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Abstract

Mg homeostasis is critical to eukaryotic cells, but the contribution of Mg transporter activity to homeostasis is not fully
understood. In yeast, Mg uptake is primarily mediated by the Alr1 transporter, which also allows low affinity uptake of other
divalent cations such as Ni2+, Mn2+, Zn2+ and Co2+. Using Ni2+ uptake to assay Alr1 activity, we observed approximately nine-
fold more activity under Mg-deficient conditions. The mnr2 mutation, which is thought to block release of vacuolar Mg
stores, was associated with increased Alr1 activity, suggesting Alr1 was regulated by intracellular Mg supply. Consistent with
a previous report of the regulation of Alr1 expression by Mg supply, Mg deficiency and the mnr2 mutation both increased
the accumulation of a carboxy-terminal epitope-tagged version of the Alr1 protein (Alr1-HA). However, Mg supply had little
effect on ALR1 promoter activity or mRNA levels. In addition, while Mg deficiency caused a seven-fold increase in Alr1-HA
accumulation, the N-terminally tagged and untagged Alr1 proteins increased less than two-fold. These observations argue
that the Mg-dependent accumulation of the C-terminal epitope-tagged protein was primarily an artifact of its modification.
Plasma membrane localization of YFP-tagged Alr1 was also unaffected by Mg supply, indicating that a change in Alr1
location did not explain the increased activity we observed. We conclude that variation in Alr1 protein accumulation or
location does not make a substantial contribution to its regulation by Mg supply, suggesting Alr1 activity is directly
regulated via as yet unknown mechanisms.
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Introduction

Magnesium (Mg) is the fourth most abundant cation in the

body, and the second most abundant within cells (after potassium)

[1]. Mg is a critical co-factor for hundreds of enzymes [2,3], and

utilized by twice as many metalloenzymes as zinc [4]. In

environments with abundant Mg, its tendency to over-accumulate

in cells can challenge homeostatic mechanisms [5]. Conversely,

limited Mg supply can also constrain growth. In bacteria,

adaptation to Mg deficiency is essential for pathogenicity and

survival within macrophages [6]. In humans, gut or renal disorders

can affect Mg homeostasis by altering rates of absorption or

excretion, as can drugs such as diuretics [7,8]. Low dietary Mg

intake has been associated with cardiovascular disease, as well as

the development of type II diabetes [9,10], hypertension [11], and

stroke [12]. Cytosolic Mg is distributed between a large pool

bound to proteins, nucleic acids and small molecules, and a

smaller, regulated pool of free-ionized Mg [13,14]. Regulation of

the cytosolic free-ionized Mg concentration is likely achieved by

three major mechanisms: control of uptake systems, efflux from

the cell, and sequestration within organelles. Despite the

importance of this cation however, we are only beginning to

understand the molecular basis of Mg homeostasis in eukaryotic

cells.

The CorA (or Metal Ion Transporter) superfamily is an

important group of Mg transporters in prokaryotes and eukaryotes

[15,16]. Eukaryotic CorA proteins have diversified in function,

facilitating both Mg uptake and distribution between subcellular

compartments. One subfamily includes the yeast Mrs2 protein,

which supplies Mg to the mitochondrial matrix [17]. Vertebrate

genomes include mitochondrial proteins of similar function to

yeast Mrs2 [18,19], while higher plant Mrs2 homologs have

diverged to function in additional cellular compartments

[20,21,22,23]. A second major branch of the eukaryotic CorA

proteins is defined by the yeast plasma membrane Alr1 and Alr2

proteins [24,25]. Loss of function mutations in Alr1 reduced Mg

uptake and induced a growth defect that was suppressible by

excess Mg [24,26]. Alr2 makes a minor contribution to Mg

homeostasis, due to low expression and activity [25,27]. The Alr1

branch of the CorA proteins includes a subgroup defined by Mnr2

[28], a vacuolar membrane protein required for access to

intracellular Mg stores [29]. Mutants lacking Mnr2 displayed a
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growth defect and accumulated a higher intracellular Mg content

in Mg-deficient conditions. As Alr1 and Mnr2 both supply Mg to

the cytosol, the regulation of these proteins is likely to be of central

importance to cytosolic Mg homeostasis.

The expression of many microbial metal cation transporters is

regulated by availability of their substrates [30]. This regulation

serves to increase the supply of essential cations under deficient

conditions, while preventing the potentially deleterious effects of

overaccumulation. Regulation of Mg-transporter expression has

also been shown to contribute to microbial Mg homeostasis. The

bacterial MgtA and MgtB high affinity Mg uptake systems are

regulated by external and cytosolic Mg supply, both transcrip-

tionally via the activity of the two-component Mg sensor PhoP/Q,

and translationally via direct binding of Mg to the MgtA mRNA

leader sequence [31,32]. In contrast to these regulated systems,

gene expression of microbial CorA proteins is generally indepen-

dent of Mg supply [33]. The yeast ALR1 and ALR2 genes are

apparent exceptions to this rule, as their expression was reported

to vary with Mg supply [24,25], although the mechanism of this

regulation was not determined.

Post-translational regulation of transporter stability in response

to substrate level is also a common feature of microbial metal

homeostasis [34,35,36]. For example, the high-affinity zinc

transporter Zrt1 accumulates to a high level in zinc-deficient

yeast cells. Upon exposure of cells to zinc-replete conditions, Zrt1

is rapidly internalized and routed to the vacuole for degradation.

This process was dependent on the End3, Rsp5 and Pep4 proteins,

which encode factors required for Zrt1 endocytosis, ubiquitination

and vacuolar degradation respectively [35,37]. The Alr1 protein

was also reported to be post-translationally regulated in response

to Mg supply [24]. An epitope-tagged version (Alr1-HA) was

rapidly degraded when Mg-deficient cells were shifted to Mg-

replete conditions, and this process was also dependent on End3,

Rsp5 and Pep4, suggesting that Alr1 stability was regulated by

ubiquitin-dependent endocytosis and degradation. In addition to

being required for the regulation of some transporters, Pep4 and

Rsp5 also enable the degradation of some aberrantly folded

plasma membrane proteins (e.g. Pma1-7 and Ste2-3) [38,39,40].

Ubiquitination of these proteins has been shown to occur early in

the secretory pathway, resulting in their direct trafficking to the

vacuole compartment without transit through the plasma

membrane.

We previously reported that the mnr2 mutation reduced

tolerance to several divalent cations, while at the same time

increasing their accumulation by yeast cells [29]. The latter effect

was exacerbated by growth in Mg-deficient conditions. We

suspected that these phenotypes were due to an increase in the

expression of a non-specific divalent cation transporter in the mnr2

mutant, for which the Alr proteins were candidates [26]. The

observation that ALR1 and ALR2 gene expression is Mg-regulated

[24,25] suggested that yeast may respond to a perceived Mg-

deficiency associated with the mnr2 mutation by inducing ALR

gene expression. In this study, we tested this hypothesis by

determining the effect of the mnr2 mutation on Alr1 activity and

the accumulation of the Alr1 protein. We provide the first direct

evidence that the activity of the Alr1 system is Mg-responsive. In

addition, we report elevated Alr1 activity in an mnr2 mutant,

consistent with perturbation of Mg homeostasis. However, a

previous report of the Mg-regulated expression of the ALR1 gene

and Alr1 protein stability [24] was not supported by our

experiments, suggesting that Alr1 activity is regulated by some

other mechanism. We also propose a model to explain the

aberrant behavior of epitope-tagged Alr1-HA.

Results

Measurement of Alr activity
To determine the effect of Mg supply and the mnr2 mutation on

the regulation of the Alr systems, we initially attempted to measure

the rate of Mg uptake by cells grown over a range of Mg

concentrations, using atomic absorption spectroscopy to measure

the change in Mg content of cells when subsequently supplied with

a dose of excess Mg (AAS) [24,41,42]. However, it was not possible

to accurately measure uptake by wild-type cells grown in relatively

Mg-replete conditions, as the amount of Mg accumulated was

much less than the initial content (data not shown) [43].

Comparison of wild-type and mnr2 strains was also not possible

with this method, as mnr2 cells have a high Mg content in both

replete and deficient conditions [29]. As an alternative, we

investigated the use of surrogate divalent cations (Co2+, Mn2+,

Ni2+ and Zn2+) to measure Alr system activity, using Inductively

Coupled Plasma-Mass Spectrometry (ICP-MS) to monitor the

uptake of these cations. Of these metals, we selected Ni2+ as the

most suitable tracer. This decision was in part based on the

observation that inhibitors of the Alr proteins and other CorA

transporters, such as aluminum ion [23,44], cobalt(III)hexaam-

mine chloride (CH) [23,45,46], and Mg ion [23,43], all strongly

inhibited Ni2+ uptake (Figure 1 and data not shown), suggesting

Ni2+ uptake was primarily mediated by the Alr systems. Strong

additional support for Alr-mediated Ni2+ uptake comes from the

observation that Ni2+ competitively inhibited Mg uptake by

Saccharomyces cerevisiae [43], and that a mutation inactivating the

Schizosaccharomyces pombe ALR1 homolog also reduced Ni2+ uptake

[47].

To determine the basic parameters of Ni2+ uptake by yeast, we

supplied strains with 100 mM Ni2+ in the presence or absence of

100 mM CH (Figure 1A) and followed accumulation over a

20 min time course. Substantial Ni2+ uptake by a wild-type strain

was observed after 10 minutes of incubation, and the rate slowed

only slightly after 20 min. Addition of CH at the start of the time

course efficiently suppressed this uptake, consistent with Ni2+

influx via the Alr systems. We then examined the effect of

inactivating plasma membrane Mg uptake systems on Ni2+ uptake.

If the Alr systems mediate the majority of Ni2+ uptake, the rate of

uptake should be substantially reduced by the inactivation of these

transporters. To test this prediction, we determined the rate of

Ni2+ uptake by a set of Mg transporter mutants (Figure 1B). Since

alr1 mutants exhibit a growth defect under normal conditions, all

strains were cultured in YPD medium supplemented with excess

Mg (50 mM). The Ni2+ uptake rate was reduced by 85% in an alr1

alr2 strain, indicating that the bulk of Ni2+ uptake activity was

contributed by these systems. Inactivating the ALR2 gene alone

had a negligible effect on Ni2+ uptake, indicating that the majority

of this activity was dependent on ALR1. Addition of equimolar CH

inhibited 94% of Ni uptake by wild-type cells, but was less

inhibitory to alr1 alr2 mutants, reducing Ni uptake by 81% for the

alr1 alr2 strain and 76% for the triple mutant (data not shown).

These observation suggest that CH is not completely specific to the

Alr systems, but may also partially inhibit residual Ni uptake

systems revealed by inactivation of the Alr systems. However, the

genetic data indicate that these systems make little contribution to

total Ni uptake by yeast.

Effect of Mg supply on Alr1 activity
The previously reported effect of Mg supply on ALR1 expression

[24] suggested that Mg-deficient yeast would display increased

Ni2+ uptake activity. To test this prediction, wild-type cells were

grown to log phase in standard SC medium, then transferred to
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low magnesium medium (LMM) supplemented with a range of Mg

concentrations (1 mM–10 mM Mg) and incubated for a further

6 h prior to assaying Ni2+ uptake. In wild-type yeast, activity was

relatively low in cells grown in 100 mM–10 mM Mg, but increased

substantially as the Mg supply decreased to 10 mM or below

(Figure 1C). Together, these observations strongly suggested that

yeast cells responded to Mg deficiency by increasing Alr1 activity.

We also examined the effect of the mnr2 mutation on Alr1

activity. The mnr2 mutation blocks access to intracellular Mg stores

required to maintain homeostasis under deficient conditions [29].

If Alr1 activity was regulated by cytosolic Mg concentration, we

suspected that by reducing cytosolic Mg availability, the mnr2

mutation might enhance Alr1 activity. Consistent with this

expectation, Ni2+ uptake by mnr2 cells grown in YPD was rapid

and essentially complete after 10 minutes (Figure 1A). Addition

of CH inhibitor reduced this activity by 96% (data not shown)

suggesting that the increase was a consequence of Alr1 activation,

rather than the activation of an independent Ni2+ transporter. As a

further test of this model, we examined the effect of inactivating

both Alr proteins on Ni2+ uptake by the mnr2 mutant (Figure 1B).

The mnr2 mutation alone was again associated with increased

uptake, but combining alr1 and alr2 mutations with the mnr2

mutation eliminated the majority of this activity. Together, these

findings indicate that the increased Ni2+ uptake associated with

mnr2 was not due to the activation of a novel Ni2+ transport

system, but occurred as a consequence of a specific increase in Alr

system activity. Since the bulk of this activity is contributed by

Alr1, we will refer to this Ni2+ uptake activity as Alr1 activity in

subsequent discussions.

Like the wild-type, the mnr2 mutant displayed Mg-responsive

Alr1 activity, with the highest activity seen in cells supplied with

10 mM Mg (Figure 1C). Alr1 activity was similar to wild-type in

cells supplied with 1 mM Mg or higher, but mutant cells supplied

with 10–100 mM Mg displayed a substantial increase in activity

over the wild-type. In mutant cells supplied with 1 mM Mg

however, activity was similar to wild-type. Although the reason for

this decrease relative to the wild-type is unclear, it is possible that

at this low concentration, the mnr2 mutation enhanced the general

negative effects of severe Mg deficiency on yeast physiology.

Taken together, the above observations suggest two major

conclusions. First, yeast respond to reduced Mg supply by

increasing Alr1 activity, presumably to capture more Mg from

the environment. This effect occurred both in response to a

decrease in external concentration, and to a loss of access to

Figure 1. Effect of Mg supply and the mnr2 mutation on Alr system activity. (A) Effect of cobalt(III)hexaammine chloride (CH) on Ni2+ uptake
activity. WT (DY1457) and mnr2 (NP4) strains were grown to log phase in YPD medium. At zero time, cells were added to uptake buffer containing
100 mM NiCl2, with or without 100 mM CH inhibitor. At the indicated times, aliquots were removed and processed for measurement of nickel content
by ICP-MS, as described in Materials and Methods. (B) Rate of CH-inhibited Ni2+ uptake by WT (DY1457), mnr2 (NP4), alr2 (NP27), alr1 alr2 (NP14) and
alr2 alr2 mnr2 (NP20) strains. Assays were performed as described in (A), except strains were grown to log phase in YPD+50 mM MgCl2. Nickel
content was determined zero and 5 min after addition of 100 mM NiCl2, and initial Ni2+ content subtracted from 5 min values. (C) Regulation of the
Alr systems by Mg supply. DY1457 (WT) and mnr2 (NP4) strains were grown to log phase in SC medium, washed to remove excess Mg, and incubated
for 6 h in LMM with the indicated Mg concentration. Cells were washed, resuspended in uptake buffer, and incubated with 100 mM Ni2+ for 1 min.
Initial Ni2+ content was subtracted from 1 min values to give the results shown. For all graphs, values are means of four replicates, and error bars
indicate +/21 SEM.
doi:10.1371/journal.pone.0020896.g001
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intracellular stores, suggesting that the major ‘‘pool’’ of Mg sensed

by the yeast cell is cytosolic. Second, the mnr2 mutation did not

eliminate regulation by Mg supply, as mnr2 cells supplied with

10 mM Mg still displayed less Alr1 activity than cells supplied with

10 mM Mg. For this reason, Mnr2 is unlikely to represent a

component of a pathway required for Alr1 regulation. Instead,

these results support a more general role for Mnr2 in the

maintenance of Mg homeostasis [29].

Mg-responsive accumulation of the Alr1-HA protein
A previous report [24] indicated that the accumulation of a C-

terminally epitope-tagged version of the Alr1 protein (Alr1-HA)

was influenced by Mg supply. Since this regulation might explain

the effect of Mg supply and the mnr2 mutation on Alr1 activity, we

performed experiments to verify the effect of Mg on Alr1-HA

accumulation. Wild-type and mnr2 cells expressing Alr1-HA were

supplied with a range of Mg concentrations, from replete to

deficient (,100 mM), and Alr1-HA detected by immunoblotting of

total protein extracts (Figure 2A). In the wild-type strain, we

observed a 19-fold increase in the Alr1-HA content of wild-type

cells supplied with 1 mM vs 10 mM Mg (Figure 2B), confirming

that Alr1-HA accumulation was responsive to Mg supply. In the

mnr2 mutant strain, Alr1-HA accumulated to a higher level than in

the wild-type. This effect was seen at all Mg concentrations tested,

but was most pronounced at intermediate concentrations (for

example, Alr1-HA accumulation was approximately 4-fold higher

in cells supplied with 100 mM Mg, Figure 2B). These

observations confirmed a previous report that yeast cells respond

to Mg deficiency by elevating the accumulation of the Alr1-HA

protein. In addition, the effect of the mnr2 mutation suggested that

this process is responsive to the intracellular Mg concentration.

Subsequent experiments were performed to examine the mech-

anism of this apparent regulation.

Effect of Mg supply on ALR1 gene expression
One potential explanation for the results shown in Figure 1

and Figure 2 is that yeast cells can respond to Mg deficiency by

inducing ALR1 gene expression, as previously reported [24]. To

determine if the ALR1 gene was transcriptionally regulated, we

measured the activity of an ALR1 promoter-lacZ fusion in wild-

type and mnr2 mutant strains (Figure 3A). The mnr2 strain was

included in order to determine if the higher Alr1 activity seen in

this strain could be explained by higher ALR1 gene expression.

The ALR1 promoter-lacZ fusion drove higher lacZ expression than

the promoter-less lacZ construct (YEp353), indicating that the

promoter was functional. However, reporter activity was only

slightly increased by Mg-deficiency in both the wild-type and mnr2

strains, and was slightly reduced by the mnr2 mutation. Neither

observation was consistent with substantial transcriptional regula-

tion of ALR1 gene expression by Mg supply.

Given the previous report of Mg-responsive ALR1 transcript

accumulation [24], the above observation suggested that the ALR1

mRNA might be subject to Mg-regulated degradation. To test this

model, we directly examined the effect of Mg supply on ALR1

transcript abundance, via Northern analysis of ALR1 mRNA

(Figure 3B). In mRNA of the wild-type strain, a single band was

detected by the ALR1 probe (lanes 1–7, WT). This band was

absent from mRNA of the control alr1 strain (lane 8), indicating

that the probe was specific for ALR1. Consistent with the lacZ

reporter assays, no significant variation in ALR1 transcript level

was observed with changing Mg supply, indicating that ALR1 gene

expression was not affected by Mg availability. As expected,

expression of two control transcripts (ACT1, Figure 3B and RPL3,

data not shown) was also insensitive to Mg supply. We also

examined ALR1 transcript accumulation in an mnr2 mutant under

the same conditions, and observed no change in the effect of Mg

on transcript accumulation when compared with the ACT1 control

(Figure 3B, mnr2). These observations indicate that the increased

Alr1 activity observed in Mg-deficient cells of both wild-type and

mnr2 mutant strains were not explained by changes in ALR1 gene

expression.

Post-translational regulation of Alr1-HA
The above observations suggested that Mg-dependent change in

Alr1-HA accumulation (Figure 2) was primarily accomplished via

post-translational regulation of protein stability [24]. However,

before investigating post-translational regulation of Alr1, we

verified that the C-terminally HA-tagged version of Alr1

accurately reflected the behavior of the native (untagged) version.

To compare the effect of Mg supply on different versions of Alr1,

we constructed strains that expressed Alr1-HA, N-terminally myc-

tagged Alr1 (myc-Alr1), unmodified Alr1, or no Alr1. All ALR1

plasmids were single copy vectors that utilized the native ALR1

promoter. Strains were grown in Mg-deficient and replete

conditions, and Alr1 detected by immunoblotting with the

Figure 2. Alr1-HA accumulation varies with Mg supply and
MNR2 genotype. (A) Alr1-HA accumulation in WT (DY1457) and mnr2
(NP4) strains transformed with YIpALR1-HA were grown to log phase in
LMM-ura with the indicated concentration of Mg. Proteins were
detected by immunoblotting with anti-HA and anti-Tfp1 antibodies.
MNR2 genotype is indicated (+ or 2). DY1457 transformed with empty
vector was included to show antibody specificity (pFL38, V). (B)
Quantitation of Alr1-HA accumulation. Immunoblot band density was
normalized to the total Alr1-HA signal detected in both strains for each
replicate. Values are average of five independent experiments,
including the result shown in A. Error bars show +/21 SEM.
doi:10.1371/journal.pone.0020896.g002
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appropriate antibodies. Alr1 accumulation was normalized to the

Tfp1 loading control to determine the fold changes in Alr1

accumulation discussed below. Consistent with previous experi-

ments (Figure 2), we detected an approximate 7-fold difference in

the accumulation of the Alr1-HA protein between Mg-replete and

deficient cells (Figure 4A, left). As previously observed [24],

native Alr1 and modified versions migrated as two bands in SDS-

PAGE, which may represent differentially phosphorylated forms

[25]. Both bands were included when quantifying Alr1 accumu-

lation (clear separation of these bands was dependent on gel

polyacrylamide concentration and electrophoresis conditions,

meaning discrete bands were not resolved in some experiments,

for example Figure 2A). In contrast with Alr1-HA, normalized

accumulation of myc-Alr1 varied less than 2-fold (Figure 4A,

center), with a similar minor change observed for the untagged

protein (Figure 4A, right). These results indicate that the HA tags

altered the response of Alr1-HA to Mg supply. However, despite

the large effect of Mg supply on Alr1 activity, the accumulation of

untagged and N-terminally tagged Alr1 was relatively unrespon-

sive to Mg.

The strong effect of C-terminal epitope tags on Alr1

accumulation was surprising. To further investigate this effect,

we examined the consequence of inactivating factors required for

ubiquitination, endocytosis, and vacuolar degradation on the

accumulation of the three versions of Alr1. A previous study

reported that in deficient cells, Alr1-HA stability was substantially

reduced by Mg treatment, and that three factors involved in the

post-translational regulation of membrane proteins (Pep4, End4

and Rsp5) were required for this process [24]. Rsp5 is an E3 ligase

required for the regulated ubiquitination of membrane proteins

[48], End4 is required for the endocytosis of post-translationally

regulated plasma membrane proteins [49,50], and Pep4 is

required for the maturation of vacuolar proteases essential for

the degradation of proteins in the vacuole lumen [51]. We

examined the effect of inactivating these and other related factors

required for post-translational regulation on the steady state

accumulation of the three versions of Alr1 (Figure 4B). In wild-

type cells of either the BY4743 or W303 genetic background, Alr1-

HA accumulated to a substantially higher level in Mg-deficient

conditions, as previously observed. In a pep4 mutant, Alr1-HA

accumulated to a much higher level than observed for the Mg-

replete wild-type strain. In Mg-deficient pep4 cells, Alr1-HA

accumulated to a similar level to that seen in replete cells. The

effect of the pep4 mutation suggested that in wild-type cells, Alr1-

HA was delivered to the vacuole lumen and degraded via a Pep4-

dependent mechanism. Since the pep4 mutation increased Alr1-

HA accumulation under both Mg-deficient and replete conditions,

Alr1-HA was subject to Pep4-dependent degradation in both

conditions, but Mg deficiency appeared to reduce the efficiency of

this process.

The Rsp5 E3 ubiquitin (Ub) ligase covalently links Ub to

membrane proteins at the plasma membrane and Golgi

[52,53,54], and was previously reported to be required for the

degradation of Alr1-HA in response to Mg repletion [24]. We

observed that the npi1 mutation, which reduces the expression of

the essential Rsp5 protein by 90% [52], also substantially

increased Alr1-HA accumulation in both Mg-replete and deficient

conditions. To further test the effect of inactivating pathways of

Ub-dependent protein degradation, we also examined the effect of

a doa4 mutation. Doa4 is a Ub hydrolase that removes Ub from

membrane proteins before they are packaged into multi-vesicular

bodies (MVB’s) at the late endosome [55]. A doa4 mutant is unable

to remove Ub from membrane proteins and sort them into the

lumen of the MVB, thereby increasing their stability and

accumulation [55]. A doa4 mutant showed enhanced accumulation

of Alr1-HA in both replete and deficient conditions, similar to that

observed for pep4.

Lastly, we examined the effect of mutating the END3 gene

required for the regulated endocytosis of plasma membrane

proteins [56]. End3 is required for the recycling of plasma

membrane proteins normally subject to post-translational regula-

tion, such as Gap1 [57] and Zrt1 [35]. Notably, the end3 mutation

did not affect the steady-state level of Alr1-HA accumulation when

compared with the isogenic wild-type strain (BY4743), and neither

did end4 or dim1 mutations, which also block receptor-mediated

endocytosis [49,58] (data not shown). Together, these observations

Figure 3. Effect of Mg supply and the mnr2 mutation on ALR1
gene expression. (A) WT (DY1457) and mnr2 (NP4) strains trans-
formed with YEpALR1-lacZ (ALR1-lacZ) or control promoterless lacZ
vector (YEp353, lacZ) were grown to log phase in LMM with the
indicated Mg concentration, and b-galactosidase activity determined.
Error bars indicate +/21 SEM (six replicates). (B) Effect of Mg supply and
the mnr2 mutation on ALR1 mRNA accumulation. mRNA was purified
from WT (DY1457) or mnr2 mutant (NP4) cultures grown to log phase in
LMM containing the indicated Mg concentration and subjected to
Northern analysis. Blots were probed with a 32P-labeled PCR product of
the ALR1 gene, stripped, and reprobed with a 32P-labeled PCR product
of the ACT1 gene. mRNA from an alr1::HIS3 mutant (NP10) grown in
YPD+200 mM Mg was included as a control for ALR1 probe specificity
(alr1).
doi:10.1371/journal.pone.0020896.g003
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confirmed a role of the Doa4/Pep4-dependent degradation

pathway in determining the steady state level of Alr1-HA

accumulation in cells. However, they contradict a previous model

for Alr1 regulation [24], which argued that Alr1-HA accumulation

was regulated in part by Mg-responsive endocytosis.

We then determined the relative degree to which each of the

three versions of Alr1 were substrates for the Pep4/Doa4-

dependent degradation pathway. Since the pep4 and doa4

mutations had the most obvious effect on Alr1-HA accumulation

in replete cells, cultures were grown in Mg-replete medium for this

comparison. Each form of Alr1 was expressed in wild-type, doa4

and pep4 mutant strains, and the accumulation of each was

simultaneously detected using an anti-Alr1 antibody. Due to size

differences, all three versions of Alr1 could be clearly discriminated

(Figure 4C), but the results were also verified separately using

anti-HA and anti-myc antibodies (data not shown). Both the doa4

and pep4 mutations increased the accumulation of the Alr1-HA

protein by approximately 6-fold, but each mutation caused less

than a 2-fold increase in the accumulation of the myc-Alr1 and

untagged proteins. This observation indicated that unlike Alr1-

HA, the unmodified or N-terminally tagged proteins were not a

major substrate for the Doa4/Pep4-dependent degradation

pathway. The effect of these mutations on the latter two versions

of Alr1 also indicated that in replete conditions, Alr1 may

normally be delivered to the vacuole and degraded at a slow rate.

In this respect, Alr1 may behave similarly to tracers of bulk-flow

endocytosis (e.g. FM4-64), which are slowly transferred from the

plasma membrane to the vacuole even in end3 mutant strains [50].

Our data further indicates that N-terminal tagging does not have

the same effect on Alr1 behavior as C-terminal tagging. Although

Figure 4. Effect of epitope tagging on Alr1 accumulation. (A) DY1457 transformed with YCpALR1-HA (left panel), or YCpmyc-ALR1 (center),
and an alr1 strain (NP10) transformed with YCpALR1 (right), or an empty vector (pFL38, V) were grown in LMM +1 mM (2) or 1 mM Mg (+). Alr1 and
Tfp1 (as loading control) were detected by SDS-PAGE and immunoblotting with anti-HA, anti-myc, or anti-Alr1 antibodies. (B) Strains of the indicated
genotypes transformed with YCpALR1-HA were grown in LMM supplemented with 1 mM (2) or 1 mM (+) Mg, and proteins detected by
immunoblotting with anti-HA and anti-Tfp1. Strains used were WT (BY4743 or W303-1B), 32992 (end3), SD20 (doa4) 27038a (npi1), MOB100 (pep4),
and W303-1B transformed with pFL38 (V/W303). Results for the NPI1 strain isogenic to 27038a (23344C) were similar to W303-1B (not shown). (C) WT
(W303-1B), pep4 (MOB100) and doa4 (SD20) strains transformed with YCpmyc-ALR1 (myc-Alr1), YCpALR1-HA (Alr1-HA) or pFL38 control (V) were
grown in Mg-replete medium (SC). Proteins were detected by immunoblotting with anti-Alr1 and anti-Tfp1. The three versions of Alr1 are indicated
(star = myc-Alr1, open circle = Alr1-HA, diamond = untagged Alr1). (D) FY1679/YIpALR1-HA cells were grown in LMM containing 5 mM Mg for
12 hours. Cells were then transferred to LMM with 5 mM, 1 mM, or 10 mM Mg, and 100 mg/ml cycloheximide. Aliquots of cells were removed after 0
or 180 minutes, protein extracted, and proteins detected by immunoblotting with anti-HA and anti-Tfp1 antibodies. FY1679 transformed with pFL38
was included to verify antibody specificity (V). (E) WT (DY1457), mnr2 (NP4), and alr1 (NP10) strains were grown in LMM medium supplemented with
the indicated Mg concentration. Proteins were detected by immunoblotting with anti-Alr1 and anti-Tfp1 antibodies.
doi:10.1371/journal.pone.0020896.g004
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myc-Alr1 accumulated to a lower overall level than the wild-type

protein (Figure 4C), doa4 and pep4 mutations had little effect on

its accumulation, and the ratio of the myc-tagged to native protein

did not vary in the three strains, indicating that the lower

accumulation of Myc-Alr1 may result from an effect of this

alteration on variables other than protein stability (for example,

transcript stability or translation rate).

Together, these observations indicated that as previously

suggested [24], Alr1-HA accumulation is largely determined by

the activity of an Rsp5/Doa4-dependent recycling pathway for

membrane proteins, and that Mg availability affects the degree to

which Alr1-HA is subject to degradation. We suggest that the

modification of the Alr1 C-terminus may inhibit correct folding of

the protein, or its ability to assemble into a complex with other

subunits. If monomeric or misfolded Alr1-HA accumulates in the

Golgi, it may be recognized by Rsp5-dependent quality control

systems, ubiquitinated, and sorted directly to the vacuole for Pep4-

dependent degradation. Similar behavior has been observed for

some other defective proteins [38,40]. In contrast, the accumu-

lation of unmodified Alr1 is much less sensitive to mutations in

components of this pathway, suggesting that Ub-mediated

degradation does not play a major role in its regulation.

Effect of Mg on Alr1-HA stability
The lack of effect of the end3 mutation on Alr1-HA steady state

accumulation (Figure 4B) suggested that Mg-dependent sorting

of Alr1-HA occurred within the cell, and that this process no

longer operated on Alr1-HA that had already reached the plasma

membrane. This interpretation was however inconsistent with a

previous report that the stability of Alr1-HA in deficient cells was

Mg-dependent [24]. To clarify this issue, we also determined the

effect of Mg supply on Alr1-HA stability using the same protocol

(Figure 4D). A wild-type strain expressing Alr1-HA was grown in

Mg-deficient conditions, then transferred to fresh medium

containing 5 mM, 1 mM, or 10 mM Mg, and cycloheximide to

block de novo protein synthesis. In multiple experiments, we

observed no difference in Alr1-HA stability between cells

maintained in deficient conditions and those exposed to excess

Mg. Our observations directly contradict the previous report, but

the reason for this inconsistency is unknown. Alr1-HA insensitivity

to Mg was not due to lack of Mg uptake, as robust uptake was

directly observed under these conditions (data not shown). The

above observations are consistent with the absence of an effect of

the end3 mutation on the steady-state level of Alr1-HA accumu-

lation, as both observations suggest that the stability of Alr1-HA is

determined early in the secretory pathway, before the protein

reaches the cell surface.

Because the above results indicated that the response of Alr1-

HA to Mg supply differed from the untagged protein, we

examined the effect of the mnr2 mutation on the accumulation

of the untagged Alr1 protein (Figure 4E). Wild-type and mnr2

cells were grown in deficient (1 and 10 mM) and replete (100 mM)

Mg concentrations and Alr1 detected via immunoblotting. In

contrast to Alr1-HA (Figure 2), cells expressing native Alr1 and

supplied with 1 mM Mg accumulated less than 2-fold more Alr1

protein than cells supplied with 100 mM Mg (Figure 4E),

although they displayed approximately 9-fold higher Alr1 activity

(Figure 1C). In addition, while the mnr2 mutant supplied with

100 mM Mg had approximately 9-fold higher Alr1 activity than

wild-type cells (Figure 1C), the mutation had little effect on the

abundance of the Alr1 protein under the same conditions

(Figure 4E). These observations indicate that a change in Alr1

accumulation alone does not explain the substantial change in

Alr1 activity elicited by loss of Mnr2 function.

Alr1 location and Mg supply
Since the untagged and N-terminally tagged versions of Alr1 did

not display behavior consistent with substantial post-translational

regulation of stability or accumulation, we considered the

possibility that endocytosis contributed to the regulation of Alr1

activity, but without affecting its steady-state accumulation. For

example, a process of Mg-dependent trafficking could operate to

reduce Alr1 level at the cell surface in Mg-replete conditions, but

transfer it back to the surface in deficient cells. To test this model,

we directly examined the effect of Mg supply on subcellular Alr1

location, using a functional N-terminal fusion of Alr1 to YFP.

Under steady state conditions, YFP-tagged Alr1 expressed from

the ALR1 promoter accumulated to a similar level in Mg-deficient

and replete conditions (Figure 5A), and Ni2+ uptake experiments

confirmed that the activity of the YFP-tagged protein was

regulated by Mg supply (Figure 5B). When expressed from the

ALR1 promoter, YFP-Alr1 was detected as a faint punctate signal

on the plasma membrane, and its location was not noticeably

altered by Mg status (Figure 5C). Thus, we found no evidence

that Alr1 activity was regulated by altering YFP-Alr1 protein

distribution. We also examined the effect of the mnr2 mutation on

YFP-Alr1 location. Although the mnr2 mutation increased Alr1

activity approximately 9-fold in cells supplied with 100 mM Mg

(Figure 1C), the mutation had no effect on the location of YFP-

Alr1 in cells supplied with either 100 mM or 4 mM Mg

(Figure 5D), indicating that a change in YFP-Alr1 distribution

did not explain the increased activity observed in mnr2.

Discussion

The CorA family of Mg channels is widespread in biology, and

its members play an important role in the regulation of cytosolic

Mg concentration. Although many CorA proteins have been

shown to be constitutively expressed [59], a previous study

suggested that Alr1 expression was Mg-regulated [24]. In this

report, we used both inhibitors of the Alr systems and Alr mutant

strains to establish for the first time that Ni2+ uptake by S. cerevisiae

is primarily dependent on Alr1, and that this activity is

substantially increased by Mg deficiency. We also report that

Alr1 activity was increased in a mutant (mnr2) lacking access to

intracellular Mg stores, consistent with regulation by intracellular

Mg concentration. To understand how Alr1 activity is regulated,

we examined the effect of Mg supply on Alr1 expression and

accumulation. In contrast to a previous study, we found no

evidence for Mg-regulated expression of the ALR1 gene. The

accumulation of an epitope-tagged version of Alr1 (Alr1-HA) was

found to be dependent on Mg supply and on proteins required for

ubiquitin-dependent protein sorting and degradation, but these

factors had little influence on the accumulation of the native

protein. We also observed that although the mnr2 mutation

increased Alr1 activity, this change was not explained by altered

accumulation of the Alr1 protein or its redistribution. Some

implications of these findings are discussed below.

Effect of Mg on ALR1 gene expression
Using Northern analysis, we observed that ALR1 gene

expression was insensitive to Mg supply (Figure 3). We also used

an independent method (an ALR1 promoter-lacZ fusion construct),

to confirm the insensitivity of the ALR1 promoter to Mg

availability. Thus, we are confident that these results accurately

reflect the effect of Mg on ALR1 gene expression. We are unsure as

to why we could not repeat earlier observations of an effect of Mg

on ALR1 transcript levels, but we note that the small effect of Mg

supply on native Alr1 protein accumulation is consistent with a
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lack of ALR1 transcript regulation. A previous report [25] also

indicated that ALR2 gene expression was upregulated by Mg

deficiency. Although we did not examine the effect of Mg on ALR2

mRNA abundance or protein accumulation, there are several

reasons why it is unlikely that ALR2 upregulation alone could

explain the large increase in Alr system activity under Mg-deficient

conditions. First, several studies have shown that both ALR2 gene

expression and protein accumulation is very low [25,26,27].

Indeed, our attempts to detect ALR2 mRNA by Northern analysis

were unsuccessful (data not shown). This low expression may be

explained by a recent study showing the ALR2 mRNA is targeted

for nonsense-mediated decay [27]. The sequence of Alr2 also

varies from Alr1 at a key residue, reducing its activity [25].

Consistent with these observations, the inactivation of ALR1 alone

is sufficient to induce a strong Mg-dependent growth phenotype,

even under deficient conditions that might be predicted to induce

ALR2 expression [24,26,29]. In addition, the inactivation of ALR1

alone resulted in a substantial decrease in cellular Mg content even

under Mg-replete conditions [29]. Together, these observations

indicate that Alr2 activity alone is not sufficient to maintain Mg

homeostasis.

Effect of Mg on Alr1 accumulation
Since our data did not support regulation of ALR1 gene

expression by Mg, we examined the effect of Mg supply on Alr1

protein accumulation (Figure 4). Although we could reproduce

the effect of Mg supply on the accumulation of an epitope-tagged

Alr1-HA protein (Figure 2), our data indicate that this effect is an

artifact of adding C-terminal epitope tags to Alr1, because neither

the untagged, nor N-terminally tagged versions of Alr1 were

similarly regulated. Based on these observations, we suggest a

model to explain the effect of Mg on the accumulation of the

tagged Alr1-HA protein (Figure 6). Our data indicate that this

modification decreased Alr1 abundance by increasing its suscep-

tibility to systems that degrade misfolded proteins. We suggest that

while some Alr1-HA reaches the plasma membrane and is

functional, a large fraction is sorted directly from the Golgi to the

vacuole, where it is degraded. This process is accelerated under

Mg-replete conditions, leading to reduced accumulation of Alr1-

HA. The involvement of Rsp5 and Doa4 in determining the level

of Alr1-HA accumulation suggests that ubiquitination of Alr1-HA

by Rsp5 early in the secretory pathway triggers its sorting to the

vacuole. The instability of newly synthesized Alr1-HA may result

from the HA tag inhibiting the assembly of subunits into a

functional complex, leading to the accumulation of unstable

monomeric forms. A previous study reported that the deletion of

the last 36 amino acids of the Alr1 C-terminal domain reduced the

ability of the protein to homo-oligomerize [25] suggesting that

modification of this region with HA tags might also inhibit

assembly. Since the Alr1-HA protein that accumulated in Mg-

deficient cells was not destabilized by subsequent exposure to Mg-

replete conditions (Figure 4D), Alr1-HA that escapes Rsp5-

dependent quality control mechanisms within the secretory

pathway may take on a stable conformation that is resistant to

endocytosis and degradation. In support of this model, we note

that Mg repletion did not reduce the stability of the pool of

preexisting Alr1-HA in Mg-deficient cells (Figure 4D), and the

end3 mutation had no effect on steady-state Alr1-HA accumulation

(Figure 4B). These observations suggest that in replete conditions,

Alr1-HA does not reach the plasma membrane en route to the

vacuole, and its degradation is thus not dependent on Mg-

regulated endocytosis.

Unlike Alr1-HA, our experiments indicated that native and N-

terminally tagged versions of Alr1 are not major targets for Mg-

dependent ubiquitination, trafficking, and degradation. Additional

evidence for this view came from examination of YFP-Alr1

location in mutant strains defective for membrane protein

turnover (Figure S1). The response of YPF-tagged Alr1 to Mg

supply was similar to both the native and N-terminally myc-tagged

proteins (Figure 4, Figure 5), indicating that this protein could

be used to examine Alr1 trafficking. In Mg-replete conditions,

YFP-Alr1 was predominantly located at the cell surface of wild-

type cells (Figure S1A). The npi1 mutation did not increase the

level of YFP-Alr1 localized to the plasma membrane, as might be

expected if Rsp5-dependent ubiquitination regulated Alr1 stability

[24]. In addition, YFP-Alr1 did not accumulate in the vacuole of

Figure 5. Effect of Mg supply on Alr1 location. (A) alr1 strains
(NP4) transformed with YCpCit-ALR1 (YFP-Alr1) or YCpALR1 (Alr1) were
grown for 16 h in LMM supplemented with 1 mM (2) or 1 mM (+) Mg
prior to protein extraction. YFP-Alr1 and Tfp1 proteins were detected by
immunoblotting with anti-GFP or anti-Tfp1 antibodies respectively. (B)
Rate of CH-inhibited Ni2+ uptake by cells expressing native and YFP-
tagged Alr1. Strains described in (A) were grown to log phase in SC
medium, washed to remove Mg, and incubated for 6 h in LMM with the
indicated Mg concentration. The rate of CH-inhibited Ni2+ uptake was
then determined as described in the legend to Figure 1. Values are
means of four replicates +/21 SEM. (C) Strains described in (A) were
grown to exponential phase in SC, then transferred to LMM containing
5 mM (2) or 5 mM (+) Mg for 6 hours, and live cells examined by
epifluorescence microscopy. YFP fluorescence (Epi) and corresponding
differential interference contrast (DIC) images are shown. (D) Diploid
WT (BY4743) and mnr2 (34913) strains transformed with YCpCit-ALR1
were grown to log phase in SC medium (2 mM Mg), or LMM+100 mM
Mg and examined with epifluorescence microscopy (Epi), or DIC as
indicated.
doi:10.1371/journal.pone.0020896.g005
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pep4 mutant cells lacking vacuolar proteases. We also examined the

effect of a vps27 mutation, which blocks the transport of

ubiquitinated membrane proteins from the prevacuolar compart-

ment (PVC) to the vacuole [60]. Substantial transport of YFP-Alr1

from the plasma membrane to the vacuole would cause YFP-Alr1

to accumulate in the PVC of a vps27 mutant, which was not

observed (Figure S1A). Together, these findings provide further

evidence that post-translational regulation does not influence the

fate of Alr1.

If the instability of the Alr1-HA protein is an artifact of its

tagging, why then is Alr1-HA accumulation responsive to Mg

supply? If key steps in protein quality control mechanisms were

Mg dependent, these processes might become less efficient in Mg-

deficient cells. Consistent with this idea, many of the basic

processes required for protein trafficking and ubiquitination are

ATP-dependent (e.g., the covalent addition of ubiquitin to E1

ligase enzymes) [61], and may thus depend on access to adequate

Mg as a cofactor. Another possible explanation is that the

conformation of the Alr1-HA protein itself may be Mg-dependent,

which could directly affect its stability. CorA from Thermatoga

maritima undergoes large-scale conformational changes upon

binding Mg, which play a role in regulating its activity [62,63].

Many of the Mg-binding residues required for these conformation

changes are conserved in the Alr1 protein (data not shown),

suggesting that Mg availability may have a similar effect on Alr1

conformation. If so, it is possible that when Alr1-HA binds Mg it

abnormally exposes certain residues, thereby increasing its

visibility to protein quality control mechanisms. Alternatively,

the protein may take on an aberrant conformation which inhibits

its ability to assemble into a functional complex, with similar

consequences for stability.

Precedent for this model (Figure 6) comes from studies of

plasma membrane proteins such as the Smf1 divalent cation

transporter [64,65,66]. In Mn2+-deficient conditions, Smf1

accumulates in the plasma membrane [67], but in replete

conditions, this protein moves directly from the Golgi to the

vacuole and is degraded. This trafficking pathway requires Smf1

ubiquitination, but this modification happens early in the secretory

pathway rather than at the plasma membrane [68]. Like Alr1-HA,

delivery of newly synthesized Smf1 to the vacuole did not require

endocytosis, as the end4 mutation had no effect on Smf1 stability in

replete conditions [67]. The Gap1 amino acid permease is

regulated via a similar mechanism [53,69,70,71]. The pathway

responsible for directing both Smf1 and Gap1 to the endosome

shares components with a general quality control mechanism that

eliminates misfolded membrane proteins from the secretory

pathway. The Pma1-7 protein, a temperature-sensitive mutant

form of the plasma membrane ATPase, also reaches the vacuole

via this pathway in non-permissive conditions [38,72]. Thus, the

existence of this sorting pathway and its involvement in both the

regulation and recycling of damaged proteins is well established.

Regulation of the Alr systems
Given that regulated abundance does not explain the effect of

Mg on Alr1 activity, what other processes might explain this

regulation? Structural studies of a bacterial CorA protein revealed

that its conformation was altered by the presence of Mg ions

bound to intracellular sites [62,63,73,74]. The N-terminal

cytosolic domain of the CorA protein includes two cation-binding

sites located at the boundaries of each adjacent subunit. The

presence of Mg was associated with rearrangement into a more

compact protease-resistant conformation, and the apparent

closure of the ion transport pore. This observation suggests that

CorA proteins form Mg-gated pores in the membrane, with the

cytosolic domain acting as a Mg-sensor. This model is supported

by electrophysiological studies showing Mg-dependent activity of

both CorA and Mrs2 channels [17,62]. We suggest that activity of

the Alr1 protein may also be directly regulated by binding

cytosolic Mg. The effect of the mnr2 mutation on Alr1 activity is

consistent with this model, since this mutation is likely to lower

cytosolic Mg availability.

It is also possible that other regulatory processes affect Alr1

activity. During this work we consistently observed an effect of Mg

supply on the speed of Alr1 migration in SDS-PAGE (Figure 4A,
Figure 5A). A higher mobility form of Alr1 predominated in

deficient cells, while a lower mobility form was seen in cells

supplied with .10 mM Mg. This apparent modification of Alr1 in

response to Mg supply has been observed in several studies

[24,25,41], and was seen with all versions of Alr1 used here. On

the basis of the effect of treatment with protein phosphatase on

Alr1 gel mobility, one report indicated that the lower mobility

form may be phosphorylated [25]. Consistent with this explana-

tion, proteomic studies identified several phosphorylated residues

in Alr1 [75]. If phosphorylation of the Alr1 protein is Mg-

dependent, this modification might play a role in adaptation to

Mg-deficient conditions, perhaps by directly regulating Alr1

activity. In support of this model, we note that cells of the mnr2

mutant strain supplied with 100 mM Mg predominantly accumu-

lated the higher mobility form of Alr1, while the wild-type

predominantly displayed the lower mobility form (Figure 4E).

The predominant form of Alr1 thus correlated well with Alr1

activity (Figure 1C). The nature and effect of this modification

represents an interesting subject for future studies of Alr1

regulation.

In summary, we have identified a mechanism of regulation of

the Alr1 protein activity by intracellular Mg supply, which may

contribute to Mg homeostasis in yeast. However, our work does

not support a major role for the regulation of ALR1 gene

expression or protein stability in this process. In addition to

expanding our understanding of the function of the Alr1 and

Mnr2 proteins in Mg homeostasis, this report provides a

cautionary tale about the use of functional tags to modify proteins.

Both N- and C-terminally tagged versions of Alr1 were functional,

as determined by complementation assays (Figure S1B), but

displayed very different responses to Mg supply. Such growth

assays are often the only evidence presented to argue that epitope

tags do not modify the function or behavior of a protein. However,

Figure 6. Proposed model for Mg-dependent trafficking of
Alr1-HA. After synthesis, fate of the Alr1-HA protein is dependent on
Mg supply. In Mg-deficient cells, more Alr1-HA escapes an Rsp5-
dependent quality control mechanism and reaches the plasma
membrane, where it is not subject to Mg-stimulated endocytosis. In
replete conditions, Alr1-HA is recognized by Rsp5, ubiquitinated, and
sorted to the PVC, where it is intercepted by Doa4 and sorted to the
vacuole lumen for eventual Pep4-dependent degradation.
doi:10.1371/journal.pone.0020896.g006
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it is clear from this work that epitope tagging can have subtle, and

even misleading effects on protein behavior.

Materials and Methods

Yeast strains, growth media and standard methods
All yeast strains used in this work are listed in Table 1. Yeast

strains were routinely propagated as described previously [29]. For

culture of strains in Mg-deficient conditions, a low magnesium

synthetic medium (LMM) was prepared [29]. Yeast transforma-

tion was performed using standard methods [76]. b-galactosidase

activity was measured by the method of Guarente [77]. Cells were

harvested during exponential growth and activity was calculated as

follows: (A41561000)/(min6ml of culture used6culture A595). Cell

number per milliliter of yeast suspensions was determined by

measuring the optical density at 595 nm (A595) and comparing

with a standard curve of A595 vs. viable cells.

Plasmid construction
All plasmids were constructed via gap repair in yeast [78], and

complete sequences are available on request. The plasmids pFL38

[79], YIpALR1-HA [24], YEp353 [80], and YCpALR1 [26] were

described previously. YEpALR1-lacZ was constructed by ampli-

fying the 59 intergenic region of ALR1 including the start codon

from genomic DNA. This fragment was fused 59 of the lacZ ORF

via gap repair of YEp353. YCpALR1-HA was constructed by

transferring the ALR1 promoter and complete coding sequence

(including the HA tags) from the YIpALR1-HA plasmid to pFL38

via gap repair. The YEpGmycALR1 plasmid was constructed

from YEpGmyc-Mnr2 [29], by replacement of the MNR2 ORF

with ALR1 via gap repair. This construct contains six repeats of the

c-myc epitope sequence fused to the start of the ALR1 ORF. To

express myc-tagged Alr1 from the ALR1 promoter, the six myc

tags and the 59 end of the ALR1 ORF were amplified from

YEpGmycALR1 and integrated between the ALR1 promoter and

coding sequence in the YCpALR1-HA plasmid, generating

YCpmyc-ALR1-HA. The HA tags were then removed by

replacement with a PCR fragment of the ALR1 C-terminus,

generating YCpmyc-ALR1. To construct YEpGCit-Alr1, the

coding sequence of the YFP gene (yEmCitrine variant) was

amplified from the pKT211 vector [81] and used to replace the N-

terminal myc tags in YEpGmycALR1 via gap repair. The

resulting plasmid expressed YFP-tagged Alr1 from a galactose-

regulated promoter. To construct YCpCit-ALR1, the 59 region of

the YEpGCit-Alr1 plasmid including the YFP ORF and an N-

terminal portion of ALR1 was amplified and inserted at the N-

terminal end of the Alr1 ORF in the YCp-myc-Alr1 plasmid. Gap

repair reconstituted a plasmid in which six myc tags and the YFP

gene are inserted between the ALR1 promoter and start of the

ALR1 CDS. The function of all modified Alr1 proteins was verified

by complementation of the growth defect of an alr1 alr2 mutant

strain (Figure S1).

Northern blotting and hybridization
RNA was extracted from yeast using standard methods [82].

mRNA was purified from total RNA using a GenElute miniprep

kit (Sigma). Formaldehyde agarose gel electrophoresis, Northern

blotting, and hybridization procedures were performed using

standard methods [83]. Typically, twenty mg of mRNA was loaded

per lane and fractionated on a 1% agarose formaldehyde gel.

RNA was blotted to Hybond N membrane prior to hybridization

with 32P-labelled PCR products. Autoradiographs were visualized

using a phosphorimager.

SDS-PAGE, immunoblotting and microscopy
SDS-PAGE and immunoblotting experiments were performed

as previously described [29]. Antibodies used in these studies were

rabbit anti-myc (ab9106, Abcam), mouse monoclonal anti-HA (ab

9110, Abcam), mouse anti-Tfp1 (8B1, Molecular Probes), rabbit

anti-GFP (ab290, Abcam), HRP-conjugated goat anti-mouse

(32230, Pierce), and HRP-conjugated goat anti-rabbit (32260,

Pierce). To generate the anti-Alr1 antibody, a GST-fusion to the

Table 1. Yeast strains.

Strain Full genotype Source/reference

DY1457 MATa ade6 can1-100oc his3-11,15 leu2-3,112 trp1-1 ura3-52 D. Eide [85]

NP4 mnr2::KanMX4 in DY1457 [29]

NP10 MATa ade2 can1-100oc his3-11,15 leu2-3,112 trp1-1 ura3-52 alr1::HIS3 [29]

NP27 MATa can1-100oc his3-11,15 leu2-3,112 trp1-1 ura3-52 alr2::TRP1 [29]

NP14 MATa ade6 can1-100oc his3-11,15 leu2-3,112 trp1-1 ura3-52 alr1::HIS3 alr2::TRP1 [29]

NP20 MATa ade2 can1-100oc his3-11,15 leu2-3,112 trp1-1 ura3-52 alr1::HIS3 alr2::TRP1 mnr2::KanMX4 [29]

W303-1B MATa ade2-1 ura3-1 his3-11 leu2-3,112 trp1-1 can1-100 R. Haguenauer-Tsapis [86]

MOB100 MATa ade2-1 ura3-1 his3-11 leu2-3,112 trp1-1 can1-100 pep4::KanMX4 R. Haguenauer-Tsapis [86]

SD20 MATa ade2-1 ura3-1 his3-11 leu2-3,112 trp1-1 can1-100 doa4::HIS3 R. Haguenauer-Tsapis [86]

BY4743 MATa/MATa his3D1/his3D1 leu2D0/leu2D0 met15D0/MET15 lys2D0/LYS2 ura3D0/ura3D0 EUROSCARF [87]

34913 mnr2::KanMX4/mnr2::KanMX4 in BY4743 EUROSCARF [87]

35381 vps27::KanMX4/vps27::KanMX4 in BY4743 EUROSCARF [87]

32992 end3::KanMX4/end3::KanMX4 in BY4743 EUROSCARF [87]

23344c MATa ura3 B. Andre [88]

27038a MATa npi1 ura3 B. Andre [88]

FY1679 MATa ura3-52 A. Graschopf [24]

SF838-9D MATa pep4-3 leu2-3,112 ura3-52 his4-519 gal2 R. Piper [89]

doi:10.1371/journal.pone.0020896.t001
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C-terminal 230 amino acids of Alr1 was expressed in E. coli,

purified, and used to immunize rabbits (R. Gardner, unpublished

results). For visualization of YFP fluorescence, live cells of log-

phase cultures were applied to poly-L-lysine coated slides and

examined with a Zeiss Axioscope fluorescence microscope

equipped with Zeiss FL Filter Set 46 HE to detect YFP emission.

Images were captured with a Retiga EXi cooled charge-coupled

device camera (QImaging) using IP Labs 4.0 software (BD

Biosciences). Images were edited to filter noise and adjust contrast

using Photoshop CS (Adobe Systems). Immunoblot band density

was determined from TIFF images using ImageJ 1.36b software.

Elemental analysis
ICP-MS analysis was performed essentially as previously

described [84], except that after collection, yeast cells were washed

with 1 mM EDTA and water, then resuspended in uptake buffer

(10 mM Tris-succinate pH 4, 2% glucose). Uptake assays were

initiated either by the addition of cells to buffer containing metal

ions (e.g. Ni2+), or by the addition of metal ions to cell suspensions.

Assays were terminated by adding EDTA to 10 mM and chilling

the cells on ice. Cells were collected on nitrocellulose filters, then

washed twice with wash buffer (10 mM Tris-succinate pH 4, 1 mM

EDTA), twice with ddH2O, and processed for ICP-MS.

Supporting Information

Figure S1 Subcellular location and function of epitope-
tagged Alr1. (A) Effect of protein trafficking mutations on YFP-

Alr1 location. WT (W303-1B), pep4 (SF838-9D), vps27 (35381),

and npi1 (27038a) yeast strains were transformed with a GAL1

promoter-driven YFP-Alr1 construct (YEpGCit-Alr1) and strains

grown to log phase in SC-U medium (2% glucose) before

examination with epifluorescence microscopy (Epi) or DIC as

indicated. (B) Complementation of an alr1 alr2 mutant by modified

Alr1 proteins. NP14 strains (alr1 alr2) transformed with the

indicated plasmids were grown to saturation in high Mg medium

(SC+250 mM Mg), and used to inoculate aliquots of

LMM+30 mM Mg to give an initial A595 of 0.01. Cultures were

grown for 16 h before recording final A595 values (values are

means of three replicate cultures, error bars indicate +/21 SEM).

(PDF)
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