a 1402 ± 1.69 * 22091 ± 70.83 b 2648 ± 8.44 ‡

4 CA 138.4 ± 4.42 6.64 ± 0.21 - -
5 TL derivative g 1906 ± 60.18 a 91.52 ± 2.89 * 515.9 ± 6.69 b 61.45 ± 0.80 ‡

6 (e)GC-(e)GC r 43.94 ± 3.1 2.11 ± 0.49 - -
7 (e)C-(e)GC r 118.0 ± 7.76 5.50 ± 0.40 - -
8 (e)C-(e)C r 9.53 ± 0.62 a 0.27 ± 0.03 * 237.76 ± 4.92 b 28.32 ± 0.59 ‡

9 EGC 400.5 ± 5.10 a 19.23 ± 0.24 * 238.8 ± 1.82 b 28.44 ± 0.22 ‡

11 C 422.4 ± 10.16 a 20.28 ± 1.18 * 369.6 ± 17.67 b 44.02 ± 2.10 ‡

14 EC c 150.8 ± 1.16 a 6.76 ± 0.50 * 123.2 ± 0.67 b 14.67 ± 1.11 ‡

15 Q-3-ST-7-Rha r 149.9 ± 6.72 17.85 ± 0.80 - -
16 Q-3-S-7-Rha r 646.7 ± 9.42 a 31.04 ± 0.45 * 1220 ± 39.53 b 145.32 ± 4.71 ‡

19 K-3-ST-7-Rha r 64.39 ± 7.26 3.09 ± 0.35 - -
20 K-3-S-7-Rha r 777.6 ± 14.13 a 37.32 ± 0.68 * 1739 ± 42.21 b 207.2 ± 5.03 ‡

21 I-3-S-7-Rha r 520.9 ± 21.45 a 25.00 ± 1.03 * 1166 ± 26.80 b 138.9 ± 3.19 ‡

22 K-3-Gl-7-Rha r - - 203.5 ± 5.42 24.24 ± 0.65
23 R - - 162.9 ± 7.44 19.41 ± 0.89
25 I-Gl-Rha derivative r 55.23 ± 3.75 a 2.50 ± 0.29 * 530.2 ± 10.76 b 63.14 ± 1.28 ‡

26 I-Gl-Rha derivative r 145.2 ± 8.46 a 6.66 ± 0.61 * 539.4 ± 9.00 b 64.24 ± 1.07 ‡

27 I-3-Gl r - - 139.8 ± 0.78 16.65 ± 0.09
28 IS 71.36 ± 0.64 a 3.43 ± 0.03 * 195.1 ± 4.12 b 23.23 ± 0.49 ‡

r, c and g based on calibration curve obtained by using rutin, catechin and epigalocatechin, respectively; Values
expressed as mean standard deviation (n = 3); (a, b) and (*, ‡): means not sharing common letters and symbols for
the same compound are significantly different (p < 0.05).

The content of flavonol glycosides in SBP-E was approximately 2–9 fold higher than in SBP-W.
Yang et al. [48] and Ma et al. [50] reported remarkably lower amounts of Q-3-S-7-Rha and I-3-S-7-Rha
in fresh SB berries than in our study, while K-3-S-7-Rha content was two times lower than reported by
Guo et al. [51]. Similar results of I-3-Gl concentration reported Yang et al. [48] and Grey et al. [49] in
SB berries, while concentration determined in SB berries in Ma et al. [50] and Guo et al. [51] reports
were several times lower. The concentration of flavonoid diglycoside derivatives (25, 26) were in the
previously reported levels in fresh SB berries [48,50] or 2-fold lower [51].

Three proanthocyanidins, 6, 7 and 8 were identified in SBP, two of them were detected only in
SBP-W. The same compounds were reported previously [41,42]; however, without their quantification.
Four flavones were quantified in SBP extracts and ranged in the following decreasing order: catechin >

isorhamnetin > rutin > epicatechin. Guo et al. [51] determined catechin and epicatechin contents in four
SB subspecies; their amounts varied from 0.82 to 4.51 and from 7.60 to 8.99 mg/100 g DW, respectively.
Contents of catechin were in the range as reported, while epicatechin values were 2–6 fold lower than
reported by Guo et al. [51]. Isorhamnetin content was similar to the previously reported by Rösch et
al. [55] and Ma et al. [50], however lower than reported by Guo et al. [51]. The concentration of rutin was
in agreement with Grey et al. [49]. SBP-W contained 2-fold higher EGC, than SBP-E. This compound
was reported in SBP, however not quantified [41,42]. Tanshinolactone was identified and quantified
for the first time in SBP; its amount was approximately 4–fold higher in SBP-W than SBP-E.

3.3. Antiproliferative and Cytotoxic Effects of SBP Extracts

Antiproliferative activity was assessed in HT29 cells at their exponential grow phase,
while cytotoxicity was evaluated using Caco-2 cells, which share some characteristics with crypt
enterocytes and therefore have been widely used to assess the effect of chemicals, food compounds
and nano/microparticles [56].
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Both extracts, diluted in the solvents at their maximum acceptable concentration levels, strongly
inhibited cancer cell grow (Figure 4A) without cytotoxic effects on normal epithelia Caco-2 cells
(Figure 4B). The bioactivities of SB extracts and plant components have been widely studied [57].
SB extracts demonstrated antiproliferative activity against colon, breast, leukemia, liver, lung and
cancer cell lines [49,58–62]. The antitumor activity of SB can be attributed to antioxidant compounds,
particularly phenolic constituents such as flavonoids catechin, kaempferol, quercetin, and isorhamnetin,
which may protect cells from oxidative damage [63].
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Figure 4. Dose-response curves of SBP extracts. Antiproliferative (A) and cytotoxicity (B) effects using
HT29 and Caco-2 cell lines, respectively. Results are expressed in terms of mean ± SD performed in
triplicate. Antioxidant activity of SBP extracts evaluated by CAA assay (C). Results are expressed as
µmol quercetin equivalents (QE) per mg of dry extract of mean ± SD performed in triplicate. Unpaired
t test was assessed with p-value < 0.01 (**).

To best of our knowledge the antiproliferative activity and cytotoxicity of SBP extracts in this study
are reported for the first time. Both SBP extracts inhibited HT29 proliferation in a dose-dependent
manner, SBP-W being approximately 5-fold stronger (EC50 = 0.44 ± 0.03 mg/mL) than SBP-E (EC50 =

2.13 ± 0.23 mg/mL). This activity can be attributed to the presence of anticancerogenic phytochemicals
(Table 2). Quercetin, kaempferol and isorhamnetin [51], catechin [62], epigallocatechin [64],
procyanidins [59], tanshinlactone derivative (5) strongly suppressed cancer cell growth. In general,
the antiproliferative effect of these compounds was attributed to their ability to target diverse
molecular switches in carcinogen metabolism steps, including inflammation, cell proliferation,
cell cycle, apoptosis and angiogenesis [65]. It is interesting noting that although SBP-E contained more
flavonoid-diglycosides (I-3-S-7-Rha, Q-3-S-7-Rha K-3-S-7-Rha etc.) than SBP-W, the latter possessed
stronger antiproliferative effect (Figure 4). It is in agreement with Guo et al. [51] who studied the
phytochemical composition and bioactivities of the berries of four SB subspecies and found that
flavonoid-diglycosides have weaker antiproliferative activity, than flavonoid-monoglycosides and
aglycones. Moreover, individual pure compounds demonstrated rather weak effects, suggesting that
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the total antiproliferative activity of extracts may be due to the synergistic effect of phytochemicals.
Most likely, better antiproliferative properties of SBP-W may be attributed to higher concentration of
galloylated flavonols (6, 7, 9), and tanshinlactone derivative (5) (Table 3), which is in agreement with
the previously performed studies [39,57,66–68].

In addition, proantocyanidins activity depend on galloylation and degree of polymerization
although somewhat contradictory results were observed for this dependence. Cheah et al. [69] reported
that smaller oligomers were better inhibitors, while Wang et al. [70] determined no statistically significant
relationship between molecular weight and antiproliferative activity of cranberry proanthocyanidins
on ovarian cancer cells SKOV-3 and OVCAR-8. It was also suggested that natural polyphenolic extracts
with higher degrees of polymerization and galloylation may be more effective as antiproliferative agents
than those containing monomers or oligomers [65,66]. Consequently, assuming that the monomer
and oligomeric proanthocyanidins may be degraded by bacteria, the proanthocyanidins with higher
molecular weight may be expected to be retained throughout the colon and exert their antiproliferative
activity [71]. Moreover, in Delgado et al. [72] study catechins did not show any effects on the assayed
cell lines MCF-7, Caco-2 and BxPC-3, suggesting that their absorption into those cells was limited.
Tagashira et al. [73] reported that health benefits of catechin appear to be limited due to extremely
low intestinal absorption. It was suggested that the presence of functional group such as gallate
or pyrogallol or modification of catechins to more hydrophobic compounds could improve their
bioavailability and anticancer activity. It was reported that gallates can inhibit cell growth, trigger cell
cycle arrest in tumor cell lines and induce apoptosis [74]. Thus, flavonols determined in our study and
containing galloyl group could be responsible for stronger antiproliferative effect of SBP-W.

The presence of diterpenoid tanshinlactone derivative, which was reported as antitumor
agent [38,39,75] may also strengthen water extract activity against HT-29 cancer cells. Grey et
al. [49] tested the impact of several solvents on the composition responsible for anticancer properties of
SB and determined that triterpenoid ursolic acid might be more important than the polyphenols in
inhibiting the cancer cell proliferation. In our case diterpenoid tanshinlactone derivative also may
contribute to the activity of SBP-W.

3.4. Cellular Antioxidant Activity of SBP Extracts

The CAA assay assessing only those antioxidants which can penetrate living cell membrane and
inhibit oxidation processes inside the cell is a more biologically relevant method than the popular
chemical in vitro antioxidant capacity assays [25]. Human liver cancer HepG2 cells were previously
used to determine CAA activity of crude SB extracts and its changes during digestion in gastric,
intestinal and colon conditions using PBS wash (6.68 ± 0.36 µmol QE/mol phenolics) and no PBS
wash protocol (17.38 ± 0.65 µmol QE/mol phenolics) [76] and also for comparing CAA of different SB
subspecies [51]. SBP extracts have not been tested for their CAA previously. In our study, using Caco-2
cells SBP-W was 10-fold stronger antioxidant in CAA assay than SBP-E (Figure 4C). Consequently,
SBP-W demonstrated better antioxidant potential in the all applied assays and may be considered as
a better anticancer agent. It may be explained by the higher concentration of some polar hydrophilic
phenolic antioxidants, which are responsible for antioxidant properties of various fruits, vegetables and
berries [77,78]. For instance, water extract contained more galloylated flavonols and tanshinlactone.

4. Conclusions

This study proves that SB pomace is a good source of valuable phytochemicals with antioxidant
capacity and cancer cell proliferation inhibitory activity. Consecutive pressurized liquid extraction
of defatted SB pomace with ethanol and water enabled to produce two antioxidant-rich fractions,
water extract being stronger antioxidant and more effective inhibitor of cancer cells. It may be assumed
that among the 21 phytochemicals quantified in the extracts galloylated flavonols and tanshinlactone
derivatives may play an important role in antioxidant and inhibitory activities of water fraction.
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18. Kryževičiūtė, N.; Kraujalis, P.; Venskutonis, P.R. Optimization of high pressure extraction processes for the
separation of raspberry pomace into lipophilic and hydrophilic fractions. J. Supercrit. Fluids 2016, 108, 61–68.
[CrossRef]
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