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Abstract While mathematically impaired individuals

have been shown to have deficits in all kinds of basic

numerical representations, among them spatial-numerical

associations, little is known about individuals with excep-

tionally high math expertise. They might have a more

abstract magnitude representation or more flexible spatial

associations, so that no automatic left/small and right/large

spatial-numerical association is elicited. To pursue this

question, we examined the Spatial Numerical Association

of Response Codes (SNARC) effect in professional math-

ematicians which was compared to two control groups:

Professionals who use advanced math in their work but are

not mathematicians (mostly engineers), and matched con-

trols. Contrarily to both control groups, Mathematicians

did not reveal a SNARC effect. The group differences

could not be accounted for by differences in mean response

speed, response variance or intelligence or a general

tendency not to show spatial-numerical associations. We

propose that professional mathematicians possess more

abstract and/or spatially very flexible numerical represen-

tations and therefore do not exhibit or do have a largely

reduced default left-to-right spatial-numerical orientation

as indexed by the SNARC effect, but we also discuss other

possible accounts. We argue that this comparison with

professional mathematicians also tells us about the nature

of spatial-numerical associations in persons with much less

mathematical expertise or knowledge.

Introduction

The SNARC effect and possible underlying

mechanisms

Dehaene, Bossini, and Giraux (1993) found that in a

speeded bimanual decision task, participants responded

faster to small magnitude numbers with their left hand and

to large magnitude numbers with their right hand. The

acronym SNARC, Spatial-Numerical Association of

Response Codes, is used to label this phenomenon. Later

studies showed that this leftward bias towards small mag-

nitude numbers and rightward bias towards large magni-

tude numbers are not limited to bimanual responses and

extend to unimanual tasks, as well as to responding with

feet or eye movements (see Wood, Willmes, Nuerk, &

Fischer, 2008 for a review and meta-analysis; Gevers &

Lammertyn, 2005; see also Fischer & Shaki, 2014 for a

current overview).

The SNARC effect has been interpreted as providing

evidence that number magnitude representations are map-

ped spatially. Its presence is usually considered to be a

signature of automatic spatial processing of numerical
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magnitude. However, despite 20 years of extensive

research on the SNARC effect, there is no consensus about

the underlying mechanisms. Most popular explanations

refer to (1) cultural factors, in particular reading and

counting direction (see e.g., Zebian, 2005; Shaki, Fischer,

& Petrusic, 2009), (2) factors related to the spatial mapping

of numbers limited to the ongoing task (Bächtold, Bau-

müller, & Brugger, 1998; Fischer, Mills, & Shaki, 2010),

(3) finger counting habits per se (Fischer, 2008), (4)

ordering of elements in working memory during a task (van

Dijck & Fias, 2011), (5) dichotomous verbal coding of

polar adjectives and mapping this code to spatial locations

(Gevers et al., 2010; Nuerk, Iversen, & Willmes, 2004;

Proctor & Cho, 2006), and (6) attentional factors (Nuerk,

Bauer, Krummenacher, Heller, & Willmes, 2005b). Some

of these factors (1–3) have been integrated in a recently

proposed theoretical framework about the embodiment of

numerical representations, showing how grounding,

embodiment, and situatedness influence the spatial repre-

sentations of numbers (Fischer & Brugger, 2011; Fischer,

2012; see also Wasner, Moeller, Fischer, & Nuerk, 2014).

While it is still not clear which of the above mechanisms

contribute to the SNARC effect, the observation that

numbers are somehow associated with spatial response

mappings has been replicated numerous times.

Interindividual differences in SNARC effect

Group and interindividual differences were also observed

for the SNARC effect with regard to some of the factors

just mentioned: For instance, in Western cultures, only

70 % participants reveal a left-to-right SNARC effect, but

30 % descriptively show the reverse (see Wood et al.,

2008; Cipora & Nuerk, 2013; Hoffmann, Pigat, & Schiltz,

2014a; Hoffmann, Mussolin, Martin, & Schiltz, 2014b).

SNARC also varies with individual reading habits, both in

general and in the experimental situation (Fischer, Shaki, &

Cruise, 2009). Moreover, individual finger counting habits

(Fischer, 2008; Lindemann, Alipour, & Fischer, 2011) and

some inhibition capacities influence the SNARC effect

(Hoffmann et al. 2014b). Other factors are age (meta-

analysis of Wood et al., 2008; Hoffmann et al., 2014b) and

sex (Bull, Cleland, & Mitchell, 2013). However, the dif-

ference is very small and its detection requires relatively

large groups (20 participants per group).

Recent evidence shows that the magnitude of the

SNARC effect is also related to mental rotation effects as

well as to numerical distance effects (Viarouge, Hubbard,

& McCandliss, 2014). The same study shows that partici-

pants revealing a strong mental rotation effect (i.e., larger

increase in RT with the increasing rotation angle) as well

as those who reveal a large distance effect (i.e., a larger

increase in RT when comparing numbers that are

numerically close than when comparing numbers that are

numerically distant) reveal a stronger SNARC effect. In

other words, participants whose spatial abilities are poorer

and who have a less precise number magnitude represen-

tation seem to associate number magnitude with space

more strongly. Finally, the SNARC effect has been linked

to arithmetic skills, but the findings are inconsistent (De-

haene et al., 1993; Fischer & Rottmann, 2005; Cipora &

Nuerk, 2013; Hoffmann et al., 2014a) and will be discussed

below in more detail.

Beyond such individual and group differences, individ-

ual response characteristics associated with the experiment

itself constitute the most robust factors influencing the

SNARC effect (Cipora & Nuerk, 2013; Gevers, Verguts,

Reynvoet, Caessens, & Fias, 2006; Wood et al., 2008, for a

meta-analysis). Longer responses and higher intraindivid-

ual variability in a parity judgement task are associated

with larger SNARC effects.

Nevertheless, although the SNARC effect was first

studied as a general cognitive effect, reflecting automatic

activation of spatial-numerical associations, individual

differences are ubiquitous and sometimes show that gen-

eral statements about spatial-numerical associations (par-

ticularly, the spatial mapping of number representations

and its directionality) must be further differentiated or even

occasionally reversed.

Is number magnitude representation always

associated with space?

Numerical representations can operate without a spatial

component. As shown by Helmreich et al. (2011) or Nunez,

Doan, and Nikoulina (2011), the spatial component of

magnitude representation is not obligatory. There is evi-

dence for an innate magnitude representation (showing

properties such as logarithmic compression), but its spatial

mapping seems to be mediated by cultural factors. Numer-

ical magnitude can in principle be processed semantically

without evoking a spatial-directional component (Nuerk

et al., 2005a, for data; see Patro, Nuerk, Cress, & Haman,

2014, for a model taxonomy and data from children).

Math expertise and elementary number processing:

different research perspectives

Because we are reporting on a study of (directional) spa-

tial-numerical associations in professional mathematicians,

we will give a short overview of what is known about

their specific characteristics as compared to controls.

Studies are rare, but overall they seem to imply that sim-

ilarities and differences between highly math-skilled par-

ticipants and the general population refer both to the

general personality and cognitive characteristics as well as
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to domain-specific factors like elementary number

processing.

Professional mathematical expertise refers to problem-

solving and logical-deductive thinking in highly abstract

spaces and structures (i.e., finding mathematical proofs or

counterexamples to theorems), but not necessarily to

arithmetic skills and calculation. In fact, Pesenti (2005)

showed systematically that successful mathematicians do

not have to be exceptional calculators.1 Skills of excep-

tional calculators are very often limited to arithmetic and

they are not capable of conducting mathematical proofs.

The first preliminary evidence for some unique abilities

in highly math-skilled individuals can be derived from

research and theoretical reasoning about cognitive devel-

opment, especially from Piagetian theory. Kuhn, Langer,

Kohlberg, and Haan (1977) observed that only 30 % of

adults reach the formal operation stage, which comprises

the ability to think about abstract concepts and to use

formal logic principles for reasoning, irrespective of the

content of problems to be solved. By definition, this ability

is fundamental and necessary for professional mathemat-

ics; therefore, all professional mathematicians should have

mastered formal operations. This already suggests that as a

population they are slightly different from the general

population. Fluid intelligence studies also corroborate this

assumption: Professional mathematicians are characterized

by above average intelligence; 50 % of the variance in

math achievement can be accounted for by fluid intelli-

gence (see e.g., Wei, Yuan, Chen, & Zhou, 2012). Com-

plex problem solving (CPS) skills (Sonnleitner, Keller,

Martin, & Brunner, 2013) usually measured with comput-

erized Microworld tasks may also be very relevant in

mathematical expertise. This set of abilities, such as rule

identification, rule knowledge, and rule application, can be

predictive of academic success and go beyond factors that

are assessed by traditional intelligence measures. These

higher order thinking skills correlate moderately with

intelligence as well as with math achievement and may

play a particular role in tasks that are performed by pro-

fessional mathematicians.

Arithmetic (but not necessarily mathematical, see

above) expertise was also a subject of direct investigation,

and studies conducted up to date can be classified into

several groups. First of all calculation prodigies were

examined (e.g., Fehr, Weber, Willmes, & Herrmann, 2010;

Fehr, Wallace, Erhard, & Herrmann, 2011; Pesenti, 2005

for comparison). The studies suggest that extraordinary

calculation skills mostly require drill and employ the same

neural circuits as in normal participants. On the other hand,

calculation prodigies are characterized by their excellent

working memory capacity (usually being restricted to the

numerical domain; Fehr et al., 2010; Pesenti, 2005). In

several cases, calculation prodigies were diagnosed with

autism or Asperger syndrome. Non-savant prodigies also

differ from the general population in several personality

traits (e.g., a calculation prodigy studied by Fehr et al.,

2010 had higher neuroticism, aggressiveness, conscien-

tiousness, and openness to experience than matched con-

trols). On the other hand, his general IQ was in the normal

up to moderately above normal range. In line with other

studies mentioned above, this seems to suggest once more

that high arithmetic skills are not necessarily linked to high

mathematical expertise.

More recent lines of research addressed relations

between mathematical/arithmetic expertise and elementary

numerical processing, but led to inconsistent results. The

most prominent scheme is to compare students of math-

related fields of study with students of humanities or social

sciences with respect to elementary numerical processing.

Such an attempt was made by Castronovo and Göbel

(2012), who showed that math-skilled participants do not

differ from their less-skilled peers in comparing non-

symbolic numerosities (sets of dots). However, skilled

participants outperformed controls in matching numbers to

non-symbolic numerosities as well as in comparing num-

bers. Wei et al. (2012) observed no relationship between

elementary number processing (comparison of dots of two

arrays; estimation of numerosity; number comparison; etc.)

and the ability to acquire advanced math concepts, but

measures of elementary numerical processing were corre-

lated with elementary math performance. Hanson and

Hogan (2000) show that estimation skills at the college age

correlate with the SAT mathematics score but not with the

SAT verbal score.

To summarize, the results are very inconsistent. Apart

from task differences, one reason may be that the above-

mentioned studies show differences in elementary number

processing depending on the arithmetic skill level

observed. Participants were students from different facul-

ties. These inclusion criteria do not guarantee a high level

of math expertise, because even in many science depart-

ments students are often more concerned with calculation

and application of formulae than with mathematical proofs.

Highly notable exceptions are two studies by Dowker

(1992) and Dowker, Flood, Griffiths, Harriss, and Hook

(1996), who examined professional mathematicians rang-

ing from postdocs to successful professors. Mathematicians

were asked to estimate the result of multi-digit multipli-

cations (which in fact is not considered a typical measure

of elementary numerical processing). In this arithmetic

task, they outperformed control groups consisting of

1 There are numerous anecdotal reports showing that outstanding

mathematicians (e.g., Stanisław Mazur, one of the most famous Polish

mathematicians) had difficulties with simple arithmetic in everyday

life.
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experienced accountants and psychologists. The reason

seemed to be that the mathematicians used a much wider

range of strategies for estimation. Professional mathe-

maticians were also more flexible in their strategy use

(when faced with the same problem after a few months

delay, they used novel strategies) and were less afraid of

making mistakes than controls. They reported feelings of

joy when playing with numbers. The authors concluded

that a mathematician’s work is based mostly on experi-

mentation when facing novel problems they have never

solved before (and without information of whether a given

problem has a solution).

Another line of evidence comes from introspective

reports of professional mathematicians. Penrose (1989)

claims that solving mathematical problems is not based

solely on using algorithms. The process of deciding which

algorithm should be applied plays a crucial role in most

cases.

Penrose also introspectively reports that a considerable

part of mathematical thinking takes the form of operations

on mental entities, which are sometimes hard to verbalize.

On the other hand, he reports that his colleagues think very

differently compared to him; so, there may be very high

interindividual variability in thinking in the group of pro-

fessional mathematicians.

To sum up, the demands of elaborating new ways of

facing and solving novel mathematical problems may

enhance the development of more flexible numerical rep-

resentations in professional mathematicians. It has not been

studied whether mathematicians are also different in basic

spatial-numerical associations.

The relation between arithmetic/mathematical skills

and SNARC

Because there are no data about professional mathemati-

cians, we will review the literature about the relation of

arithmetic/mathematical skills and the SNARC to derive

our hypothesis. Originally, participants who are more

advanced in math were thought to reveal a smaller SNARC

effect than those who were less proficient. The first evi-

dence came from Experiment 1 in the seminal study by

Dehaene et al. (1993). There was a non-significant ten-

dency that math-skilled participants (n = 10) revealed a

smaller SNARC effect than their non-skilled peers

(n = 10). The level of math skills was operationalized by

what field of study (science vs humanities, mostly litera-

ture; for a more thorough discussion of results of this

experiment refer to Cipora & Nuerk, 2013) was attended by

the participants. Despite its lack of significance, this result

was cited as an indication that math-skilled participants

reveal a smaller SNARC effect (e.g., Fischer et al., 2010;

Fischer & Rottmann, 2005). Fischer and Rottmann (2005)

again raised the issue of the relation between math skill and

the SNARC effect. Comparing two groups (10 participants

in each, grouping based on field of study: mathematics,

physics, engineering vs psychology), they found a numer-

ical tendency towards a difference, which again was far

from statistical significance (p = .28). Moreover, in a

study on the mental representation of fractions, Bonato,

Fabbri, Umiltà, and Zorzi, (2007) in Experiment 1 also

compared math-skilled and non-skilled participants (groups

of 10, students of engineering and psychology). In this

study, there was no difference between skilled and non-

skilled participants in the magnitude of the SNARC effect.

A similar result was reported in Experiment 4 of that study.

So, while there were some tendencies towards smaller

SNARC effect in math-skilled participants, they all

remained non-significant. However, all of the studies

mentioned above have some limitations affecting their

conclusiveness. First of all, the groups were very small,

which raises serious concerns about inferential statistical

power. Cipora and Wood (2012) showed that detecting

between-group differences in SNARC seems to be very

difficult and issues of statistical power have to be addressed

properly (increasing the number of repetitions of a single

stimulus, relatively large groups). Secondly, apart from the

study by Dehaene et al. (1993), the studies cited above used

modified versions of the typical parity judgment task.

Fischer and Rottmann (2005) included negative numbers in

their experiment (regarding the influence of the particular

number stimuli set on the SNARC effect see Dehaene

et al., 1993, Experiment 3, van Dijck & Fias, 2011). Bonato

et al. (2007) in their study used fractions that are processed

in a slightly different way than integers (Schneider &

Siegler, 2010). Therefore, a lack of between-group differ-

ences can possibly be accounted for by the unique nature of

the material used in a given study. Third, group inclusion

criteria were based on the field of study chosen. In case of

small groups, it is possible that there were several skilled

participants in the presumably non-skilled groups. There

was no external measure of math skill to control skill level.

Fourth, there was no theoretical background on what kind

of skill may be related to the SNARC effect (abstract

representations, calculation fluency, etc., see Cipora &

Nuerk, 2013 for discussion).

Fortunately, some recent studies have addressed one or

several of these points. Schneider, Grabner, and Paetsch

(2009) examined relations between basic signatures of

numerical processing and school achievement in 5th and 6th

grades. Besides other findings, they observed no relation-

ship between the SNARC effect and math achievement in a

large sample of more than 400 participants: There were no

significant correlations between the SNARC effect and

math grades, number line estimation accuracy, total score

for the numerical subscale in a standardized cognitive
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abilities test (KFT), nor conceptual knowledge about math.

Moreover, there was an external criterion for math skill

(school achievement). However, this work was conducted

with children and because SNARC effects develop with age

(Berch, Foley, Hill, & Ryan, 1999; Wood et al., 2008), we

do not know whether these results will hold for adults.

Bull et al. (2013) conducted a study on gender differ-

ences in the SNARC effect. In Experiment 2, they tested 40

participants, twice as many as previous studies. The par-

ticipants performed a modified color discrimination task,

which was used to measure the SNARC effect. Math

competence was assessed by the Numerical Operations

subtest from the Wechsler Wide Achievement Test (WIAT

II, UK). In this study, virtually no relation between SNARC

and math ability was found (r = -.07). However, this study

might not be representative for SNARC effects, because the

authors used a non-semantic task, i.e., no judgement about

semantic attributes of numbers (e.g., parity) was required.

Very recently, two studies were published with adults

and featuring typical SNARC tasks and large samples,

thereby reducing power issues. Cipora and Nuerk (2013)

examined 71 participants comparing students studying

math-related subjects (math, computer studies, engineer-

ing, etc.; n = 18) and those studying subjects in which

math is not crucial (psychology, literature etc.; n = 53).

The mean age of participants was below 22 years old;

therefore, they were mostly at the beginning of their

studies. Despite the relatively large sample sizes and

extensive efforts to control power and reliability issues,

there was no relationship between arithmetic skill nor field

of study with the magnitude of the SNARC effect. Nev-

ertheless, their sample was not gender balanced and pro-

portions of males and females differed between skill

groups. Furthermore, the presumably skilled group com-

prised far fewer participants than the presumably non-

skilled group. Hoffmann et al. (2014a) also tested a large

group (n = 95) comprised 3 groups of university students:

(1) ‘‘Math expert’’ refers to students ‘‘with a study field

having a strong numerical load (e.g., mathematics, engi-

neering, and sciences),’’ (2) controls, and (3) a math dif-

ficulties group. Again, participants were students (mean

age 23.2 years) and no professional mathematicians. In

contrast to Cipora and Nuerk (2013), a between-group

difference was observed, but its effect size was small

(partial g2 = 0.05). Nevertheless, considerable differences

in design, especially the inclusion of zero in the stimulus

set (for a specific role of zero see: Nuerk et al., 2004), do

not allow for direct comparison with the study by Cipora &

Nuerk (2013). However, in the Hoffmann et al. (2014a)

study, the between-group difference in the SNARC effect

remained, when 0 and 5 were excluded from the analyses:

the highly skilled math group still differed significantly

from the controls. The correlation between the SNARC

slope and arithmetic even remained when the math diffi-

culties group was excluded from their analyses. When

these analyses are considered, some substantial differences

between the results of both studies remain.

In sum, 6 out of 7 studies (Bonato et al., 2007; Bull

et al., 2013; Cipora & Nuerk, 2013; Dehaene et al., 1993;

Fischer & Rottmann, 2005; Schneider et al., 2009)

observed no significant relation between SNARC and

arithmetic competence (directly assessed or indirectly via

field of study), while one recent study (Hoffmann et al.,

2014a) observed a significant, albeit small relation. None

of these SNARC studies used professional mathematicians

as studies examining other questions had done (Dowker,

1992; Dowker et al., 1996).

Objectives of the presented study

As we have argued in the previous sections, the origin of

interindividual differences in the SNARC effect is largely

unknown even after over 20 years of research. Throughout

these years, the math skill level was one of the most

interesting factors to be taken into consideration. Since it

seemed to be difficult to find a relation between SNARC

slopes and arithmetic skill in the typical skill range, the

next step is to examine extreme groups. This is the

approach we are taking in this study.

Because Hoffmann et al. (2014a) had already studied

participants with math difficulties, we now decided to

explore the SNARC effect at the other end of the spectrum,

i.e., in professional math experts. We not only used math

students (who have not finished their studies, and whose

math expertise may or may not be so good), nor did we

stop at examining participants with a math B.Sc. or M.Sc.

degree. Rather, we used advanced Ph.D. students, who

were researching mathematics as part of their daily life and

who had done so for at least 3 years. In this way, we

ensured a level of professional math experience, which has

very rarely (see Dowker, 1992) been studied in any

numerical cognition work. Examining expert mathemati-

cians seems promising because one can expect that possi-

ble differences will be more pronounced than in case of

typical skill levels for several reasons. First, professional

mathematicians are required to manipulate abstract con-

cepts in several ways in order to solve problems. Therefore,

they might have a more abstract concept of numbers than

typical people and might not automatically associate

numbers with space. Second, mathematicians are experi-

enced in mapping numbers and mathematical concepts to

space in a very flexible and variable way. Therefore, they

might exhibit spatial associations with numbers but these

associations may not be consistent with a given cultural

convention. Rather their space-number associations might

be highly flexible, corresponding to the flexible use of
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space number relations in their professional work. Both

accounts would predict a smaller or a null default spatial-

numerical association in mathematicians.

Moreover, we decided to distinguish professional

mathematicians from professionals in other fields (e.g.,

engineering), who use advanced arithmetic in their work

but are either not interested in the study of mathematics

itself or at least less so. Usually, groups employing true

mathematics (working on theorems) and groups applying

advanced mathematics for arithmetic are not distinguished

and this will also be done here. Finally, we also used a

professional control group from social sciences and

humanities, who have even less experience with numbers.

In order to ensure the reliable estimation of the SNARC

effect and to obtain optimal power to detect a SNARC

effect, as well as individual differences in SNARC, we

utilized a procedure involving many more repetitions of

each number/condition (see Cipora & Nuerk, 2013; Cipora

& Wood, 2012). This seems particularly important since

recent evidence shows that the reliability of SNARC slopes

obtained in a typical setup is rather poor (correlations of

slopes\0.4; Viarouge et al., 2014; see also Wood, Nuerk,

& Willmes, 2006), and hence probably reduces correlations

with external measures. It is particularly noteworthy that

reliability problems are not limited to the SNARC effect

but are present in other chronometric measures as well

(e.g., Maloney, Risko, Preston, Ansari, & Fugelsang, 2010,

for the numerical distance effect). For these reasons,

increasing the number of repetitions is crucial when RT

difference scores are calculated (see Miller & Ulrich, 2013;

for a theoretical account and some simulations). Addi-

tionally, we decided to control for fluid intelligence to

ensure that any relationship between mathematical exper-

tise and the SNARC effect was not due to related differ-

ences in fluid intelligence. When addressing the possible

influences of intelligence on spatial-numerical associations,

we decided to utilize a measure of fluid intelligence,

namely Advanced Raven Matrices. We were especially

interested in nonverbal abilities and reasoning skills for

nonverbal material. Moreover, aiming at studying highly

educated participants, we had to choose a measure capable

of differentiating participants at highly above-average

levels of fluid intelligence and avoiding ceiling effects.

Among the measures of fluid intelligence available in

Polish, only the Advanced Raven Matrices are suited to

assess fluid intelligence at levels, which are far above

average. Unfortunately, there is no Polish adaptation of the

Raven Vocabulary Scales designed to complement the

matrices. Time constraints also did not allow us to utilize

other intelligence measures.

To ensure that we were really looking at differences

regarding the association between number magnitude and

space and not only at general differences of numerical

effect sizes between groups, we also explored a related, yet

different effect, the Linguistic Markedness Association of

Response Codes (MARC) effect. The MARC effect was

assumed to be driven by linguistic properties (namely lin-

guistic markedness) of number attributes (Nuerk et al.,

2004; for a current overview and theoretical frameworks

for MARC effect see Huber et al., 2014b).

If a systematic relation between SNARC and profes-

sional math expertise exists, math professionals should

show a smaller or a null SNARC effect (as some studies

indicated descriptively smaller SNARC effects in groups

partially consisting of math students). If this relation does

not differ between individuals at all, no group differences

should be observed. Any conclusive group difference

should not be explained by control variables like intelli-

gence and overall mean RT or RT variability, and it should

be specific to the SNARC effect.

Methods

Participants

44 participants (6 female) took part in the study. The mean

age was 27.9 years (SD = 1.1; range 26–31 years). All

participants (native Polish speakers) were doctoral students

(third year or higher). The inclusion criterion for our

sample was to be advanced in doctoral studies, so that the

exact dissertation topic has been officially approved by the

department’s council. Participants constituted three groups:

(1) mathematicians (M; n = 14, 2 females)—doctoral

students in mathematics; (2) engineers (E; n = 15, 2

females)—doctoral students in other fields who are not

professional mathematicians but use advanced math in

their work (e.g., communication, chemistry, etc.); and (3)

controls (C; n = 15; 2 females)—doctoral students in the

humanities and social sciences (e.g., philosophy, sociology,

psychology, etc.)2. The groups did not differ with respect to

age (M = 28.2; E = 28.1; C = 27.5 years). All partici-

pants were right handed (due to requirements for a subse-

quent fMRI study—not reported here) and had normal or

corrected-to-normal vision.

Materials

A computerized parity judgment task was utilized. Partici-

pants were asked to decide on the parity of numbers pre-

sented on the screen using the P and Q keys on a standard

computer keyboard. Both speed and accuracy were stressed.

2 We did not include physicists to any group because in many cases

their work mostly comprises mathematics but on the other hand is not

mathematics per se.
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The task comprised two blocks with response key mapping

reversed. The order of blocks was counterbalanced across

participants. Numbers 1, 2, 3, 4, 6, 7, 8, and 9 were used.

Black stimuli (font size 30) were presented against light

gray background (210 210 210 in RGB notation) to avoid

sharp contrasts. Each number was presented 30 times within

each block. Each block was preceded by a training session

(16 trials) to familiarize participants with the task. During

the training session, accuracy feedback was provided and

the required response mapping was indicated in the bottom

line of the screen. The order of trials was randomized with

the restriction that each number could not appear more than

two times in a row.

Each trial started with an eye fixation cross presented for

300 ms. Subsequently, the number appeared and was pre-

sented until the participants responded or for a maximum

duration of 2 s. The next trial started after 500 ms.

A standard, portable, MS Windows compatible com-

puter (15.4 in.) running DMDX software (Forster & For-

ster, 2003) was used to present stimuli and collect

responses. We also administered Advanced Raven Matri-

ces (see Raven, Court, & Raven, 1983, Polish adaptation

by Jaworowska & Szustrowa, 1991) in order to control for

fluid intelligence.

Procedure

The parity judgment task was performed as a first task

before an fMRI experiment, which was not related to the

SNARC effect (and is not reported here). Participants were

tested individually. After informed consent had been

obtained, participants were seated in front of the computer

and asked to read the instructions carefully. All questions

were answered if needed. The parity judgment task lasted

about 12 min. After completion of the fMRI study, par-

ticipants solved the Advanced Raven Matrices, results of

which were used as a covariate in the present study. Series

1 was administered first in a separate booklet in order to

familiarize the participants with the test. The time limit for

series 1 was 5 min and the score was not analyzed further.

Subsequently, participants were assessed with series 2. The

time limit was 20 min.

Data preparation

Data from training series was not analyzed. The average

error rate was 3.1 %, but errors were not analyzed further.

Reaction times (RTs) shorter than 200 ms (less than

0.01 % of trials) were treated as anticipations and dis-

carded from further analyses. To solve the problem of

outlier RTs, a sequential filtering procedure was applied.

Mean RTs, as well as standard deviations, were calculated

for each participant separately. Subsequently, RTs outside

±3 SD from a participant’s mean were discarded. Means

and SDs were calculated again and this procedure was

repeated until there were no more changes in mean and SD.

91.9 % of the data were retained after filtering and were

then analyzed further (see also Cipora & Nuerk, 2013, for

the same trimming method).

SNARC effect calculation

In order to calculate the SNARC effect, the method proposed

by Fias, Brysbaert, Geypens, and d’Ydewalle (1996) was

used. It enables the calculation of the magnitude of the

SNARC for each participant and produces a single numerical

value, which is suitable for further comparisons. First, dRT

(RT right hand - RT left hand) is calculated for each number

for each participant separately. Positive dRT values indicate

left-hand advantage, whereas negative dRT values indicate

right-hand advantage. Subsequently, dRT values are regres-

sed on number magnitude. Non-standardized regression

slopes are taken as a measure of the SNARC effect. A more

negative slope corresponds to a stronger SNARC effect. To

examine whether there is a significant SNARC effect at the

sample level, slopes are tested against zero with the one-

sample t test. Since there is direct prediction regarding

directionality of the SNARC effect, one-sided test for negative

values can be used. This method is the most popular in the

literature, so that we decided to use it as a primary measure.

Additionally, we calculated multiple regressions within each

participant with two predictors—number parity and magni-

tude—such that apart from the SNARC effect we were cap-

able of estimating the MARC effect (right-hand advantage for

even numbers and left-hand advantage for odd numbers;

Nuerk et al., 2004; Nuerk, Wood, & Willmes, 2005a). This

also allowed us to examine the individual fit of the regression

model (R2) and the size of residuals.

Using the non-standardized regression slope as a mea-

sure of the SNARC effect size has been strongly criticized

recently (Pinhas, Tzelgov, & Ganor-Stern, 2012). The non-

standardized slope does not carry information regarding the

fit of the regression slope to the data. According to this

view, it cannot serve as a measure of SNARC effect size.

Hoffmann et al. (2014a) proposed an alternative solution

by calculating the within-participant Pearson correlation

between dRT and number magnitude as a univariate mea-

sure of the SNARC effect. This method was also applied

here. These correlation coefficients were then Fisher-Z

transformed to bring their distribution closer to a normal

distribution for further statistical comparisons (this mea-

sure is further referred to as standardized slope). Note that

these standardized slopes (before Fisher-Z transformation)

are numerically equivalent to standardized regression

slopes from the univariate regression analysis used for

calculating non-standardized intraindividual slopes.
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Results

Measure reliability

In a first step, we estimated the reliability of the measures

we included in our analyses. Reliable measurement is a

prerequisite for the meaningful interpretation of our cor-

relation analyses of chronometric measures (cf. Maloney

et al., 2010; Miller & Ulrich, 2013). In case of mean RT,

SD of RT, SNARC slopes, and standardized slopes, the

split-half method (odd–even) was applied. Subsequently,

we applied the Spearman-Brown adjustment to obtain the

reliability estimate for the whole set of items. Regarding

Advanced Raven Matrices, we also decided to estimate

reliability, using Cronbach’s alpha, since the psychometric

evaluation of the Polish adaptation did not comprise such

specific groups as our mathematicians and engineering

groups. All reliability estimates were highly satisfactory

and allowed for a subsequent interpretability of correlation

coefficients (see Table 1).

Reaction time characteristics

Mean reaction time was 533 ms. Mean intraindividual SD

of RT was 97 ms. Cipora and Nuerk (2013) showed that

intraindividual variability in response latencies correlates

with the magnitude of the SNARC effect. Neither mean RT

nor intraindividual RT variability differed between groups

(both F values \1). For RT, the group means were math-

ematicians (M) = 515 ms, engineers (E) = 550 ms, con-

trols (C) = 532 ms, whereas for intraindividual variability

the means were M = 94 ms, E = 97 ms, C = 101 ms.

Fluid intelligence

For one participant, the score for the Advanced Raven

Matrices was not available (because of technical problems

during fMRI scanning preceding administration of the

Raven test). Mean score in the Advanced Raven matrices

was 27.5 (SD = 4.88). Scores for the three groups were

M = 30.93 (SD = 4.75), E = 26.57 (SD = 4.27),

C = 25.27 (SD = 3.94). The between-group mean differ-

ence was significant F2,40 = 6.73, MSE = 18.68,

p = .003, partial g2 = 0.25. Follow-up t tests indicated

higher fluid intelligence in professional mathematicians

compared to the other two groups taken together

(mean = 25.90, SD = 4.08) t41 = 3.59; p = .001. More

conservative post hoc comparisons (with Bonferroni-Holm

correction) revealed significant differences between the

M and the C group (p = .003) as well as the M and the

E group (p = .022). The difference between the E and the

C group was not significant (p = .421). All these results

indicate higher fluid intelligence in professional mathe-

maticians compared to the other groups.

SNARC slopes

As expected, we found a significant SNARC effect at the

whole sample level. Mean slope was -5.06 (SD = 7.20;

ranging from -25.58 to 12.92), and it differed significantly

from 0 (t43 = -4.66, p\ .001; one-sided)3. A total of 35

out of the 44 participants revealed negative SNARC slopes.

In the next step, we compared slopes across groups

using one-factor ANOVA. Groups differed significantly in

the magnitude of the SNARC effect (F2,41 = 3.65,

MSE = 46.19, p = .035, partial g2 = 0.15). To examine

whether the SNARC effect varied as a function of math

expertise, we carried out the nonparametric Jonckheere-

Terpstra (JT) test, which examines whether group medians

increase monotonically. The JT test was chosen because we

had a specific expectation regarding an ordered sequence of

group SNARC slope medians decreasing with math

expertise. We did not use polynomial contrasts (e.g., lin-

ear), because they assume equidistant differences between

groups and we cannot be sure about that, but only about

monotonic ordinal differences in skill and experience. The

JT test revealed a significant decrease in slope with the

increasing math expertise (p = .018). Note that less neg-

ative slopes refer to smaller SNARC/no SNARC. Addi-

tionally, we performed post hoc pairwise comparisons

(with Bonferroni-Holm correction), which indicated that

the M group differed significantly from the C group

(p = .030). The E group did not differ from the M group

(p = .210) or from the C group (p = .300).

In order to investigate whether non-significant differ-

ences between the E and C as well as the M and E groups

were due to lack of statistical power, a Bayesian analysis as

recommended by Masson (2011) was performed (see

Table 1 Reliability estimates of fluid intelligence, RT characteris-

tics, and SNARC measures

Measure Reliability

estimate

Method of estimation

Raven score 0.833 Cronbach alpha

Mean RT 0.996 Split-half, Spearman-

Brown

SD (RT) 0.985 Split-half, Spearman-

Brown

Non-standardized

SNARC slope

0.820 Split-half, Spearman-

Brown

Standardized SNARC

slope

0.742 Split-half, Spearman-

Brown

3 Note that results are virtually the same in all instances if two-sided

tests are applied except from MARC effect in the C group.
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Cipora & Nuerk, 2013, for a similar application as regards

the SNARC effect). This analysis provides information

whether the data support the null hypothesis model (no

between-group difference) or the alternative hypothesis

model (between-group difference). Separate univariate

ANOVAs were conducted in order to compare the E with

the M as well as the C with the E group. Sums of squares

were used to calculate posterior probabilities. In case of

comparing the C with the E group, the analysis shows 0.67

probability in favor of the null hypothesis model (and a

complimentary 0.33 probability in favor of the alternative

hypothesis). The comparison of the E group with the

M group revealed 0.65 probability in favor of the null

hypothesis model (and a complimentary 0.35 probability in

favor of the alternative hypothesis). According to guideli-

nes proposed by Masson (2011), these results can be

interpreted as weak evidence in favor of the null hypothesis

in both cases, providing evidence against the claim that the

null results simply originate from power problems.

Subsequently, we examined the presence of the SNARC

effect in each group. Non-standardized slopes for each

group are presented in Fig. 1. Crucially, there was no

significant SNARC effect in the M group. Mean slope was

-1.66 (SD = 5.93; ranging from -9.35 to 12.92)

t13 = -1.05, p = .157 (one-sided). 9 out of 14 participants

revealed a negative SNARC slope. In contrast, a significant

SNARC effect was found in the E group (t14 = -3.12;

p = .004; one-sided). Mean slope was -4.82 (SD = 6.0;

ranging from -17.07 to 0.57). 13 out of 15 participants

revealed negative slopes. Similarly, there was a significant

SNARC effect in the C group (t14 = -4.01, p\ .001; one-

sided). Mean slope was -8.46 (SD = 8.17; ranging from

-25.57 to 4.27). 13 out of 15 participants revealed nega-

tive slopes.

Subsequently, we tested for variance homogeneity

across groups with the Bartlett test. The analysis revealed

that there was no significant difference in variance between

groups (K2 = 1.86; df = 2; p = .394). Group differences

and null SNARC effects can thus not be attributed to more

heterogeneity in the mathematicians group. Nevertheless,

the exact tests for 2 9 2 tables did not reveal significant

between-group differences in proportions of participants

revealing negative slopes (p’s[ .230).

Correlates of the SNARC effect

In the next step, we aimed at testing whether the size of the

SNARC effect correlated with other measures used in our

study. All correlations are presented in Table 2.

Although numerically larger than zero, the correlation of

the individual SNARC effect slope with mean RT failed to

reach significance. However, as in Cipora and Nuerk

(2013), the SNARC effect correlated with intraindividual
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Fig. 1 dRT and non-standardized SNARC slopes presented for each

group separately. Slopes differ significantly from 0 only for the

C (control) and E (engineers) groups but not for the M (mathemati-

cians) group

Table 2 Correlation between measures of the SNARC effect (non-standardized slopes, standardized slopes, multiple regression results), par-

ticipants’ RT characteristics, and Advanced Raven matrices total score

Measure 1 2 3 4 5 6 7 8

Non-standardized SNARC slope –

Mean RT -0.26

SD (RT) -0.40** 0.82**

Standardized SNARC Slope 0.79** 0.07 -0.02

Multiple regression R2 -0.24 -0.09 -0.06 -0.12

Multiple regression—residual -0.33* 0.64** 0.77** -0.06 -0.33**

Multiple regression—magnitude (SNARC) 1.0** -0.26 -0.40** 0.79** -0.24 -0.33*

Multiple regression—parity (MARC) 0.18 0.10 -0.01 0.07 -0.09 -0.10 0.18

Raven 0.25 -0.36* -0.49** 0.11 -0.04 -0.44** 0.25 0.18

* p\ .05, ** p\ .01 (two-sided)
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variability in RT. It is noteworthy that there was no cor-

relation between the SNARC effect and the Advanced

Raven Matrices score. Finally, for a full overview, corre-

lations for each single group are separately presented in the

‘‘Appendix’’.

Further investigation of between-group differences

in SNARC

Having explored the correlations between the SNARC

effect and several other measures, we aimed at checking

whether between-group differences in SNARC hold, when

controlling for possible covariates. There was a significant

bivariate correlation between SNARC slopes and

intradindvidual variability in response times. Therefore, we

conducted analysis of covariance (ANCOVA) to investi-

gate, whether between-group differences in SNARC slopes

still hold, when we control for this variable (see Tabach-

nick & Fidell, 2007; pp. 196–203 for rationale and rec-

ommendations regarding use of ANCOVA).

The main effect of the group remained when we con-

trolled for intraindividual variability in RT (F2, 40 = 3.51;

MSE = 39.71; p = .040, partial g2 = 0.15). The effect of

the covariate intraindividual variability in RT on the

dependent variable SNARC slope was also significant

(F1,40 = 7.69; p = .008; partial g2 = 0.16). Pairwise

between-group comparisons with Bonferroni-Holm cor-

rection revealed a significant difference between the M and

the C group (p = .036), when controlling for intraindi-

vidual variability in RT.

We also conducted an ANCOVA controlling for the

potential impact of fluid intelligence on the dependent

variable. In that analysis, the main effect of group failed to

reach significance (F2,39 = 2.21; MSE = 47.93; p = .124,

partial g2 = 0.102). The effect of fluid intelligence was not

significant as well (F1,39 = 0.22; p = .639, partial

g2 = 0.006). This result must be treated with great caution,

because it is very likely that in our quasi-experimental

design the differences in fluid intelligence are associated

with group assignment (see Tabachnick & Fidell, 2007;

p. 200). We want to stress that this ANCOVA result is not

conclusive and should normally not be conducted because

assumptions for a meaningful interpretation of the covariate

effect are violated: (1) there is no correlation between

SNARC slopes and fluid intelligence at the whole sample

level; and (2) there is no such correlation in any group. We

will elaborate on this point in the ‘‘Discussion’’ section.

SNARC and MARC effects: calculation using

multiple regression approach

To examine a potential MARC effect (i.e., right-hand

advantage for even numbers and left-hand advantage for

odd numbers) together with the SNARC effect, individual

multiple regressions were run on dRT (see Nuerk et al.,

2005a, b, for the rationale). Odd numbers were coded as 0

and even numbers as 1. Non-standardized slopes were used

for further analyses. In case of the magnitude predictor, the

mean slope was -5.05 (SD = 7.20) and differed signifi-

cantly from 0 (t44 = -4.66, p\ .001; one-sided). Hence-

forth, even when controlling for parity, a significant

SNARC effect was observed. The parity slope

(mean = -22.43, SD = 66.97) also differed significantly

from 0 (t43 = -2.22, p = .016; one-sided) revealing a

significant MARC effect. Subsequently, SNARC and

MARC slopes were examined (tested against 0) within

each group. The results are summarized in Table 3. The

results regarding the SNARC effect are very similar to

those obtained for the one-predictor regression (described

above). There was a significant SNARC effect in the E and

the C group but there was no SNARC in the M group.

Although the overall MARC effect over all groups was

significant, the MARC effect reached significance only in the

C group, probably due to power problems. In the next step,

we compared groups with respect to the size of the SNARC

and MARC effects. In case of the SNARC effect, there was a

significant between-group difference, which is almost

identical to the results of the ANOVA on slopes from the

simple regression. In case of the MARC effect, there was no

significant between-group difference (F2,41 = 0.95, MSE =

4495.06, p = .394, partial g2 = 0.04).

Standardized SNARC slopes

In the last step of the analysis, we examined standard-

ized SNARC slopes (i.e., within-participants Pearson

Table 3 SNARC and MARC

effect estimates based on a

multiple regression analysis

across all three groups taken

together

Group Non-standardized SNARC slope Non-standardized MARC effect

Mean SD Test against 0 Mean SD Test against 0

M -1.66 5.92 t13 = -1.05, p = .157 -4.80 57.97 t13 = -0.31, p = .381

E -4.82 5.99 t14 = -3.12, p = .004 -22.11 57.13 t14 = -1.50, p = .078

C -8.46 8.17 t14 = -4.01, p\ .001 -39.21 82.34 t14 = -1.84, p = .043

Slopes were tested against 0 with one-sample t tests (one-sided, for negative values), results of which are

also presented in the table
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correlation between number magnitude and dRT). Stan-

dardized slopes were Fisher-Z transformed prior to the

analysis, so that they followed better a normal distribution.

At the group level, we found a significant SNARC

effect (t43 = -4.32, p\ .001). The mean was -0.36

(SD = 0.55). Analysis in groups taken separately revealed

an analogous pattern of results as for the analyses on non-

standardized slopes. There was no SNARC in the M group

(t13 = -0.80, p = .438) with a mean slope of -0.15

(SD = 0.68). Contrarily there was a significant SNARC

effect in the E group (t14 = -3.14, p = .008, mean slope

-0.37, SD = 0.46) and the C group (t14 = -4.70,

p\ .001, mean slope -0.54, SD = 0.45). There were no

significant between-group differences in standardized

SNARC slopes (F2,41 = 1.97, MSE = 0.29, p = .153,

partial g2 = 0.09).

Discussion

In the presented paper, we aimed at investigating the

relation between the SNARC effect and mathematical

proficiency including a group of professional mathemati-

cians. We recruited three groups of participants, profes-

sional mathematicians; professionals who use arithmetic in

their everyday work, but who do not conduct research

using mathematical reasoning itself; and controls, who are

not or hardly ever required to use math in their everyday

work.

Most importantly, in contrast to most previous studies,

we found a significant between-group difference with

respect to the SNARC effect, which was mainly driven by

the professional mathematicians, whose SNARC effects

have—to the best of our knowledge—never been studied

before. Professional mathematicians did not reveal a sig-

nificant SNARC effect, while the other two groups did.

Professional mathematicians significantly differed from the

other two control groups, while those two control groups

with more or less arithmetic expertise did not differ from

each other; this replicates earlier results of most studies

before. This difference between mathematicians and con-

trol groups still held when various covariates were con-

trolled for, such as RT characteristics (mean RT as well as

intraindividual variability in RT). Within groups, fluid

intelligence did not correlate with the SNARC, so that

between-group differences in fluid intelligence cannot

explain the SNARC effect, because if fluid intelligence

determines the SNARC effect, it should do so within

groups as well. The correlation at the sample level between

fluid intelligence and SNARC was also not significant. The

ANCOVA results controlling for fluid intelligence brought

inconsistent findings, nevertheless they must be interpreted

with great caution because ANCOVA assumptions were

strongly violated (e.g., the covariate was not independent

from the factor underlying group assignment) and the

sample size was relatively small. In similar cases, several

authors refrained from ANCOVA usage, when there is no

zero-order correlation between a potential covariate and the

dependent variable (e.g. Göbel, Moeller, Pixner, Kauf-

mann, & Nuerk, 2013).

The results also did not change substantially, when

alternative methods of computing SNARC effects were

used. We found the same pattern of results when magnitude

slopes from multiple regression (i.e., controlling for the

MARC effect) were analyzed. When we analyzed stan-

dardized SNARC slopes, the general pattern of results was

similar: namely when compared to 0, professional mathe-

maticians did not reveal a significant SNARC effect

(contrary to the E and C groups). A notable difference

between the analyses using non-standardized vs standard-

ized slopes is that in the latter the between-group difference

failed to reach significance. Standardized SNARC slopes

consider the intraindividual variability within a subject,

especially, how much dRT points are dispersed around the

regression slope. So in principle the non-standardized

regression slope could be almost 0; however, when all data

points would be located almost exactly on the regression

slope, the standardized slope would be very high. In

essence, it is an index for how good the prediction of

space-number associations by number magnitude is.

However, it does not tell us much about how pronounced

this association is. This is coded by the non-standardized

slope, which reveals how many milliseconds faster a con-

gruent spatial response is. In our data, the most likely

explanation for the slight differences are high intraindi-

vidual variances in some participants. If those participants

have high non-standardized SNARC slopes (e.g., in the

C group), their non-standardized slopes might differ con-

siderably from other groups but their predictions indexed

by the standardized slopes might only be slightly different

because they are corrected for their higher intraindividual

variability.

Apart from group differences, the SNARC effect was

related to response time characteristics (mean RT and

intraindividual variability in RT). Nevertheless, this cor-

relation was present only when non-standardized SNARC

slopes were analyzed. The relation between SNARC and

RT characteristics may therefore just be an artifact origi-

nating from a difference measure (i.e., dRT being the result

of subtracting two RT) used to calculate SNARC (see

Tzelgov, Zohar-Shai, & Nuerk, 2013, for a methodological

critique of using non-standardized SNARC slopes). In the

model proposed by Gevers et al. (2006), the relationship

between mean RT and SNARC is explained in terms of the

cognitive mechanisms underlying the SNARC effect. As

we have shown (and as already pointed out in Pinhas et al.,
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2012; Tzelgov et al., 2013), this relationship may largely

originate from the way slopes are calculated, not from the

nature of the SNARC effect itself. Therefore, it seems that

the relationship between SNARC and mean RT (as well as

variability in RT) may not be a consequence of the cog-

nitive processes underlying the SNARC effect (e.g., Gevers

et al., 2006), but depend on the measure employed. As

outlined above, fluid intelligence (Raven Matrices) scores

differed between the M group and the other two control

groups. Nevertheless, fluid intelligence did not correlate

with SNARC slopes nor standardized SNARC slopes; so

individual and group differences in SNARC are not driven

by fluid intelligence. However, fluid intelligence correlated

moderately with RT characteristics. This observation is in

line with the results showing a correlation between intel-

ligence and chronometric tasks in general (Deary, Der, &

Ford, 2001).

For the linguistic MARC effect, the different groups did

not differ from one another. The MARC effect did not

correlate with any other measure. Thus, diverging effects

for professional mathematicians were specific to the

SNARC effect per se and could not be generalized to

another effect in the study.

In sum, professional mathematicians differed in the

SNARC effect from the control groups in virtually all

analyses. This group difference could not be explained by

different RT characteristics or fluid intelligence. It was

specific to the SNARC effect, but did not generalize to the

MARC effect. Between the two non-professional mathe-

maticians groups, no significant differences in the SNARC

effect were observed, despite strong differences in daily

arithmetic experience. This replicates earlier results (e.g.,

Cipora & Nuerk, 2013). SNARC effects do not seem to

vary (much) with arithmetic proficiency in the normal

range. Only when relatively large (n[ 35), gender-bal-

anced samples are examined, one may expect to have

significant statistical test results for relatively small effects

(Hoffmann et al., 2014b). The probability of finding a

relationship between math proficiency and the SNARC

effect increases when extreme groups are recruited (pro-

fessional mathematicians vs people with math difficulties,

as in Hoffmann et al., 2014b).

Reasons for the small or non-significant SNARC vari-

ations with arithmetic proficiency have been discussed in

detail elsewhere (e.g., Cipora & Nuerk, 2013, see also

Patro et al., 2014; for different spatial-numerical associa-

tions, which may be differently related to arithmetic pro-

ficiency in children). Therefore, we only focus on why the

SNARC effect in professional mathematicians is signifi-

cantly weaker than in other groups and not significantly

different from zero. Note, however, that in our study 9 out

of 14 (64 %) mathematicians revealed negative SNARC

slopes. The slopes were not significantly different from

zero. Given the relatively small sample size, it is still

possible that this non-significant result is due to power

problems.

Reasons for lack of/significantly reduced SNARC

in professional mathematicians

There may be several reasons for a null or significantly

reduced SNARC effect in mathematicians. Here we focus

on possible differences in (1) domain-general cognitive

abilities, (2) the nature of number representations, and (3)

the embodied cognition perspective.

Inhibition and/or cognitive control capabilities Tasks

measuring the SNARC effect are at some point influenced

by inhibition processes. In incongruent trials (a smaller

magnitude number has to be responded to with the right

hand and a bigger magnitude number with the left hand),

the natural spatial mapping (according to some views

because of the number location on the Mental Number

Line) has to be overcome by task instructions (Gevers

et al., 2006). Recent data show that the efficiency of

inhibition correlates with the SNARC effect (Hoffmann

et al., 2014a). It is possible that mathematicians (already

characterized by higher fluid intelligence) may also have

better inhibition and cognitive control capacities, because

not jumping to (i.e., inhibiting) premature conclusions

without proof is what their daily work is about (see

Embretson, 1995; for recent evidence on the relationship

between cognitive control, working memory, and fluid

intelligence see Chuderski, Taraday, Nęcka & Smoleń,

2012). According to this line of explanation, a directional

spatial-numerical mapping as indexed by the SNARC

effect may just be masked by effective cognitive control of

interference, but not be absent in mathematicians per se.

Such a cognitive control account is supported by various

related findings. First, cognitive control plays a major role

in other number processing effects (Macizo & Herrera,

2011, 2013; Huber, Moeller, Nuerk, & Willmes, 2013;

Huber, Klein, Willmes, Nuerk, & Moeller, 2014a; Huber,

Mann, Nuerk, & Moeller, 2014c; Huber, Moeller, & Nuerk,

2014d; see also Nuerk, Moeller, Klein, Willmes, & Fischer,

2011; Nuerk, Moeller, & Willmes, 2015, for overviews). It

would not be surprising if this extends to other numerical

effects such as the SNARC effect as well. Second, selective

attention has been shown to be a prerequisite for the

SNARC effect (Nuerk et al., 2005b): Even though the

magnitude of distractors was processed in an Eriksen task,

there was no SNARC effect for those distractors, only for

the targets being attended. Third, inhibition is related to

other numerical effects (Gilmore et al., 2013) and the

SNARC effect as well (Hoffmann et al., 2014a).

More abstract processing in professional mathemati-

cians This account does not refer to domain-general
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characteristics as above, but is rather related to the more

domain-specific characteristics of mathematicians. In other

words, their numerical representations might differ from

those in non-mathematicians in that they may just be more

abstract.

It has been argued that the SNARC effect is strongly

influenced by cultural and embodied experience, such as

reading direction (Shaki et al., 2009), finger counting

(Fischer, 2008; for a thorough discussion on factors influ-

encing spatial-numerical associations see also: Fischer &

Brugger, 2011; Göbel, Shaki, & Fischer, 2011). Possibly

mathematicians—because of their daily routine with highly

abstract concepts—have just overcome the cultural and

embodied experiences which drive our default spatial

directionality of magnitude. This could be tested in the

future by examining other instances and paradigms of

spatial-numerical association: Professional mathematicians

with neglect may neglect smaller numbers, commonly on

the left side of the number line, to a lesser extent.

More flexible spatial-numerical representations Another

related, albeit slightly different, account is that rather than

having no spatial association with numbers (because they

are abstract), mathematicians possess much more flexible

representations. In the literature, it was usually claimed that

the spatial code is automatically activated when numbers

are perceived (Fias, Lauwereyns, & Lammertyn, 2001).

Nevertheless, it was demonstrated that under particular

conditions number magnitude (in case of distracter num-

bers) can be processed semantically, but the spatial code is

not activated (Nuerk et al., 2005a, see above). So, mathe-

maticians may have strong spatial-numerical associations,

however, they may map numbers to space in a highly

flexible way. Therefore, default left-to-right mappings like

in the SNARC effect may become weaker or disappear.

This may be particularly the case in the parity judgment

task, where relating numerical magnitude to space is by no

means mandatory to accomplish the parity decision.

Mathematicians possessing more flexible representations

may simply not activate the spatial aspects that are irrele-

vant for the task demands. It is possible, however, that in a

magnitude comparison task, when spatial coding of mag-

nitude may be helpful, mathematicians also activate more

spatial-numerical associations. Here we can only conclude

that mathematicians do not activate them automatically,

when magnitude is task irrelevant. Evidence for such an

account comes from a recent unpublished study by Cohen

Kadosh and colleagues.4 They observed that mathemati-

cians are better in a number line estimation task (cf. Siegler

& Opfer, 2003) for positive numbers. So, mathematicians

may well be able to map numbers to space, but they might

do so less automatically in a default direction.

Stable but non-linear/non-horizontal numerical repre-

sentations It is also possible that a considerable proportion

of mathematicians possess relatively stable but non-linear

monotone or even non-monotone or non-horizontal spatial-

numerical representations (bent lines, circular or irregular

forms, vertical or radial associations). These representa-

tions may resemble those reported for persons with num-

ber-form synesthesia. Synesthesia may influence

elementary numerical processing (Cohen Kadosh & Henik,

2007), including the SNARC effect (Sagiv, Simner, Col-

lins, Butterworth, & Ward, 2006). This may also be the

case in mathematicians.

Embodied cognition explanation:5 It is also possible that

high math competence or arithmetic skills (characteristic of

both professionals using math in their everyday work—the

E group and mathematicians) leads to a reduced SNARC

when compared to controls. If this is correct, a smaller

SNARC effect should be found in the engineer group

compared to the control group in the present study. This is

in line with results described by Hoffmann et al. (2014a),

where a group consisting of mathematics and engineering

students revealed a significantly smaller SNARC effect

than controls.

However, an opposite effect can be expected from an

embodied cognition perspective. Possibly, the professional

work requirements of engineers relate more strongly to

spatial properties of the environments as well as a higher

propensity of motion in space. Such kinds of activity may

even enhance the spatial mapping of numerical represen-

tations. If this is correct, a stronger SNARC effect should

be found in the engineer group compared to the control

group in the present study.

If both mechanisms are operative for engineers and

influence the SNARC effect in opposite directions, they

may cancel each other out. This may lead to a null dif-

ference between engineers and controls. If the mechanisms

do not fully cancel each other out, some differences

between engineers and controls may be observed.

Nevertheless, mathematicians differ from controls. The

reason may be that they have less embodied experiences of

space-number associations, because their daily work relates

to abstract concepts. Therefore, embodiment does not lead

to enhanced space-number associations in the M group. As

a consequence, only their higher math skills may influence

the SNARC effect and may lead to a reduced effect, as

compared to controls.

4 We are grateful to Roi Cohen Kadosh, who shared information

about this yet unpublished study with us. 5 We would like to thank Martin Fischer for this suggestion.
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Limitations of the presented study6

In the present study, we did not include objective measures

of calculation skills or math expertise. Therefore, we can-

not be sure whether the M group did not differ from the

E group with respect to calculation skills. The pattern of

possible differences in arithmetic performance between the

E and the M group may be qualitatively different: engineers

may practice calculation skills more, whereas mathemati-

cians mostly focus on mental manipulations of abstract

material. Several cases of double dissociations between

mental calculation efficiency and math expertise have also

been reported (for an overview, see Pesenti, 2005). So,

while this study established that there exists a difference

between professional engineers and professional mathe-

maticians, it does not yet allow strong conclusions about

the underlying nature of this difference.

Administration of tasks aimed at measuring flexibility

and abstractness of representations would help answering

such questions regarding the nature of representations in

professional mathematicians. It would also be interesting to

include measures of cognitive inhibition in order to directly

test whether the M group outperforms other groups in this

respect and for measures of complex problem solving skills

(see Sonnleitner et al., 2013). These latter abilities seem to

be particularly important for professional mathematicians

and may also moderate spatial-numerical associations.

One must also keep in mind that the sample was not

gender matched, precluding to test for an impact of gender

on the SNARC effect. Males were reported to reveal a

stronger SNARC effect (Bull et al., 2013). However, since

the proportion of male and female participants did not

differ between groups, between-group SNARC differences

cannot be attributed to gender differences. Nevertheless,

with the current design, it was impossible to trace the

interaction effects of gender and math skills on spatial-

numerical associations. Testing this research question

would also require larger sample sizes, since gender dif-

ferences tend to be rather small. All these issues need to be

addressed in future studies.

Possible differences between the E and the C group also

deserve further investigation. Because the Bayesian anal-

yses revealed only weak evidence in favor of a null effect,

there is some probability that a between-group difference

may still exist, especially since it was shown by Bull et al.

(2013) that between-group differences in the SNARC

effect are relatively hard to detect (Cipora & Wood, 2012

for simulation data).

Conclusions

The SNARC effect disappears or is significantly reduced in

professional mathematicians and differs from control

groups, even when these controls do a lot of arithmetic in

their daily professional lives, such as engineers. A number

of domain-general accounts, like higher cognitive control

and inhibition, or domain-specific accounts, like more

abstract number processing or more flexible spatial asso-

ciations with number, may be responsible for these results.

We suggest that further exploring the reasons of why

extreme groups like mathematicians do not show a SNARC

effect and differ from normal controls can give us more

insight about the mechanisms responsible for the SNARC

effect per se. More generally, a better understanding of

how high domain expertise and long training in a particular

domain influences cognitive processes may also be infor-

mative for other cognitive domains.
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Appendix: Correlations between measures
presented for each group separately
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