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Abstract: Nuts and dried fruit are essential foods in the Mediterranean diet. Their frequent
consumption has been associated with the prevention and/or the management of such metabolic
conditions as type 2 diabetes (T2D), metabolic syndrome and cardiovascular diseases. Several
previous reviews of epidemiological studies and clinical trials have evaluated the associations of
nuts and/or dried fruit with various metabolic disorders. However, no reviews have focused on the
mechanisms underlying the role of nuts and/or dried fruit in insulin resistance and T2D. This review
aims to report nut and dried-fruit nutritional interventions in animals and humans, and to focus on
mechanisms that could play a significant role in the prevention and treatment of insulin resistance
and T2D.
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1. Introduction

Nuts and traditional dried fruit (i.e., with no added sugar) are key food categories in the
Mediterranean diet and other regional diets [1]. Several prospective studies, clinical trials and research
in animals have reported beneficial effects after nut consumption [2]. However, the benefits of dried
fruits (DF), mainly raisins, have been less explored [3].

Over time, food consumption has varied. More than 30 years ago, the consumption of nuts and DF
was discouraged because of their high fat and sugar content, respectively. However, at the beginning
of the 1990s, several randomized clinical trials (RCT) and animal experiments demonstrated their
potential beneficial effect on cardiovascular diseases (CVD). Nuts and DF contain various macro and
micronutrients together with other important bioactive compounds that may synergically contribute to
modulate specific metabolic diseases such as hypercholesterolemia, hypertension and type 2 diabetes
(T2D) (reviewed in [3,4]). Even so, the specific role of nuts and DF in the development and progression
of insulin resistance (IR) and T2D are still controversial.

In this review, we focus on the role of nuts and DF in the prevention and treatment of T2D.
We summarize published in vivo, in vitro, epidemiological and clinical studies, and we review the
potential mechanisms that could explain the beneficial role of nut consumption on glucose and insulin
metabolism, both of which are altered in T2D and in other glucose-impaired states. Given that the
present article is not a systematic review, we may not have identified some studies and publication
bias should be acknowledged. However, all authors independently conducted the literature search.
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1.1. Nuts and Dried Fruits: The Concept

1.1.1. Nuts

Nuts have been part of the human diet since prehistoric times [5,6]. They are an independent
food group and are one of the cornerstones of the Mediterranean diet (MedDiet) [7]. According to the
botanical definition, a nut is simply a dried fruit with one seed (rarely two) in which the ovary walls
are very hard (stony or woody) at maturity, and the seed is unattached or free within the ovary wall.
However, the word “nut” is commonly used to refer to any large, oily kernel in a shell that can be eaten
as food. In this review, we use the term “nuts” to refer to almonds, Brazil nuts, cashews, hazelnuts,
macadamias, peanuts, pecans, pine nuts, pistachios and walnuts. Although peanuts are actually
classified as legumes because of their similar nutrient composition and their proven cardiovascular
health benefits, they are commonly regarded as being a nut.

1.1.2. Dried Fruits

To extend their shelf life, fresh fruits are processed by various techniques to become DFs [3].
Dried fruits are a concentrated form of fresh fruits with a lower moisture content. Fruits can be dried
whole (e.g., apricots, berries and grapes), in halves, or in slices (e.g., kiwis, mangoes and papayas).
In this form, they are easy to store and distribute, they can be available throughout the year, and they
are a healthier alternative to salty or sugary snacks. Apples, apricots, currants, dates, figs, peaches,
pears, prunes, and raisins are referred to as “conventional” or “traditional” DFs. Meanwhile, such
fruits as blueberries, cranberries, cherries, strawberries and mangoes are commonly infused with
different types of sugar solution (or fruit juice) concentrate before drying [8] so are not included in
the aforementioned category. Moreover, we have also excluded dried tomato because although it is
botanically a berry-type fruit, it is culinary considered a vegetable and it shares nutrient composition
with this food category.

1.2. Nutritional Composition of Nuts and Dried Fruits

Nuts and DFs are a matrix of important bioactive compounds such as Vitamins (Vitamin E, niacin,
choline and/or folic acid), minerals (magnesium, potassium, calcium and/or phosphorus), phenolic
compounds, carotenoids and/or phytosterols [9]. Importantly, some nuts and DFs are among the
50 foods with the highest antioxidant capacity [10] and are also a known source of bioactive compounds,
including plant sterols [11]. Pistachios are particularly rich in β-carotenes which have been widely
associated with a protective T2D role [12,13]. In addition, pistachios are the only nuts that contain
significant amounts of lutein and zeaxanthin [9]. Sun-dried raisins retain the minerals and most of
the phytochemicals and antioxidants of the grape, including its resveratrol [14,15]. In fact, sun-drying
enhances the antioxidant content of raisins. Because of the dehydration process, phytonutrients
are more concentrated in raisins than in grapes. However, the concentration of some compounds is
decreased by the sun-drying process in DFs and by dry roasting techniques in nuts [9]. Polyphenols and
tocopherols from nuts and DF have proved to be rapidly accessible in the stomach, thus maximizing
the possibility of absorption in the upper small intestine, and contributing to the beneficial relation
between nut and DF consumption and health-related outcomes [8,16].

However, their macronutrient compositions are quite different, which means that their energy
contents are also quite different. Nuts contain a high amount of total fat (Range (Re): 43.9–78.8%)
with a high amount of unsaturated fat (monounsaturated fatty acids (MUFA) + polyunsaturated fatty
acids (PUFA), Re: 31.6–62.4%), a relatively low amount of carbohydrates (CHOs) (Re: 11.7–30.2%) and
vegetable protein (Re: 7.9–25.8%) (Table 1).

Conversely, DFs are mainly composed of CHOs (Re: 61.3–72.8%). They have a low content of
protein (Re: 0.17–4.08%) and a fat content of less than 1% (Table 2). Importantly, both foods also contain
a considerable amount of dietary fiber. Overall, their unique and varied nutrient composition makes
them key foods to counteract various metabolic diseases.
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Table 1. Nutrient composition of nuts (per 100 g of raw nut).

Nutrient Almonds Brazil Nuts b Cashews Hazelnuts Macadamias Peanuts Pecans Pine Nuts b Pistachios Walnuts c

Energy, Kcal 579 659 553 628 718 567 691 673 560 654
Water, g 4.4 3.4 5.2 5.3 1.4 6.5 3.5 2.3 4.4 4.1

Fat, g 49.9 67.1 43.9 60.8 75.8 49.2 72.0 68.4 45.3 65.2
SFA, g 3.8 16.1 7.8 4.5 12.1 6.3 6.2 4.9 5.9 6.1

MUFA, g 31.6 23.9 23.8 45.7 58.9 24.4 40.8 18.8 23.3 9.0
PUFA, g 12.3 24.4 7.8 7.9 1.5 15.6 21.6 34.1 14.4 47.2

Protein, g 21.2 14.3 18.2 15.0 7.9 25.8 9.2 13.7 20.2 15.2
CHO, g 21.6 11.7 30.2 16.7 13.8 16.1 13.9 13.1 27.2 13.7
Fiber, g 12.5 7.5 3.3 9.7 8.6 8.5 9.6 3.7 10.6 6.7
Ca, mg 269 160 37 114 85 92 70 16 105 98
Mg, mg 270 376 292 163 130 168 121 251 121 158
Na, mg 1 3 12 0 5 18 0 2 1 2
K, mg 733 659 660 680 368 705 410 597 1025 441
P, mg 481 725 593 290 188 376 277 575 490 346

Lutein-Zeaxanthin, µg 1 0 22 92 NA 0 17 9 2903 9
β-Carotene, µg 1 0 0 11 NA 0 29 17 305 12
α-Carotene, µg 0 0 0 3 NA 0 0 0 10 0

Phytosterols a, mg 197 123.5 151 122 116 NA 158.8 236.1 214 110.2
Total phenols, mg 287 244 137 687 126 406 1284 32 867 1576

Vitamin E (α-tocopherol), mg 25.6 5.7 0.9 15.0 0.5 8.3 1.4 9.3 2.9 0.7

Nutrient information is taken from the United States Department of Agriculture (USDA) Nutrient Database Standard Reference, Release 28 [9]. CHO, carbohydrates; MUFA,
monounsaturated fatty acids; NA: not available; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids. a Phytosterols, are the sum of stigmasterol, campesterol, β-sitosterol and
other phytosterols; b dry roasted; c English variety.
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Table 2. Nutrient composition of dried fruits (per 100 g).

Nutrient Apples a Apricots a Currants (Zante) Cranberries b Dates c Figs Peaches a Pears a Plums/Prunes Raisins d

Energy, Kcal 243 241 283 308 282 249 239 262 240 299
Water, g 31.76 30.89 19.21 15.79 20.53 30.05 31.80 26.69 30.92 15.43

Fat, g 0.32 0.51 0.27 1.09 0.39 0.93 0.76 0.63 0.38 0.46
CHO, g 65.89 62.64 74.08 82.80 75.03 63.87 61.33 69.70 63.88 79.18

Sugars, g 57.19 53.44 67.28 72.56 63.35 47.92 41.74 62.20 38.13 59.19
Fructose, g NA 12.47 NA 26.96 19.56 22.93 13.49 NA 12.45 29.68
Protein, g 0.93 3.39 4.08 0.17 2.45 3.30 3.61 1.87 2.18 3.07

Fiber, g 8.7 7.3 6.8 5.3 8.0 9.8 8.2 7.5 7.1 3.7
Ca, mg 14 55 86 9 39 162 28 34 43 50
Fe, mg 1.40 2.66 3.26 0.39 1.02 2.03 4.06 2.10 0.93 1.88
Mg, mg 16 32 41 4 43 68 42 33 41 32
Na, mg 87 10 8 5 2 10 7 6 2 11
K, mg 450 1162 892 49 656 680 996 533 732 749

Cu, mg 0.19 0.34 0.47 0.06 0.21 0.29 0.36 0.37 0.28 0.32
β-carotene, µg 0 2163 43 27 6 6 1074 2 394 0
α-carotene, µg 0 0 1 0 0 0 3 0 57 0

Lutein-Zeaxanthin, µg 0 0 0 138 75 32 559 50 148 0
Vitamin A, IU 0 3604 73 46 10 10 2163 3 781 0

Total phenols, mg GAE/100g e 324 248 NA NA 661 960 283 679 938 1065

Data is for traditional dried fruits which is defined as those with no added sugars, typically sun-dried or dried with minimal processing. Nutrient information is taken from the United
States Department of Agriculture (USDA) Nutrient Database Standard Reference, Release 28 [9]. CHO, carbohydrates; GAE, gallic acid equivalents; IU, international unit; NA, not
available. a Sulfured; b sweetened; c Deglet noor is the common variety; d seedless; e Total phenol content was obtained from Alasalvar and Shahidi [8].



Nutrients 2017, 9, 673 5 of 34

1.3. Diet Quality in the Context of Nut and Dried Fruit Consumption

Epidemiological studies conducted in children and adults have demonstrated a significant positive
association between nut consumption and diet quality [17,18]. Furthermore, the results of a clinical
trial conducted in obese (Ob) subjects (n = 124) showed that the nutritional dietary quality of nut
consumers (reporting to eat 42 g hazelnuts/day for 12 weeks) was remarkably higher than among
other groups consuming chocolate, potato crisps or no additional foods [19]. Moreover, including nuts
in energy-restricted diets reduced attrition and increased weight loss, indicating that nuts enhance
palatability and compliance with diets without compromising health [20].

Several studies have examined the associations of whole fruit or 100% fruit juice [21] with
nutritional or health outcomes such as T2D but there is a lack of studies examining potential links
between DF and diet quality. A prospective study conducted in adult participants (n = 13,292) in
the 1999–2004 National Health and Nutrition Examination Survey (NHANES) demonstrated an
association between DF consumption and diet quality [22]. DF consumption was associated with
improved nutrient intakes, a higher overall diet quality score, and lower body weight (BW)/adiposity
measures [22]. Moreover, in a cross-sectional study in healthy adults (n = 797) from Hong Kong, an
inverse association has been found between the intake of vegetables, legumes, fruits, dried fruits
and Vitamin C and the prevalence of metabolic disorders such as non-alcoholic fatty liver disease
(NAFLD) [23].

The 2015 Dietary Guidelines for Americans included the following three healthy dietary patterns:
a Healthy US-style Pattern, a Healthy Vegetarian Pattern and a Healthy Mediterranean-style pattern.
Fruits, nuts, and seeds play a prominent role in all three of these food-based dietary patterns, which
recommend 350–440 g/day of fruit, and 16–28 g/day of nuts and seeds [24].

2. In Vivo and In Vitro Studies

Even though much of the research on nuts, dried fruits and T2D is based on observational studies
and human trials, some in vitro and in vivo studies also evaluate their modulatory effect on glucose
and insulin metabolism. In this regard, the effect of nuts on glucose and insulin metabolism has
been investigated by evaluating nut extracts [25,26] or nuts as a whole [27–29] mainly in mice or rats.
However, dried fruit has been investigated—like their non-dried counterparts—mainly in in vitro
studies [30–33]. Almost all the research has focused on the extracts from non-edible parts, such as the
shell [34], leaves [35,36], stems [37] and roots [38], and very little on the nut or fruit kernel [27–29,39].
However, this review focuses on those studies evaluating specific nutrients (e.g., polyphenols) or
edible parts in both traditional nuts and dried fruits with outcomes related to glucose metabolism, IR,
and the T2D oxidation/inflammation axis [32,40].

2.1. Nuts

The in vivo studies on nuts and T2D-related parameters are summarized in Table 3. These studies
were mainly performed using extracts from peanuts or walnuts. Peanut oil supplementation for
42 days in diabetes-induced rats significantly reduced glucose and glycated hemoglobin (HbA1c)
concentrations and improved lipid metabolism compared to normal rats [27]. Other researchers
have found similar improvements in glycaemia in genotypes of diabetes in rats fed with peanut oil
extract [41,42] or peanut aqueous extract [25]. In the case of walnuts, a polyphenol-rich walnut extract
(PWE) for 4 weeks significantly decreased urinary 8-hydroxy-2′-deoxyguanosin levels (an in vivo
marker of oxidative stress) and improved serum TG in db/db mice [26]. Moreover, an HFD with a 21.5%
of energy from walnuts tested in mice for 20 weeks significantly reduced TG compared to nut-free
HFD and tended to improve glucose and IR [29].
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Table 3. Summary of in vivo studies and their characteristics in the context of nut consumption and type 2 diabetes (T2D)-related outcomes.

First Author (Year)
[Reference] Nut (Study Length) Animal Model Used Control Intervention Glucose and Insulin

Metabolism Effects Other Outcomes

Bilbis, L.S.; et al.
(2002) [25]

Aqueous extract of
peanut (21 days)

Alloxan-induced diabetic
rats (n = 12) and
non-diabetic rats (n = 12),
divided into
3 equal groups

Non-diabetic with
unrestricted standard diet
and: (a) water ad libitum;
(b) unrestricted access to
drinking water and 2 mL of
the extract 3 times/day; or
(c) free access to the extract
as the only drinking water.

Diabetic controls: treated as
(a), (b) or (c)

The extract (alone or plus
water) decreased FBG in both
normal and alloxan-induced
diabetic rats.

Significant decrease in serum
TG, TC, HDL-C and LDL-C
in both normal and
alloxan-induced diabetic rats.

Fukuda, T.; et al.
(2004) [26]

Polyphenol-rich
walnut extract (PWE)

(4 weeks)

db/db (n = 15) and
C57BL/KsJ-db/db
(n = 6) mice

Control db/db mice (n = 8)
and C57BL/KsJ-db/+ m
mice (n = 6, used for the
blank group) were
given water.

Experimental db/db mice
(n = 7) received oral PWE
(200 mg/kg BW)

Significant decrease in the
level of urinary
8-hydroxy-2′-deoxyguanosin
(in vivo marker of oxidative
stress) in PWE-fed mice

Serum TG level was
improved after PWE
administration

Ramesh, B.; et al.
(2006) [27] Peanut oil (42 days)

Normal (n = 12) and
STZ-diabetes induced
(n = 18) Wistar rats

G1: Normal rats G3:
Diabetic rats

G2: Normal rats + peanut
oil diet (2%) G4: Diabetic
rats + peanut oil diet (2%)
G5: Diabetic rats + GLI
(600 µg/kg BW)

Diabetic rats fed with peanut
oil significantly reduce
glucose, HbA1C, and G6Pase
and FBP activities

Diabetic rats fed with peanut
oil showed a small but
significant reduction in TC,
VLDL-C, LDL-C and TG and
an increase in HDL-C.

Vassiliou, E.K.; et al.
(2009) [41] Peanut oil (21 days) Male KKAy (n = 24) mice KKA y mice fed with

normal diet (11.4% fat)

Diabetic KKAy + HFD.
Diabetic KKAy + HFD with
peanut oil (0.70 mL/day).
HFD is 58% fat.

Diabetic mice administered
peanut oil had lower glucose
levels than animals
administered HFD alone.

Choi, Y.; et al.
(2016) [29] Walnuts (20 weeks) Male C57BL/6J mice

(≥6 mice/group) Regular rodent chow
HFD (45% energy-derived)
with or without walnuts
(21.5% energy-derived)

Glucose and insulin
resistance tended to improve
with walnut
supplementation.

Walnut supplementation did
not change the HFD-induced
increase in BW or VFM.
However, dietary walnuts
significantly decreased the
amounts of hepatic TG
observed in HFD-fed mice.

Adewale, O.F.; et al.
(2016) [42]

Peanut oil Palm oil
(3 weeks)

Normal (n = 12) and
alloxan-induced diabetic
Wistar rats (n = 36)

Non-diabetic

Diabetic
non-supplemented.
Diabetic supplemented
with PeO or PaO
(200 mg/kg/day)

Significant reduction in blood
glucose of supplemented
groups (PeO + PaO)
compared to the diabetic
non-supplemented group.

Plasma Vitamins C and E and
albumin levels were
significantly increased in the
supplemented groups versus
the diabetic
non-supplemented group.

BW, body weight; FBG, fasting blood glucose; FBP, fructose-1,6-bisphosphatase; G6Pase, glucose 6-phosphatase; GLI, glibenclamide; HDL-C, high-density lipoprotein cholesterol; HFD,
high-fat diet; LDL-C, low-density lipoprotein cholesterol; PaO, palm oil; PeO, peanut oil; PWE, polyphenol-rich walnut extract; STZ, streptozotocin; T2D, type 2 diabetes; TC, total
cholesterol; TF, tissue factor; TG, triglycerides; VFM, visceral fat mass; VLDL-C, very low-density lipoprotein.
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In vitro assessment of the T2D-related antioxidant and inflammatory capacity of nuts has largely
been conducted by examining the ability of extracts to increase the resistance of human plasma or
low density lipoprotein (LDL) to oxidation. Extracts of walnut [43], almond and almond skins [44,45],
pistachio [46], and hazelnut [47] have been found to increase the lag time oxidation of LDL. However,
little research has focused on their in vitro effects on glucose and insulin metabolism. Specifically,
a hydro-ethanolic extract of cashew nut and its principal compound, anacardic acid, significantly
stimulated glucose uptake in C2C12 muscle cells in a concentration-dependent manner, suggesting
that it may be a potential anti-diabetic nutraceutical [48]. Moreover, cytoprotective activity of pistachio
extracts (methanolic, water or ethyl acetate) against oxidative (reactive oxygen species formation) and
carbonyl stress has also been reported in a T2D model in hepatocytes from rats [49].

2.2. Dried Fruits

Both in vitro and in vivo research has mostly focused on grape. Overman and collaborators
showed that a grape powder extract (GPE) significantly attenuated lipopolysaccharide (LPS)-mediated
inflammation in macrophages and decreased the capacity of LPS-stimulated human macrophages to
inflame adipocytes and cause IR [30]. Moreover, GPE further attenuated tumor necrosis factor-α
(TNF-α) mediated inflammation and IR in primary cultures of human adipocytes [31]. Grape
polyphenol extract modulated in vitro membrane phospholipid fatty acid (FA) composition but also
decreased muscle TG content and increased muscle glucose transporter type 4 (GLUT4) expression
in high-fat-high-sucrose diet-fed rats. Overall, it improved insulin resistance status (i.e., HOMA-IR
parameter) [50]. This is of considerable importance because the accumulation of muscle TG content
and the modification of the muscle phospholipid fatty acid pattern may have an impact on lipid
metabolism and increase the risk of developing T2D [51]. Mice fed with grape skin extract showed
hypoglycaemic and anti-hyperglycaemic effects (independent of an increase in insulin release) but
are probably dependent on an increase in insulin sensitivity resulting from the activation of the
insulin-signaling cascade in skeletal muscle [52]. Furthermore, grape seed aqueous extract protected
the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving
pancreatic function at near normal levels in diabetic rats [53].

Other DF extracts have also been evaluated. Treatment with a date fruit extract was effective at
decreasing behavioral, neurophysiological, and pathological alterations induced by diabetes in the
peripheral nerves of streptozotocin (STZ)-induced diabetic rats (well-characterized animal model of
type 1 diabetes) [33]. Moreover, daily consumption of a low- or high-fat diet supplemented with 1%
black currant powder extract (with 32% of anthocyanins) for 8 weeks reduced body weight gain and
improved glucose metabolism [54].

The beneficial effect of fruit juices and fermented grape juice (i.e., wine) have also been an
important focus of research. Schmatz and collaborators investigated the ex vivo effects of a moderate
consumption of red wine (RW) and grape juice (GJ), and the in vitro effects of various substances
(resveratrol, caffeic acid, gallic acid, quercetin and rutin) on STZ-induced diabetic rats. They
demonstrated decreased platelet aggregation in diabetic-induced rats after moderate RW and GJ
consumption for 45 days [55]. Similarly, resveratrol increased the hydrolysis of adenosine triphosphate
(ATP), while quercetin decreased it in platelets [55]. These results were extended using a wine grape
powder supplementation, which prevented hyperglycemia and IR, and reduced oxidative stress in a
rat model of metabolic syndrome (MetS) [56].

Specific compounds found in both nuts and DFs were also further investigated. Quercetin
and trans-resveratrol are plant polyphenols which have showed a significant reduction of IR and
inflammation associated with obesity. Eid et al. showed that quercetin (isolated from lingonberry)
exerted an anti-diabetic activity by stimulating adenosine monophosphate-activated protein kinase
(AMPK) [40]. Moreover, quercetin also enhanced basal glucose uptake in mouse myoblast C2C12
muscle cells in the absence of insulin [40] via a mechanism which is highly analogous to metformin.
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Importantly, quercetin seems to be as effective as or more effective than resveratrol in attenuating
TNF-α-mediated inflammation and IR in primary human adipocytes and macrophages [32,57].

3. Epidemiological Studies on Nuts

The relationship between the consumption of different food categories and the incidence or
prevalence of metabolic disorders has been explored all over the world. As is shown in Table 4,
numerous epidemiological studies have assessed the associations between nut consumption and T2D.
However, no studies have been published on the link between DF consumption and risk of T2D.

As far as nuts are concerned, several studies have found an inverse association between the
frequency of consumption and the development of this metabolic pathology [58–64]. In the Nurses’
Health Study (NHS) and NHS II cohort, the intake of different types of nut was explored [61,64]. Total
nut, walnut and peanut butter intake were associated with a lower risk of T2D in women. In the NHS
(n = 83,818 female subjects), those with the highest nut consumption (28 g/day; ≥5 days a week) had a
lower relative risk (RR) of developing T2D (0.73 [95% confidence interval (CI), 0.60–0.89]) than those
who never/almost never consume (0.92 [95% CI, 0.85–1.00]) [61]. Results were similar for peanut
butter: the RR was 0.79 (95% CI, 0.68–0.91) in those women who had a higher intake (5 times or more a
week) than those who never/almost never ate peanut butter [61]. After combining NHS and NHS II
cohorts, in a total of 137,953 female subjects, Pan and collaborators found that walnut consumption
was inversely associated with risk of T2D [64].

These results are in line with those of a cross-sectional study of 7,210 subjects at high CV risk
within the context of the PREvención con DIeta MEDiterránea (PREDIMED) study, where the upper
category of nut consumption had a lower prevalence of T2D than the lower category [63]. A recent
prospective study also associated the consumption of nuts—higher than 4 times a week—with a lower
risk of T2D [60]. A cross-sectional study performed in the context of the National Health and Nutrition
Examination Survey (NHANES) established a relation between the homeostatic model assessment
of insulin resistance (HOMA-IR) and tree nut consumption. Decreased insulin resistance and lower
levels of β-cell function markers were found in the nut consumers than the non-consumers [59]. In a
large cohort of the Netherlands Cohort Study (NLCS), the total nut intake was associated to lower T2D
cause-specific mortality in men and women [65].

Even though current evidence shows that nuts have a strong protective effect against the progress of
T2D, especially in women, some epidemiological studies have not identified this relation [66,67]. The latest
systematic review and meta-analysis designed to assess the relation between nut consumption and
risk of cancer and T2D was published in 2015. It included five studies that were linked to T2D. After
pooling data from studies conducted in both genders, it was found that there was no statistically
significant association between nut consumption and risk of developing T2D (RR = 0.98 [95% CI,
0.84–1.14]), even though the heterogeneity was significant [68].
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Table 4. Summary of epidemiological studies evaluating nut consumption.

First Author (Year)
[Reference]

Study Name
(Design) Number of Subjects Years of Follow-Up Exposure Findings

Jiang, R.; et al.
(2002) [61]

NHS
(Prospective) 83,818 women 16 ≥5 times/week vs.

never/almost never
Nut and peanut butter consumption was inversely
associated with the risk of incident T2D.

Nettleton, J.A.; et al.
(2008) [58]

MESA
(Prospective) 5011 men and women 5 Quintiles of low-risk food

pattern

High intake of whole grains, fruit, nuts/seeds,
and green leafy vegetables was inversely
associated to the risk of incident T2D.

Villegas, R.; et al.
(2008) [62]

SWHS
(Prospective) 64,227 women 4.6 Quintiles of peanut

consumption
Consumption of peanuts was associated with a
decreased risk of incident T2D.

Kochar, J.; et al.
(2010) [67]

PHS I
(Prospective) 20,224 men 19.2 ≥7 servings of nuts/week vs.

rarely or never consumers

No statistically significant association was found
between nut consumption and T2D in either lean
or overweight/obese subjects.

Ibarrola-Jurado, N.;
et al. (2013) [63]

PREDIMED
(Cross-sectional)

7210 at high
cardiovascular risk Baseline

<1 serving/week,
1–3 servings/week and
>3 servings/week

The upper category of nut consumption had a
lower prevalence of T2D than the lowest category.

Pan, A.; et al.
(2013) [64]

NHS, NHS II
(Prospective) 137,953 women 10

1–3 servings/month,
1 serving/week,
and ≥2 servings/week of
walnuts vs. never/rarely

Higher walnut consumption is associated with a
significantly lower risk of T2D incidence.

O’Neil, C.E.; et al.
(2015) [59]

NHANES
(Cross-sectional) 14,386 men and women 6

Tree nut consumption
compared with no
consumption

Tree nut consumption was associated with lower
HOMA-IR

Buijsse, B.; et al.
(2015) [66]

EPIC-InterAct
Study

(Case-cohort)
16,154 men and women 12.3 Incident cases

of T2D at 6.8

Non-consumers vs. the
middle tertile of
consumption.

Consumption of nuts and seeds does not modify
T2D risk under isocaloric conditions and
independent from BMI.

Asghari, G.; et al.
(2017) [60]

TLGS
(prospective) 1984 men and women 6.2 ± 0.7 ≥4 servings/week vs. 1 or

<1 serving/week
Nut consumption was associated with a lower risk
of T2D incidence.

BMI, body mass index; CVD, cardiovascular disease; HOMA-IR, homeostatic model assessment of insulin resistance; MI, myocardial infarction; T2D, type 2 diabetes. Study name
acronyms: EPIC, European Prospective Investigation into Cancer; HPFS, Health Professionals Follow-Up Study; MESA, Multi-Ethnic Study of Atherosclerosis; NHANES, National Health
and Nutrition Examination Survey; NHS, Nurses’ Health Study; NLCS, Netherlands Cohort Study; PHS, Physicians' Health Study; PREDIMED, PREvención con DIeta MEDiterránea;
SCCS, Southern Community Cohort Study; SMHS, Shanghai Men's Health Study; SWHS, Shanghai Women's Health Study; TLGS, Tehran Lipid and Glucose Study.
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4. Human Clinical Trials

The effect of nut consumption on glucose and insulin metabolism has also been researched in acute
and chronic clinical trials. Acute studies mostly demonstrate a decrease in postprandial glycaemia and
hyperinsulinemia after nut consumption. In contrast, chronic randomized clinical trials designed to
analyze the effects on glucose metabolism provided controversial results.

4.1. Nuts

4.1.1. Acute Clinical Trials on Nuts

Table 5 summarizes various acute clinical studies of nut consumption, most of which focus on
almonds [69–73]. In a randomized crossover trial in healthy subjects, almond intake decreased
postprandial glycaemia and insulinaemia [69]. In a dose-response study conducted in healthy
individuals, almond intake attenuated the postprandial glycaemic response of white bread [70].
In impaired glucose-tolerant subjects, it was observed that the consumption of almonds with a meal also
decreased blood glucose in plasma [71]. In a recent crossover study performed in pre-diabetic subjects,
a preload of almonds decreased postprandial glycaemia [73]. In healthy and diabetic individuals,
Cohen et al. also showed a 30% reduction in postprandial glycaemia after almond consumption
compared with a starchy meal [72].

The effect of pistachio intake on postprandial glycaemia was investigated by Kendall et al. in two
randomized studies. In overweight (Ow) healthy subjects, pistachio consumption was reported to have
a minimal effect on postprandial glycaemia. When pistachios were included in a carbohydrate meal,
the relative glycaemic response (RGR) was attenuated [74]. In a crossover trial with 20 subjects with
MetS, postprandial glycaemia decreased after the consumption of pistachios (85 g) compared to white
bread. In the same study, a peripheral increase in the glucagon-like peptide-1 (GLP-1) concentrations
was also observed after pistachio consumption compared with the consumption of white bread [75].

For peanuts, a randomized crossover trial conducted in 13 healthy subjects reported a decreased
postprandial glycaemic response after the consumption of a breakfast containing 63 g of one of the
following types of peanuts: raw with skin, roasted without skin and ground-roasted without skin [76].
Similarly, in a parallel study conducted in 65 overweight and obese men, peanut consumption reduced
postprandial insulinaemia levels compared to high-oleic peanut consumption [77].

Nut consumption was observed to have similar beneficial effects on glucose and insulin
metabolism in the only study to analyze the effect of a mix of nuts (almonds, macadamias, walnuts,
pistachios, hazelnuts and pecans). In this study conducted in 10 diabetic and 14 non-diabetic subjects,
nut consumption decreased the RGR compared to white bread. Importantly, this study also reported
that nut consumption improved short-term glycaemic control in patients with T2D [74].

In summary, nuts seem to have beneficial postprandial glycaemic effects when consumed alone
or in combination with high carbohydrate foods, and so may potentially help to prevent and manage
impaired glucose states.
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Table 5. Summary of acute clinical studies analyzing the effect of nut consumption on postprandial response.

First Author (Year)
[Reference]

N◦ of Subjects (M/F)
Type of Subject
(Age in Years)

Type of Nut
(Study Design) Control Group Intervention Group Glucose and Insulin

Metabolism Outcomes Other Outcomes

Jenkins, D.J.; et al.
(2006) [69]

15 (7/8) Healthy
subjects (26.3 ± 8.6) Almonds (crossover) 97 g of white bread

- Almond meal: 60 g almonds +97 g bread
- Parboiled rice meal: 68 g cheese and

14 g butter +60 g parboiled rice
- Mashed potato meal: 62 g cheese and

16 g butter +68 g mashed potatoes

Almonds decrease postprandial
glycaemia and insulinaemia.

Almonds are likely to decrease
oxidative damage to serum
proteins by decreasing
glycaemic excursion and
providing antioxidants.

Josse, A.R.; et al.
(2007) [70]

9 (7/2) Healthy
subjects (27.8±6.9)

Almonds (crossover
dose-response study) White bread

- White bread +30 g almonds
- White bread +60 g almonds
- White bread +90 g almonds

The 90-g almond meal resulted
in a significantly lower GI than
the white bread control meal

Mori, A.M.; et al.
(2011) [71]

14 (8/6) IGT
(39.3 ± 10.9) Almonds (crossover) 75 g of available CHO

(No almonds)

75 g of available CHO from:

- Whole almonds
- Almond butter
- Defatted almond flour
- Almond oil

Whole almonds significantly
attenuated second-meal and
daylong blood glucose IAUC.

GLP-1 concentrations did not
significantly vary between
treatments.

Kendall, C.W.; et al.
(2011) [74]

10 (3/7) Ow healthy
subjects (48.3 ± 6.4) Pistachios (crossover) White bread

Study 1:

- 28, 56 and 84 g pistachios
- 28, 56 and 84 g

Study 2:

- 56 g of pistachios + different commonly
consumed carbohydrate foods
(50 g available carbohydrate).

Pistachios consumed alone had a
minimal effect on postprandial
glycaemia. Pistachios consumed
with a carbohydrate meal
attenuated the RGR.

Cohen, A.E. and
Johnston, C.S.

(2011) [72]

20 (6/14) Healthy
subjects (n = 13) and
T2D subjects (n = 7)
(Healthy: 53.0 ± 3

and T2D: 66.0 ± 3.3)

Almonds (postprandial:
crossover trial) No almond meal 28 g almonds enriched meal

The ingestion of almonds
immediately before a starchy
meal significantly reduced
postprandial glycaemia by 30%.

Kendall, C.W.; et al.
(2011) [78]

24 (11/13) Healthy
(n = 14) and T2D
subjects (n = 10)

(Healthy: 36.0 ± 4
and T2D: 68.0 ± 2)

Mixed nuts (i.e., almonds,
macadamias, walnuts,

pistachios, hazelnuts and
pecans) (crossover)

White bread 3 doses of 30, 60 and 90 g of mixed nuts
Nuts improve short-term
glycaemic control in patients
with T2D.
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Table 5. Cont.

First Author (Year)
[Reference]

N◦ of Subjects (M/F)
Type of Subject
(Age in Years)

Type of Nut
(Study Design) Control Group Intervention Group Glucose and Insulin

Metabolism Outcomes Other Outcomes

Reis, C.E.; et al.
(2011) [76]

13 (4/9) Healthy
subjects (28.5 ± 10) Peanuts (crossover) Cheese sandwich

63 g of:

- raw peanuts with skin
- roasted peanuts without skin
- ground-roasted peanuts without skin

The ingestion of ground-roasted
peanuts without skin for
breakfast leads to a lower CHO
intake and reduced postprandial
glycaemic response.

Moreira, A.P.; et al.
(2014) [77]

65 men Ow/Ob
(Range: 18–50)

Conventional peanuts
and high-oleic peanuts

(parallel)
56 g biscuit

- 56 g conventional peanuts (n = 21)
- 56 g high-oleic peanuts (n = 23)

Conventional peanut
consumption was associated
with decreased postprandial
insulinaemia, which might be
beneficial for saving β-cell
function, independently of the
influence on LPS concentrations.

Kendall, C.W.; et al.
(2014) [75]

20 (8/12) Subjects
with MetS (54.0 ± 8) Pistachios (crossover)

Control 1: white
bread

Control 2: (white
bread + butter +

cheese)

Test meal 1: WB + 85 g of pistachios
Test meal 2: 85 g of pistachios

Pistachio consumption reduced
postprandial glycaemia
compared with white bread.

Pistachio consumption
increased GLP-1 levels
compared with white bread.

Crouch, M.A. and
Slater, R.T. (2016) [73]

20 (13/7) Subjects
with pre-diabetes *

(Mean: 60.8)
Almonds (crossover) No almonds 12 units of dry-roasted almonds

A low-calorie almond preload
“appetizer” decreased
postprandial hyperglycemia.

Age is shown as mean ± SD unless otherwise stated. BMI, body mass index; CHO, carbohydrate; GLP-1, glucagon-like peptide-1; HbA1c, glycated hemoglobin; IAUC, incremental area
under the curve; IGT, impaired glucose tolerance; LPS, lipopolysaccharide; MetS, metabolic syndrome; M/F, male/female; Ob, obese; Ow, overweight; RGR, relative glycaemic responses;
T2D, type 2 diabetes; WB, white bread. * also include “isolated 1-h glucose > 160 mg/dL”.
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4.1.2. Chronic Clinical Trials on Nuts

Most of the RCTs have compared nut-enriched diets with control diets in order to analyze their
effects on lipid profile, and blood glucose and insulin concentrations as a secondary outcome. However,
some, mainly conducted in subjects with T2D [72,79–84], but also in pre-diabetic [85], hyperlipemic [86],
overweight/obese [87] and healthy individuals [88], were specifically designed to assess changes in
glucose or insulin metabolism after nut consumption (Table 6).

In 2002, Lovejoy and coworkers evaluated the effect of an almond-enriched diet in 20 healthy and
30 T2D subjects in two different studies [79]. Healthy subjects, supplemented with 100 g almonds/day
for 4 weeks and advised to reduce their energy intake by an equivalent amount, did not change their
insulin sensitivity, whereas their body weight increased and their lipid profile improved. In a second
study, subjects with T2D were randomized following a crossover design to one of 4 diets with different
fat contents (25% or 37%) with 10% of fat from almonds or from olive or canola oil, with a minimum
washout of 2 weeks between periods. Fat source (almond vs. oil) or fat level (high fat vs. low fat)
were not observed to have any significant effect on either the glucose or insulin index. In contrast, in a
crossover study conducted in 20 Chinese patients with T2D and mild-hyperlipidemia assigned to either
a control diet (National Cholesterol Education Program (NCEP) step II diet) or an almond-enriched
diet (with almonds replacing the 20% total daily calorie intake) for 4 weeks, a significant decrease in
fasting insulin and glucose concentrations together with an improvement of HOMA-IR were reported
during the almond phase [80]. In a similar crossover study conducted in 48 diabetic patients who
received 50 g/day of pistachios and a pistachio-free diet (12 weeks each period), with an 8-week
washout, a significant improvement in fasting blood glucose (FBG) and HbA1c was observed during
the pistachio consumption, while no changes in HOMA-IR were reported [83]. Recently, Gulati and
coworkers conducted a pre-post intervention study in a group of 50 Asian Indians who consumed 20%
of total energy in the form of whole raw almonds for 24 weeks preceded by a control diet free of nuts.
Although no changes in FBG were observed during the almond consumption, the authors found a
significant reduction in glycosylated hemoglobin, together with an improvement in other T2D risk
factors such as waist circumference or inflammation status [84]. To determine whether the beneficial
effect of nut consumption on glucose and insulin metabolism could also be extended to pre-diabetic
subjects our group conducted a randomized crossover study in 54 pre-diabetic subjects who consumed
a pistachio-supplemented diet (55 g pistachio/day) and a control diet (nut-free diet), each for 4 months
with a 2-week washout period. We found a beneficial effect of pistachio intake on fasting glucose,
insulin, and HOMA-IR. Other cardiometabolic risk markers such as fibrinogen, oxidized LDL, platelet
factor 4 and GLP-1 were also modified appropriately during the consumption of pistachios [85].

Changes in fasting glucose or insulin levels, HOMA-IR and glycosylated hemoglobin have also
been assessed as secondary outcomes in several clinical feeding trials with different designs (parallel,
crossover) and subject characteristics (i.e., healthy, overweight/obese, TD2, MetS), mainly using
walnuts and almonds, and with different intervention lengths (from 2 weeks to 2 years). The results
obtained are controversial. Although most studies found no improvement in glucose/insulin
metabolism [89–103], others reported a significant reduction in FBG levels [89,92,104,105], fasting
insulin or insulin resistance [90,92,106,107] and HbA1c [92]. However, a meta-analysis of RCTs
including 25 trials with a total of 1,650 particpants who were otherwise healthy or had dyslipidaemia,
metabolic syndrome or type 2 diabetes mellitus showed that the consumption of tree nuts led to
modest decreases in fasting blood glucose compared with control diet interventions [108].
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Table 6. Summary of chronic clinical trials and their characteristics in the context of nut consumption.

First Author (Year)
[Reference]

N◦ of Subjects (M/F)
Type of Subjects

(Age in Years)

Nut Study Design
(Length of the
Intervention)

Control Group Intervention Group(s) Glucose and Insulin Metabolism
Outcomes Other Outcomes

Lovejoy, J.C.; et al.
(2002) [79]

30 (13/17)
T2D subjects

(mean ± SEM:
53.8 ± 1.9)

Almonds
Crossover (1 month

per period)

HF-Control
LF-Control

HF-HA
LF-HA

No significant changes in glycaemia
were observed.

Total cholesterol was lowest after the
HF-HA diet. HDL-C was significantly
decreased after the almond diet;
however, no significant effect of fat
source on LDL: HDL was reported.

Jenkins, D.J.A.; et al.
(2008) [86]

27 (15/12)
Hyperlipidemic

subjects
(64 ± 9)

Almonds
Crossover (1 month

per period)
147 ± 6 g/day of muffins

Almonds (73 ± 3 g/day)
Half portion of almonds
(37 ± 2 g/day) plus
muffins (75 ± 3 g/day)
Isoenergetic (mean,
423 Kcal/day)

No significant changes were observed in
FBG, insulin, C-peptide, or HOMA-IR.
The 24-h urinary C-peptide output, as a
marker of 24-h insulin secretion, was
significantly reduced by the half-and
full-dose almonds in comparison to the
control muffin diet after adjustment for
urinary creatinine output.

There were no significant treatment
differences in BW.

Claesson, A.L.; et al.
2009 [88]

25 (11/14)
Healthy subjects

(range: 19–30)

Peanuts
Parallel (2 weeks)

Addition of
20 kcal/kg-BW of candy

to the regular caloric
intake.

Addition of
20 kcal/kg-BW of roasted
peanuts to the regular
caloric intake.

Plasma-insulin and C-peptide increased
in the candy group, but not in the
peanut group. FBG was not modified.

Energy intake increased similarly in
both groups. BW and WC increased
significantly only in the candy group.
At the end of the study LDL-C and
ApoB/ApoA-1-ratio were higher in the
candy group than in the peanut group.

Cohen, A.E.; et al.
(2011) [72]

13 (7/6)
T2D subjects
(66.0 ± 3.3)

Almonds
Parallel (3 months) Nut- free diet

Diet enriched with
almonds (28 g,
5 times/week)

Significant reduction of HbA1c in the
almond group compared to the nut-free
diet group.

Chronic almond ingestion was
associated with a reduction in BMI as
compared with no change in the
nut–free diet group.

Li, S.C.; et al.
(2011) [80]

20 (9/11)
T2D subjects
(Mean: 58)

Almonds
Crossover (1 month

per period)

NCEP step II diet (control
diet); CHO (56 E%),

protein (17 E%), and fat
(27 E%).

Almonds were added to
the control diet to replace
20% of total daily calorie
intake.

Compared with subjects in the control
diet, those in the almond diet reduced
the levels of fasting insulin, FBG,
and HOMA-IR.

Almond intake decreased TC, LDL-C,
and LDL-C/HDL-C. The almond diet
enhanced plasma α-tocopherol level
compared with control diet.

Damavandi, R.D.;
et al. (2013) [81]

45 (15/33)
Medicated T2D

subjects
(55.68 ± 7.74)

Hazelnuts
Parallel (2 months) Control diet

10% of total daily calorie
intake was replaced with
hazelnuts

No significant differences in FBG
between groups.

No changes in BMI were reported.
Significant HDL-C reduction in control
group was observed. Although the
hazelnut group achieved a greater
reduction in TG concentrations than the
control group, these changes were
non-significant.

Hernández-Alonso, P.;
et al. (2014) [85]

54 (29/25)
Subjects with Pre-D

Mean: 55 (range:
53.4–56.8)

Crossover (4 months
per period)

Nut-free diet: the energy
intake of other fatty

foods, mostly olive oil,
was adjusted to

compensate for the
energy from pistachios

included in the PD.

Pistachio diet was
supplemented with
2 ounces of pistachio
(57 g/day)

FBG, insulin, and HOMA-IR decreased
significantly after the chronic pistachio
period compared with the
nut-free period.

Fibrinogen, oxidized-LDL, and PF-4
significantly decreased under the
pistachio period compared to the
nut-free period, whereas
GLP-1 increased.
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Table 6. Cont.

First Author (Year)
[Reference]

N◦ of Subjects (M/F)
Type of Subjects

(Age in Years)

Nut Study Design
(Length of the
Intervention)

Control Group Intervention Group(s) Glucose and Insulin Metabolism
Outcomes Other Outcomes

Lasa, A.; et al.
(2014) [82]

191 (77/114)
T2D subjects
(Mean: 67)

Mixed nuts
Parallel (1 year) LFD

Mediterranean diets
supplemented with either
virgin olive oil or mixed
nuts

Increased values of the
adiponectin/leptin ratio and
adiponectin/HOMA-IR ratio and
decreased values of WC were observed
in the three groups.

In both Mediterranean diet groups, but
not in the LFD group, this was
associated with a significant reduction
in BW.

Parham, M.; et al.
(2014) [83]

44 (11/33)
T2D subjects
(Mean: 51)

Pistachios
Crossover (3 months

per period)

Previous diet without
pistachios

Two snacks of 25 g
pistachios/day

Marked decrease in HbA1c and FBG
concentrations in the pistachio diet
group compared with the control group.

There were no overall significant
changes in BMI, blood pressure,
HOMA-IR, or CRP concentrations.

Le, T.; et al. (2016) [87]
213 women

Ow/Ob subjects
(Mean: 50)

Walnuts
Parallel (1 year)

Control 1: a lower fat
(20 E%), higher CHO

(65 E%) diet.
Control 2: lower CHO

(45 E%), higher fat
(35 E%) diet

Walnut-enriched diet:
high fat (35 E%), lower
CHO (45 E%) diet.

Insulin sensitivity and CRP levels
improved after walnut-rich diet

TG decreased in all study arms at
6 months. The walnut-rich diet
increased HDL-C more than either the
lower fat or lower CHO diet.
The walnut-rich diet also
reduced LDL-C.

Age is shown as mean ± SD unless otherwise stated. Apo, apolipoprotein; BMI, Body mass index; BW, body weight; CHO, carbohydrate; CRP, C-reactive protein; E%, energy percentage;
FBG, fasting blood glucose; GLP-1, glucagon-like peptide-1; HA: high almond; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; HF, high fat; HOMA-IR,
homeostatic model assessment of insulin resistance; LDL-C, low-density lipoprotein cholesterol; LF: low fat; LFD, LF diet; M/F, male/female; NCEP, National Cholesterol Education
Program; NS, non-significant; Ob, obese; Ow, overweight; PF-4, platelet factor-4; PM, post-menopausal; Pre-D, pre-diabetes; T2D, type 2 diabetes; TC, total cholesterol; TG, triglycerides;
WC, waist circumference; WHtR, waist-to-height ratio.
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4.2. Dried Fruits

4.2.1. Acute Clinical Trials on Dried Fruits

Less research has been carried out into DFs than into nuts. However, the findings to date point to
a beneficial effect of DFs on postprandial glucose regulation and glycaemic control in T2D subjects.

The putative effect of DFs on postprandial glycaemia and insulinaemia has been studied mainly
using raisins (Table 7). However, some research into dried plums has also been published.

First, in 1989 Rasmussen and coworkers evaluated in healthy and T2D subjects the postprandial
effects of three meals: raw rolled oats, oatmeal porridge, or a mixture of raw rolled oats with raisins,
compared to a control glucose ingestion [109]. The substitution of 25% of the starch meal with raisins
(i.e., simple sugars) did not affect blood glucose or insulin responses. In addition, a similar glucose and
insulin response in both normal and T2D subjects were reported [109]. Other researchers investigated
the postprandial effect of raisins consumed alone. When the GI was investigated in three different
groups (sedentary, aerobically trained or pre-diabetic subjects), no significant differences were found
among groups, even though the GI (55–69) it seemed moderate for aerobically trained adults, and low
(GI, ≤55) for the other groups [110]. Kanellos and collaborators found a moderate GI of raisins in
healthy and T2D subjects [111], whereas Esfahani et al. found that raisins were low-GI and glycaemic
load (GL) foods in healthy subjects [112]. Recently, researchers have found that even though the
same available CHO content from raisins and glucose generated a similar postprandial response,
raisins significantly modulated the levels of GIP, ghrelin and ghrelin/obestatin ratio, with important
implications in terms of appetite regulation and overall insulin secretion [113]. In overweight women,
researchers determined that dried plums had a lower plasma glucose and insulin incremental area
under the curve (IAUC) than an isoenergetic low-fat cookie meal [114].

Overall, results suggest that raisins have a beneficial postprandial glucose and insulin effect, which
may cautiously be extrapolated to other DFs considering their overall macronutrient composition.
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Table 7. Summary of acute clinical studies analyzing the effect of dried fruit consumption on postprandial response.

First Author (Year)
[Reference]

N◦ of Subjects (M/F)
Type of Subject
(Age in Years)

Dried Fruit
(Study Design) Control Group Intervention Group(s) Glucose and Insulin Metabolism

Outcomes Other Outcomes

Rasmussen, O.; et al.
(1989) [109]

20 (9/11)
Healthy (n = 11) and
T2D subjects (n = 9)

(Healthy: 30 ± 2; T2D
subjects: 67 ± 2)

Raisins (crossover) 75 g (healthy) or 50 g
(T2D) of CHO

Raw rolled oats; oatmeal
porridge or a mixture of

raw rolled oats with
raisins

Substitution of 25% of the starch meal
with raisins (simple sugars) did not affect
blood glucose or insulin responses

In normal and T2D subjects, the three
meals produce similar glucose and
insulin response curves.

Kim, Y.; et al. (2008)
[110]

10 S; 11 AT and
10 Pre-D

(S (25.7 ± 1.3), AT
(23.1 ± 1.0), Pre-D

(50.0 ± 2.6))

Raisins
(crossover)

50 g of available CHO
from glucose

50 g of available CHO
from raisins

NS differences among groups. The GI of
raisins seemed lower (≤55) in the S and P
groups compared to moderate (GI, 56–69)
in the A group. The insulinaemic index of
raisins was not different among groups.

Furchner-Evanson, A.;
et al. (2010) [114]

19 women
ow subjects
(39.2 ± 0.7)

Dried plums
(crossover)

White bread
(238 Kcal)

Dried plums (238 Kcal)
Low-fat cookies

(238 Kcal)

Dried plums elicited lower plasma glucose
and insulin IAUC than low-fat cookies.

The satiety index IAUC was greater for
the dried plums than low-fat cookies,
and tended to promote a greater plasma
ghrelin AOC

Kanellos, P.T.; et al.
(2013) [111]

30 (17/13)
Healthy and T2D

subjects (n = 15 each)
(Healthy: 25.9 ± 0.8;

T2D: 63.2 ± 1.7)

Corinthian raisins
(crossover) 50 g of glucose 74 g of Corinthian raisins;

50 g of available CHO

Significantly different glucose peaks
between raisins and glucose in healthy
and in diabetic subjects. Glycaemic and
insulinaemic responses were decreased
after raisin consumption compared to
glucose ingestion.

Esfahani, A.; et al.
(2014) [112]

10 (4/6)
Healthy subjects

(39 ± 11)

Raisins
(crossover)

108 g of white bread;
50 g available CHO
(consumed on two
separate occasions)

R50: 69 g raisins; 50 g
available CHO

R20: 28 g raisins; 20 g
available CHO

The raisin meals, R50 and R20, resulted in
significantly reduced postprandial glucose
and insulin responses compared with
white bread

Raisins were determined to be low in GI,
GL and insulinaemic index.

Kaliora, A.C.; et al.
(2017) [113]

10
Healthy

normo-weight
subjects

(26.3 ± 0.8)

Raisins
(crossover) 50 g of glucose 74 g of raisins; 50 g of

available CHO
At 60 min, glucose and insulin levels were
maximum in both groups.

GIP was lower after raising intake
compared to glucose intake at 60 and
120 min postprandially. Ghrelin was
lower after raisin compared to glucose
intake at 120 and at 180 min
post-ingestion. No differences were
reported for GLP-1, apelin or obestatin
in either trial.

Age is shown as mean± SD unless otherwise stated. AT, aerobically trained; AOC, area over the curve; CHO, carbohydrates; GI, glycaemic index; GL, glycaemic load; GLP-1, glucagon-like
peptide-1; IAUC, incremental area under the curve; M/F, male/female; NS, non-significant; ow, overweight; Pre-D, pre-diabetic; S, sedentary; T2D, type 2 diabetes; WB, white bread.
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4.2.2. Chronic Clinical Trials on Dried Fruits

The study of the beneficial effects of chronic DF consumption also focuses on raisins (Table 8).
Randomized clinical trials have been conducted in healthy [115], overweight or obese [116,117], T2D
subjects [118,119], or a combination of the three [120]. In a 6-week parallel trial in healthy subjects,
Puglisi et al. included 150 g/day of raisins into subjects’ habitual diet or increased their physical
activity (or combined them both). Neither FPG nor insulin levels were different among groups or
compared to baseline. However, the inflammation status reported by plasma TNF-α significantly
decreased in the raisin intervention [115].

The results for overweight or obese subjects do not show a significant improvement in glucose
or insulin levels after the consumption of raisins [116] or dried plums [117]. However, these studies
are only short (2 weeks) which makes it impossible to analyze the chronic effect. In fact, in a parallel
study conducted in Ow/Ob subjects, comparing raisin consumption (270 Kcal/day) with a snack
(300 Kcal/day) for 12 weeks, researchers [120] found that even though FGP or insulin were not
affected by either intervention, HbA1c levels and postprandial glucose levels had been reduced by
raisin consumption by the end of the trial. This suggests a beneficial effect of raisin consumption on
glycaemic control in Ow/Ob subjects with pre-D. Importantly, raisin intake also improved systolic
blood pressure (SBP) and diastolic blood pressure (DBP) and had a null effect on body weight [120].

Two studies have been conducted in individuals with T2D. A parallel study comparing the
consumption of 36 g of raisins versus the habitual diet free of raisins or grapes for 24 weeks did not
find any change in either body weight or in glycaemic control and lipid profile, but the total antioxidant
capacity increased and the DBP decreased after raisin consumption [118]. Likewise, the consumption
of raisins as a snack (84 g/day, 270 Kcal/day) for 12 weeks significantly reduced the postprandial
glucose response in T2D subjects compared to an alternative snack (300 Kcal/day) for 12 weeks.
A non-significant trend to a reduction in fasting glucose and HbA1c was also observed in the same
group of raisin consumers [119].

The results of DF consumption on glycaemia/insulinaemia point to a beneficial effect. However,
novel acute and long-term RCTs assessing other types of DF should be carried out in order to
corroborate and expand what is known about raisins.



Nutrients 2017, 9, 673 19 of 34

Table 8. Summary of chronic clinical trials and their characteristics in the context of dried fruit consumption.

First Author (Year)
[Reference]

N◦ of Subjects (M/F)
Type of Subject
(Age in Years)

Study Design
(Length of the
Intervention)

Control Group Intervention
Group(s)

Glucose and Insulin
Metabolism Outcomes Other Outcomes

Puglisi, M.J.; et al.
(2008) [115]

34 (17/17 PM)
Healthy

(range: 50–70)

Raisin
Parallel (6 weeks)

Walk (increase in the
steps taken per day)

150 g/day of raisins.
Walk + 150 g/day

of raisins

Changes in FBG and insulin values did
not differ among intervention groups or
from baseline. Plasma TNF-α decreased in
the raisin group but no differences were
reported between groups.

Plasma TC and LDL-C decreased in all the
intervention groups.

Rankin, J.W.; et al.
(2008) [116]

17 (8/9)
Ow

(26.5 ± 7.6)

Raisin
Crossover

(2 weeks per period)

Jelly candy
(264 Kcal/day)

90 g/day raisins
(264 Kcal/day)

NS changes in FBG or markers of
inflammation or endothelial dysfunction
after the raisin intervention.

Fasting protein-free ORAC was modestly
higher after the raisin intervention than
the jelly candy intervention.

Howarth, L.; et al.
(2010) [117]

26 women
Ow/Ob

(range: 25–54)

Dried plums
Crossover (2 weeks

per period)

Low-fat cookies
(200 Kcal/day)

Dried plums
(200 Kcal/day)

No changes were found in plasma glucose
or insulin levels in any intervention.

Plasma TG concentration was unchanged
by dried plum consumption and was
higher after the consumption of low-fat
cookies. Incorporation of dried plums or
low-fat cookies into the diet did not alter
energy intake or BW.

Anderson, J.W.; et al.
(2014) [120]

46 (21/25)
Ow/Ob with Pre-D or

at T2D risk.
(snack (mean: 61.1),
raisins (mean: 60.3))

Raisins
Parallel

(12 weeks)

Snacks
(300 Kcal/day)

84 g/day of raisins
(270 Kcal/day)

Fasting HbA1c levels were significantly
reduced after raisin intake, whereas FBG
and insulin levels were not significantly
affected by the intake of raisins or snacks.
Postprandial glucose levels were
significantly reduced by raisin intake vs.
snacks.

Raisin intake was associated with
reductions in SBP and DBP. BW did not
significantly change within or
between groups.

Kanellos, P.T.; et al.
(2014) [118]

48 (25/23)
T2D

(raisins (63.7 ± 6.3),
control (63 ± 8.5))

Corinthian raisins
Parallel

(24 weeks)

Usual diet avoiding
grapes and raisins

36 g/day of
Corinthian raisins

BW, glycaemic control, and lipid profile
were not changed in either arm of the
intervention. Patients in the CR arm
reduced their DBP and increased their
total antioxidant potential compared with
baseline values and the control group.

No change in CRP was observed.
A significant difference in plasma
circulating p-hydroxybenzoic acid was
observed between groups at the end of
the trial.

Bays, H.; et al.
(2015) [119]

46 (19/27)
T2D

(mean: 58)

Dark raisins
Parallel (12 weeks)

Snack group
(300 Kcal/day)

84 g/day of dark
raisins group

(270 Kcal/day)

Compared to the snack group, those who
consumed raisins reduced their
postprandial glucose levels, and an NS
trend to a reduction in fasting glucose and
HbA1c. NS changes in BW, fasting insulin,
HOMA-IR or lipid profile between
intervention groups.

Compared to alternative processed snacks,
those who consumed raisins had a
significant reduction in SBP but not a
significant reduction in DBP.

Age is shown as mean ± SD unless otherwise stated. BW, body weight; CRP, C-reactive protein; DBP, diastolic blood pressure; FBG, fasting blood glucose; HbA1c, glycated hemoglobin;
HOMA-IR, homeostatic model assessment of insulin resistance; LDL-C, low-density lipoprotein cholesterol; M/F, male/female; NS, non-significant; Ob, obese; ORAC, oxygen radical
absorbance capacity; Ow, overweight; pre-D, pre-diabetes; PM, postmenopausal women; SBP, systolic blood pressure; T2D, type 2 diabetes; TC, total cholesterol; TG, triglycerides; TNF-α,
tumor necrosis factor-α.
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5. Potential Mechanisms Linking Nut and Dried Fruit Consumption to Glucose and Insulin
Metabolism

5.1. Nut- and Dried Fruit-Related Nutrients and Their Role in Glucose and Insulin Metabolism

Fiber Content in Nuts and Dried Fruits

Both nuts and DFs are high in dietary fiber [9]. Diets rich in complex CHO and fiber are
associated with increased insulin sensitivity and reduced plasma insulin levels, promoting better
glycaemic control in diabetic patients [121]. Soluble fiber increases gastric distension, viscosity in the
gastrointestinal tract, and slower absorption of macronutrients [122]. As a consequence, the speed of
CHO absorption and the concentration of postprandial glucose tend to be lower after the ingestion of
fiber-rich foods than foods or meals poor in fibers [123].

Fiber is resistant to enzymatic digestion in the small intestine and thus susceptible to fermentation
by bacteria in the colon. It produces short chain fatty acids (SCFA, e.g., acetate, propionate and butyrate)
which reduce the production of hepatic glucose and stimulate the secretion of GLP-1 [124,125]. Incretins
such as GLP-1 and gastric inhibitory polypeptide (GIP) stimulate the secretion of insulin by β-cells and
promote the proliferation of these cells, favoring the maintenance of normal blood glucose levels [125].
The secretion of GLP-1—which is mainly performed by enteroendocrine L-cells of the gastrointestinal
tract -is partly mediated by monosaccharides, peptides and amino-acids, MUFA and PUFA as well as
by SCFA. Therefore, the positive influence of GLP-1 on blood glucose homeostasis, appetite sensations,
and food intake provides a strong rationale for its therapeutic potential in the nutritional management
of T2D and obesity [126].

Overall fiber contained in nuts and DFs is also able to decrease postprandial glycaemic levels and
this could be a strategy for increasing insulin sensitivity which improves T2D and several other CV
risk factors for chronic diseases [74,127].

Carbohydrate Content—Glycaemic Index of Nuts and Dried Fruits

It should be noted that nuts are relatively low in CHO (approximately 15% of the total energy)
whereas DFs have a high amount of CHO (60–80%). Nuts have a low glycaemic index and therefore
increase the blood glucose level less and require less insulin secretion, thus favoring the control
of T2D. However, because DFs are high in carbohydrates and fiber, their specific GI has been the
object of considerable study. The GI of raisins was first evaluated in three heterogeneous groups of
subjects (aerobically trained, sedentary or pre-diabetic) and was described between 49 and 69, therefore
corresponding to the low-to-moderate GI foods [110]. However, later studies have reported that raisins
are in the low GI category in healthy subjects (a GI of 49.4 and an insulinemic index of 47.1) [15].
This suggests a favorable postprandial glucose and insulin response [112], that could be explained by
the high proportion of fructose that DFs contain.

Overall, the inclusion of both nuts and DFs in a balanced diet may reduce the overall glycaemic
index of the diet, with benefits to glycaemic and insulinemic control in both healthy and T2D
subjects [128].

Fat Content in Nuts

The high content of MUFA and PUFA in nuts seems to enhance the reduction of IR, thus
consequently reducing the risk of developing T2D [129–131]. However, the mechanisms by which
these fatty acids (FA) affect insulin sensitivity are not yet fully understood [132]. It is believed, however,
that the FAs present in the phospholipids of different cell membranes are affected by the type of fatty
acid intake, thus affecting insulin sensitivity. The different unsaturated FAs that are part of the cell
membrane influence the action of insulin via affecting the binding or affinity of insulin to its cellular
receptor [133]. It is hypothesized that a higher unsaturation of FA in the cell membrane facilitates
the movement of the glucose receptor to the cell surface, thus increasing insulin sensitivity [134].
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In addition, as we have seen, unsaturated fatty acids act through the stimulation of GLP-1 secretion,
thus improving the efficiency of β-cells. SFA and MUFA act on the lipogenic gene expression, while
PUFA inhibit the expression of these genes, partly by binding and activating nuclear receptors, such as
those activated by peroxisome proliferators (PPAR) [131]. It has been suggested that the activation
of PPAR has a therapeutic role in the treatment of T2D, because it induces fatty acid clearance by the
adipose tissue, decreasing its plasma levels and thus increasing insulin sensitivity in the muscle [135].

Mineral Content in Nuts and Dried Fruits

Nuts contain relatively high quantities of different minerals such as potassium, magnesium
and calcium, whereas DF contains more moderate quantities (mainly potassium, magnesium and
boron). Magnesium has been associated with beneficial effects on glycaemic control [136]. Low
magnesium levels have been implicated in IR development [124]. In fact, kidneys lose the ability to
retain magnesium in periods of acute hyperglycemia. It is excreted in the urine, leading to low mineral
blood levels. It has been shown that correcting this depletion improves response and insulin action.
Magnesium deficiency also interferes with the reactions that use or produce ATP, thus altering the
enzyme cascade involved in the CHO metabolism and favoring the development of T2D [137].

Therefore, the minerals present in nuts and DF could explain the relationship observed between
magnesium intake and the lower risk of developing T2D and other chronic diseases [138,139].

Other Bioactive Compounds in Nuts and Dried Fruits

The other bioactive compounds contained in nuts and DF could partially explain their protective
anti-oxidant and anti-inflammatory properties [2] and their implication in glucose and insulin
metabolism (and therefore in T2D). Significant evidence suggests that polyphenol-rich diets have
the ability to protect against diabetes [140]. It appears that anthocyanins (or anthocyanin-rich
foods) are inversely associated to the risk of T2D, but there is no association for other polyphenol
subclasses [141,142]. Dietary polyphenols have some benefits for T2D: they protect pancreatic β-cells
against glucose toxicity and they have anti-inflammatory and anti-oxidant effects, among other
things. Quercetin is a member of the flavonoid class of polyphenols which is abundant in such
foods as fruits, vegetables, nuts and seeds [143]. Several in vitro studies have sought to elucidate
the mechanisms behind the antidiabetic properties of quercetin: for example the inhibition of the
α-amylase and α-glucosidase activities, and the prevention of the lipid peroxidation of pancreatic tissue
homogenates [144]. Moreover, ellagic acid (EA) is another polyphenol which naturally occurs in some
fruits, such as berries (strawberries and red and black raspberries), nuts, and pomegranates [145]. There
is emerging in vitro evidence that EA may ameliorate symptoms of chronic metabolic diseases—by
decreasing chronic inflammation at the expression level—which include dyslipidemia, IR and
T2D [146–148]. Despite the growing amount of information on EA, a definitive mechanism of action
has not been established. This may be attributed to the complexity of EA metabolism, which is
governed by various factors [145].

A growing body of evidence suggests that dietary agents and the non-nutrient components of
fruits, vegetables and nuts can affect epigenetic processes related to T2D [149,150]. Epigenetics
generally refers to heritable and reversible changes affecting gene expression and chromatin
organization that are not due to alterations in the DNA sequence [151,152]. No specific data is available
on the role of nuts and DFs in T2D epigenetics. However, dietary polyphenol resveratrol—most
abundant in the skin of grapes and raisins, but also found in peanuts and cranberries [153]—and other
phytochemicals (e.g., curcumin) have proved to be effective agents against cancer and to act through
epigenetic mechanisms that affect the global epigenome [154,155]. However, future studies are needed
to determine the biological importance of the altered tissue-specific DNA methylation in T2D resulting
from nutritional modifications [152].
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5.2. Cellular and Molecular Mechanisms Linking Nut and Dried Fruit Consumption and the Prevention and/or
Management of T2D/IR

Gene Expression

Some studies have analyzed the effect of nut and DF consumption on changes in the gene
expression of particular cells and/or tissues and its relationship with glucose and insulin metabolism
or T2D. In particular, a crossover study conducted in pre-diabetic subjects consuming pistachio for
4 months reported a downregulation of interleukin-6 (IL-6) and resistin (RETN) genes in leukocytes,
whereas the pistachio diet led to a lower significant increase of solute carrier family 2 member
4 (SLC2A4, codifying GLUT4) [85]. Consistent with this attenuation in the expression of glucose
transporters, leukocytes significantly reduced the uptake of glucose following pistachio consumption,
suggesting a decrease in the cell hyperactivity described in T2D.

To our knowledge no published studies have evaluated gene expression after the consumption of
DF. However, a translational study conducted in 120 healthy young subjects has shown that individuals
in the highest tertile of fruit and vegetable consumption had statistically lower values of the expression
of some pro-inflammatory marker genes such as intercellular adhesion molecule-1 (ICAM-1), IL-6 and
TNF-α, in peripheral blood mononuclear cells (PBMC) [156].

Therefore, these results shed new light on the nutrient-gene interactions in nuts and DFs. However,
further research is needed.

MicroRNAs

The modulatory role of nuts and DF on the expression of genes related to inflammation, oxidative
stress and glucose metabolism can also be mediated by the effect of nutrients on microRNAs.
MicroRNAs (miRNAs) are RNA molecules that belong to a family of small non-coding RNAs with 20
to 25 nucleotides [157,158] that post-transcriptionally and negatively regulate gene expression.

Research into the nutritional modulation of miRNA is still in its infancy and few studies
have assessed whether a specific dietary pattern, food, supplements or a particular nutrient can
influence miRNA levels [159]. In humans, consumption of grape extract rich in resveratrol, and Vitamin
supplementation modulated specific miRNAs towards a healthier status [160]. Similarly, a PUFA-enriched
diet including almonds and walnuts was effective at modifying several miRNAs [161]. More recently,
pistachio consumption in pre-diabetic subjects significantly diminished the levels of miR-375 and
miR-192, both related to the glucose and insulin metabolism [162]. However, there is still much to
discover about the exact mechanisms linking miRNAs with the glucose and insulin metabolism and
the dietary modulation of miRNA expression.

Microbiota and Metabolomic Modulation

In recent years, many studies have pointed out that the gut microbiome might make an important
contribution to the development of insulin resistance and T2D. Several mechanisms related to the
composition of gut microbes—including changes in bowel permeability, endotoxemia and interaction
with bile acids—may contribute to the onset of insulin resistance. On the other hand, it is well
established that long-term dietary patterns and shorter-term dietary variation influence gut microbiota
composition [163]. Many potential prebiotic components can be present in a particular food. For
example, the fermentation of fiber from nuts and DF to beneficial end-products (e.g., butyric acid) and
the biotransformation of phytochemicals (i.e., tocopherols, phytosterols, and phenolic compounds) are
associated with the transition to a healthier microbiota composition [2,164].

There is little information on the putative effect of nuts and DF on microbiota modulation. In fact,
only two publications have evaluated the effect of nut consumption (almonds and pistachios) on
changes in microbiota. Mandalari et al. conducted an in vitro study with almond skins and they
found that almond fiber significantly altered the composition of gut bacteria, specifically Bifidobacteria,
thus showing that almond skins had a potential prebiotic use [165]. Some years later, Ukhanova and



Nutrients 2017, 9, 673 23 of 34

collaborators carried out two separate crossover feeding trials with nuts and pistachios, and showed
that they both significantly affected microbiota modulation [166]. However, a greater prebiotic effect
was found after pistachio intake. In fact, pistachio increased the number of butyrate-producing
bacteria, which are potentially beneficial, whereas the numbers of Bifidobacteria were not affected by
the consumption of either nut [166].

Recently, dietary polyphenols have been found to be involved in gut microbiota dysbiosis
processes which may lead to a reduction of fat storage, inflammation and IR (reviewed in [167]).
In fact, a cranberry extract also altered the gut microbiome of mice by increasing mucin-degrading
bacteria, a potential link to reverse the dysbiosis and metabolic inflammation underlying T2D [168].

Very few studies have been made on metabolomic modulation after nut and DF intake.
Of the studies that have been made, some have evaluated changes in metabolites after a chronic
consumption of nuts. They showed a modulation in the levels of metabolites such as raffinose,
(12Z)-9,10-dihydroxyoctadec-12-enoate, sucrose, together with some modulations of plasma amino
acids and fatty acids [169], and a modulation of gut-related metabolites and cis-aconitate, an
intermediate of tricarboxylic acid [170], after pistachio consumption.

Therefore, several specific nutrients—together with their synergic effects—in both nuts and DFs
may explain their beneficial role in glucose and insulin metabolism, which helps to prevent or maintain
T2D (Figure 1).
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Figure 1. Role of nutrients from nuts and dried fruits in glucose and insulin metabolism, and cellular
and molecular mechanisms related to T2D/IR. CHO, carbohydrate; CMF, cellular membrane fluidity;
GI, glycaemic index; IR, insulin resistance; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated
fatty acid; T2D, type 2 diabetes.

6. Concluding Remarks

Undoubtedly, the specific composition of nuts and dried fruits means that they can be used to
efficiently counteract metabolic diseases such as type 2 diabetes. Their unique profile of macronutrients,
micronutrients and other bioactive compounds may explain the beneficial effects observed in clinical
and epidemiological studies. However, the exact mechanisms by which they modulate glucose and
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insulin metabolism and influence T2D have yet to be fully discovered. They contain fiber, fat, minerals
and other bioactive molecules that modulate several gene mechanisms at the cellular and molecular
level. This may explain some of their beneficial effects. However, further basic and translational
research is needed in order to extend their positive health benefits and to find novel mechanisms and
targets to explain their contribution to the management of type 2 diabetes.
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Abbreviations

AMPK adenosine monophosphate-activated protein kinase
AT aerobically trained
ATP adenosine triphosphate
AOC area over the curve
Apo apolipoprotein
BMI body mass index
BW body weight
C cholesterol
CHO carbohydrate
CI confidence interval
CMF cellular membrane fluidity
CRP C-reactive protein
CVD cardiovascular disease
DF dried fruit
EA ellagic acid
EPIC European Prospective Investigation into Cancer
FA fatty acid
FBG fasting blood glucose
FBP fructose-1,6-bisphosphatase
G6Pase glucose 6-phosphatase
GAE gallic acid equivalents
GI glycaemic index
GIP gastric inhibitory polypeptide
GL glycaemic load
GJ grape juice
GLI glibenclamide
GLP-1 glucagon-like peptide-1
GLUT glucose transporter type
GPE grape powder extract
HA high almond
HbA1c glycated hemoglobin
HDL high-density lipoprotein
HF high fat
HFD high-fat diet
HOMA-IR homeostatic model assessment of insulin resistance
HPFS Health Professionals Follow-Up Study
IAUC incremental area under the curve
ICAM-1 intercellular adhesion molecule-1
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IGT impaired glucose tolerance
IL-6 interleukin-6
IR insulin resistance
LDL low-density lipoprotein
LF low-fat
LPS lipopolysaccharide
MedDiet Mediterranean diet
MESA Multi-Ethnic Study of Atherosclerosis
MetS metabolic syndrome
MI myocardial infarction
miRNA and miR microRNA
M/F male/female
MUFA monounsaturated fatty acids
NA not available
NAFLD non-alcoholic fatty liver disease
NCEP National Cholesterol Education Program
NHANES National Health and Nutrition Examination Survey
NHS Nurses’ Health Study
NLCS Netherlands Cohort Study
NS non-significant
Ob obese
ORAC oxygen radical absorbance capacity
Ow overweight
PBMC peripheral blood mononuclear cell
PF-4 platelet factor-4
PHS Physicians' Health Study
PM post-menopausal
PPAR peroxisome proliferator-activated receptors
pre-D pre-diabetes
PREDIMED PREvención con DIeta MEDiterránea
PUFA polyunsaturated fatty acids
PWE polyphenol-rich walnut extract
Re range
RETN resistin
RCT randomized clinical trial
RGR relative glycaemic responses
RR relative risk
RW red wine
ROS reactive oxygen species
S sedentary
SBP systolic blood pressure
SCCS Southern Community Cohort Study
SCFA short chain fatty acids
SFA saturated fatty acids
SLC2A4 solute carrier family 2 member 4
SMHS Shanghai Men's Health Study
STZ streptozotocin
SWHS Shanghai Women's Health Study
T2D type 2 diabetes
TC total cholesterol
TF tissue factor
TG triglycerides
TLGS Tehran Lipid and Glucose Study
TNF-α tumor necrosis factor-α
USDA United States Department of Agriculture
VFM visceral fat mass
WB white bread
WC waist circumference
WHtR waist-to-height ratio
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