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Human hypofertility and infertility are two worldwide conditions experiencing nowadays an
alarming increase due to a complex ensemble of events. The immune system has been
suggested as one of the responsible for some of the etiopathogenic mechanisms involved
in these conditions. To shed some light into the strong correlation between the
reproductive and immune system, as can be inferred by the several and valuable
manuscripts published to date, here we built a network using a useful bioinformatic
tool (DisGeNET), in which the key genes involved in the sperm-oviduct interaction were
linked. This constitutes an important event related with Human fertility since this interaction,
and specially the spermatozoa, represents a not-self entity immunotolerated by the female.
As a result, we discovered that some proteins involved in the sperm-oviduct interaction are
implicated in several immune system diseases while, at the same time, some immune
system diseases could interfere by using different pathways with the reproduction
process. The data presented here could be of great importance to understand the
involvement of the immune system in fertility reduction in Humans, setting the basis for
potential immune therapeutic tools in the near future.

Keywords: diseasome, immune system, oviductal environment, human, biological network, immunological disease,
rheumatoid arthritis, asthma

1 INTRODUCTION

Fertilization is a cell-cell recognition process that occurs naturally in vivo within the oviductal
microenvironment of the female body. The successful interaction between the spermatozoa (male
gametes) and the oocyte (female gamete) is supported by the presence of oviduct epithelial cells
(OECs) and the oviductal fluid, that participates in this complex dialogue either by directly
interacting with the gametes (OECs) and secreting (OECs) or carrying (oviductal fluid) different
molecules necessary to achieve a successful fertilization.

The process initiates with the arrival of the ejaculated spermatozoa to the cervix, where only the
healthiest spermatozoa are selected to advance towards the uterus (or are directly deposed within the
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uterus, depending on the species), cross the utero-tubal junction
and reach the oviduct (reviewed in Suarez, 2016; Gadella, 2017; Li
and Winuthayanon, 2017). Here, sperm cells are able to bind to
the oviductal epithelium for an indefinite period of time, varying
from hours to days (species-specific) and forming the so-called
“functional sperm reservoir,” before being released to continue
their way towards the oocyte (Suarez and Pacey, 2006; Coy et al.,
2012). As a result of this close interaction, it is originated a cross-
talk between the OECs and the sperm cells, that is important to
ensure the success of early reproductive events (Almiñana, 2015).
With regard to the oviductal fluid, it is mainly composed of amino
acids, energy metabolites, inorganic salts, glycosaminoglycans
and numerous proteins (Ballester et al., 2014; Coy and
Yanagimachi, 2015; Canha-Gouveia et al., 2019), that are
either passively or actively transported over the epithelial
barrier from the circulating blood or the interstitial tissue, or
de novo secreted by the OECs (Saint-Dizier et al., 2020) and are
able to sustain and drive the biochemical machinery of
spermatozoa and embryos during their journey.

Thus, on the one hand, the oviduct and its secretions influence
the physiology of the gametes (Avilés et al., 2010), while on the
other one hand the reproductive cells are able to modulate the
oviductal environment by activating a cell-type-specific signalling
pathway leading directly to specific alterations in the tubal fluid
composition (Georgiou et al., 2007).

Overall, the study of the interaction between the female
counterpart with male gametes (firstly) and embryos
(secondly) poses a fascinating and challenging questions
involving all the hemostatic mechanisms of the body. If the
role of neuro-endocrine system is evident, now new emerging
evidences are highlighting the involvement of immune system.
For instance, the spermatozoa are clearly not-self and the
embryos are semi-allogenic, but instead to be attacked by the
maternal immune system they are tolerated for days or even
months (Zandieh et al., 2015), thus indicating the existence of a
gamete recognition system (Georgiou et al., 2007), as will be
explained in the discussion section. Moreover, the immune
system is involved in the etiopathogenesis of reproductive
diseases, as it happens in case of immune/immunological
infertility. This condition is diagnosed when spontaneously
produced antibodies bind to the antigens occurring on the
male gametes, with the production of anti-sperm antibodies
(ASA) (Bohring and Krause, 2003; Brazdova et al., 2016).

Ultimately, the involvement of immune system in determining
the success of fertility, or its partial or total failure (hypo-fertility
or infertility) is still far to be completely deciphered, and the
molecules involved in linking reproductive function with
immune response are still under investigation.

For this reason, here we carried out an innovative study to
explore the possible involvement of genes encoding for proteins
that participate to the functional dialogue existing between male
gametes and female structures in immune pathologies. In
particular, we used an approach based on the application of
network theory to the study of biological complexity. By
definition a network is a set of nodes (in our care the genes or
the diseases) linked by edges (relationship between genes and
diseases). The statistical study of network properties will lead to

infer biologically relevant information, otherwise hidden by the
complexity of the system.

To that, the work was carried as follow: I) retrieving in
literature of the proteins involved in the sperm-oviduct
interaction; II) creation of the list with the corresponding
genes for those proteins; III) linking of the genes to the
immune system disease in which it is involved, thus obtaining
a bipartite network (a gene-disease network); IV) analysis of the
network to infer biologically relevant information; and V) deep
analysis of the relevance of this association in animal models of
every human immune diseases, which constitutes one of the most
valuable experimental approaches used in medical sciences.

The final aim was to suggest new players in the complex
relationship between the reproductive function and immune
pathology, to shed some light on how fertility could be
compromised in immune system dysregulation.

2 MATERIALS AND METHODS

2.1 Data Collection
In order to recreate the microenvironment in which fertilization
occurs, we collected the scientific literature published between
2005 and December 2020 in peer-reviewed international papers
included in Scopus (https://www.scopus.com; accessed on 20/09/
2021). In parallel, and as a quality control, two qualified
researchers used the same key-words (“protein” AND
“oviductal secretion” or “oviduct”), to carry out an
independent search on the published manuscripts including
information about the proteins found in the human oviduct.
Then, the databases were compared, and a third qualified
researcher verified the correctness of the record inserted,
resolving eventual conflicts.

Data from each independent search was extracted to Excel
spreadsheets (Microsoft Corporation, Albuquerque, USA), filling
in and the following fields:

• Species: human;
• Protein: protein found in oviductal environment;
• Gene: protein-related gene;
• Biological function: physiological and/or pathological role of
the protein;

• Role in fertilization: physiological and/or pathological role
of the protein related to fertility;

• OF/OEC/oviductal tissue: protein identified within the
oviductal fluid, on/in the oviductal epithelial cells or
oviductal tissue;

• References: article reporting the above-mentioned data;
• Phenotype ko mice: existence of KO mouse and its relative
phenotype;

• Notes: any further information useful for the study.

These data can be found in Supplementary Material S1.

2.2 Diseasome Creation and Visualization
Bioinformatics analysis was performed using Reactome,
DisGeNET Cytoscape App, and Cytoscape 3.7.2.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7951232

Taraschi et al. Immune System and Reproduction

https://www.scopus.com/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


First, we uploaded the gene list to Reactome (http://www.
reactome.org/; accessed on 11/10/2021), a free, open-source,
curated and peer-reviewed pathway database useful to visualize
and analyse the biochemical pathways in which the genes are
involved.

DisGeNET is a Cytoscape plugin designed to analyze human
gene–disease association (GDA) networks, the diseasome. GDA
is represented as a bipartite graph in which a set of nodes consists
of diseases and the other one of disease-associated genes (Bauer-
Mehren et al., 2010; Pavlopoulos et al., 2018). A disease and a gene
are connected by a link only if the gene is implicated in the
particular disease (Pavlopoulos et al., 2018). DisGeNET integrates
information on human diseases and their genes from expert
curated repositories, GWAS catalogues, animal models and the
scientific literature discovered by text-mining approaches (Pinero
et al., 20152015; Piñero et al., 2017; Piñero et al., 2020). Data are
organized according to the type of source databases:

• CURATED: gene-disease association provided by expert
curated resources, such as UniProt, ClinGen, Orphanet
and CTD (human data), among others (Piñero et al., 2020);

• ANIMAL MODELS: gene-disease association provided by
resources containing information about animal models
(currently rat and mouse) of disease (RGD, MGD, and
CTD) (Piñero et al., 2020);

• INFERRED: gene-disease association from the Human
Phenotype Ontology and from VDAs reported by
Clinvar, the GWAS catalogue and GWAS db (Piñero
et al., 2020);

• ALL: gene-disease association from the previous sources
and from LHGDN and BeFree (Piñero et al., 2020).

In addition, DisGeNET is able to classify the diseases
according to the MeSH hierarchy and the genes according to
the PANTHER Protein Class Ontology and Reactome top-level
pathways (Pinero et al., 20152015). The gene-diseases
associations are classified according to the DisGeNET
association type ontology, that describes the different types of
association between a gene and a disease, integrating information
from the different databases (Bauer-Mehren et al., 2011). The
GDA ontology is available at https://www.disgenet.org/dbinfo
(accessed on 20/05/2021).

Using the DiGeNET Cytoscape App, we built two different
networks for each gene in “Gene Disease Networks” tab, selecting
“curated” or “animal models” as sources and “Immune System
Diseases” as disease class. After merging the obtained networks
on Cytoscape, we built two final diseasomes: the first curated
(CURDi) and the second referred to animal models (AMDi).
Both were then analysed using the plugin Network Analyzer.

2.3 Network Creation, Visualization, and
Analysis
As previously stablished, the diseasome network was realized and
analyzed using Cytoscape 3.7.2 and the specific plug-in Network
Analyzer.

3 RESULTS AND DISCUSSION

3.1 Proteins Involved in the Sperm-Oviduct
Interaction
The sperm-oviduct interaction and fertilization process can be
considered as complex systems constituted by networks of
heterogeneous elements interacting among them in a non-
linearly way, giving rise to an emergent behavior. Thus, their
properties cannot be explored or predicted simply by analysing
their individual components, rather by putting their individual
pieces togheter and building a network model. To this aim, a
total of 145 proteins were identified through the literature
search as proteins expressed within the oviduct and involved
in the sperm-oviduct interaction in humans (see
Supplementary Material S1, second sheet for the list of
proteins and their corresponding genes, LOPaG). Here, we
have used Reactome to investigate the pathways in which the
identified proteins are involved. The analysis showed the 25
most relevant immunology pathways (see Figure 1;
Supplementary Material S2), stressing the strong correlation
between reproduction and immune system.

Then, by using the DisGeNET Cytoscape App and the genes
list, we realized a bipartite network, i.e., a graph constituted by
two families of nodes (genes and immune diseases) connected by
edges and that represent the gene-disease association.

Depending on the data source (Curated or Animal Models
Archives) we obtained two different diseasome networks: curated
diseasome network (CURDi, see Figure 2) and animal model
diseasome network (AMDi, see Figure 3).

3.2 CURDi Network and the Most Linked
Genes
In CURDi network 54 of the 145 genes present in LOPaG were
correlated with 124 immune system diseases.

As showed in Figure 4, the most linked genes in CURDi were
HLA-B, SERPING1 and IFNG (64, 52, and 42 links each one,
respectively) (see Supplementary Material S3, sheet 1 for the
complete list). These genes are well-studied for their key role in
the immune response since their alterationmay be responsible for
several immune system diseases. Interestingly, there is growing
evidence on the roles played by proteins encoded by the HLA-B,
SERPING1 and IFNG genes in several steps of the reproduction
process.

3.2.1 HLA-B Gene
Among the 54 genes correlated with immune system diseases
within the CURDi network, HLA-B stands out as the most linked
one. This gene encodes for the human leukocyte antigen type B
(HLA-B), one of the more than 200 genes belonging to the major
histocompatibility complex (MHC) in humans. Located on
chromosome 6p21.3, it comprises specific HLA class I (HLA-
A and -B) and class II (HLA-DRB1, -DQA1, -DQB1, -DPA1 and
-DPB1) genes that encode for cell-surface glycoproteins, whose
main action is the induction and regulation of immune response
(Leone et al., 2013; Wieczorek et al., 2017; Jongsma et al., 2019).
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The genes of the MHC are the most polymorphic of the
human genome with a total of 13,023 HLA alleles (HLA class I:
9749; HLA class II: 3274) (Robinson et al., 2015). Interestingly,
distinct HLA alleles have been associated with several human
pathological conditions (Tersigni et al., 2020), while HLA

proteins also own an important role in non-pathological
conditions, such as lifespan and social behavior (Mosaad, 2015).

Regarding more Specifically, different alleles of the HLA-B
gene have been associated with autoimmune diseases (such as
HLA-B27 and its relationship with psoriatic arthritis and

FIGURE 1 | Voronoi pathway visualization (Reacfoam) for the identified proteins in human oviduct. The color code denotes over-representation of that pathway in
our input dataset. Light grey signifies pathways which are not significantly over-represented.

FIGURE 2 | Curated diseasome network (CURDi). CURDi forms the two node sets of bipartite networks with two types of nodes: diseases (pink circle) and gene
(blue circle). Disease node and gene node are connected if the gene is implicated in the disorder.
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ankylosing spondylitis), inflammatory diseases (such as HLA-
B*35 and systemic sclerosis, and HLA-B*52 and Takayasu
arteritis), viral infections (such as HLA-B*35 phenotype and
progression of Acquired Immune Deficiency Syndrome-AIDS)
and tumor risks (such as HLA-B*52:01 and cervical cancer). In
addition, it has been demonstrated an association of HLA-B
alleles and severe drug hypersensitivity syndromes (such as HLA-
B*57:01 and hypersensitivity to abacavir, and HLA-B*15:02 and
use of carbamazepine) (Profaizer and Eckels, 2012).

In the reproductive field, the HLA antigens have been
demonstrated to be crucial for the embryo-maternal tolerance
and the achievement of a successful pregnancy (Chattopadhyay
et al., 2014; Tersigni et al., 2020). For instance, some molecules as
the high polymorphic HLA-C participate in the innate immune
system by serving as a ligand for the inhibitory killer cell
immunoglobulin-like receptors (KIRs) present on natural killer
(NK) cells (Leone et al., 2013; Wilczyńska et al., 2020). HLA-C
(along with the HLA-E, G and F ones) from both maternal and
paternal origin is highly expressed by the extravillous
trophoblasts invading the uterine tissues. While the paternal
HLA-C protein represents a main target for maternal NK and
T cells, an increased expression of foreign HLA-C (as in the case
of oocyte donation) can be correlated with an incorrect
placentation and further linked pathologies, thus requiring a
tight regulation in the dual function of the protein (Papúchová
et al., 2019). Despite the absence of evidence regarding the direct
involvement between HLA-B and the immune response in the
embryo, it might be possible to hypothesize that the close link
between HLA-B and the encoding area of HLA-C could exert an
indirect effect in the interaction between the NK cells from the
uterus and the trophoblast HLA-C (Nielsen et al., 2017).

In addition, discordant results have been reported so far on the
role of HLA polymorphisms on the susceptibility to pre-
eclampsia (PE) (Emmery et al., 2016). This complex disease,
exclusive to human pregnancy, shows clinical features as a new

onset of hypertension and proteinuria after 20 weeks of gestation
and is characterized by a systemic disproportionated
inflammatory response, representing the main cause of
maternal and perinatal morbidity and mortality with a
prevalence of 3–8% in the total number of pregnancies
worldwide and an increasing incidence. The four main
potential causes underlying the pathophysiology of pre-
eclampsia include: an immunological maladaptive tolerance
between maternal, paternal, and fetal tissues; placental
implantation with abnormal trophoblastic invasion; oxidative
stress causing endothelial cell dysfunction; and genetic and
epigenetic predisposing alterations (Agius et al., 2018).
Regarding the immunological maladaption occurring between
mothers and fetuses, few studies have focused on the role of HLA
alleles in inducing pre-eclampsia. Wiktor and collaborators
reported a significant increase of HLA-B13 allele frequency in
patients with pre-eclampsia and of HLA-B22 allele in their male
partners (Wiktor and Kozioł, 1998). A subsequent study of Zhang
Z et al. in 119 Chinese pre-eclamptic patients showed a higher
frequency of some HLA alleles shared by mothers and fetuses
(HLA-A11, HLA-B13, HLA-B15, HLA-B22), and a lower
frequency of a different protective allele (HLA-B14) (Zhang
et al., 2009). On the contrary, a study carried out in 201
Danish couples of mothers and children reported no specific
association with HLA-A, -B, and -DR alleles, denying the role of
HLA antigens as risk factors for pre-eclampsia (Biggar et al.,
2010). An association of HLA-G polymorphic alleles with pre-
eclampsia has also been reported in several studies (Moreau et al.,
2008; Tan et al., 2008; Persson et al., 2017).

Recently, a more comprehensive report of genome-wide
association (GWAS), transcriptomics, proteomics and
metabolomics studies identified inhibin as a potential
preeclamptic biomarker (Benny et al., 2020).

Despite few studies have focused on the role of HLA alleles in
inducing pre-eclampsia, further functional studies are necessary

FIGURE 3 | Animal model diseasome network (AMDi). AMDi form the two node sets of bipartite networks with two types of nodes: diseases (pink circle) and gene
(blue circle). Disease node and gene node are connected if the gene is implicated in the disorder.
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to clarify an effective role of the classical HLA genes in its
etiopathogenesis.

3.2.2 SERPING1 Gene
The second most linked gene, SERPING1, encodes for the
plasma protease serine inhibitor (C1-INH), also known as
SERPING1 or C1-inhibitor (Madsen et al., 2014). C1-INH
regulates the activation of the classical and lectin
complement pathways, coagulation and fibrinolysis cascades
(López-Lera et al., 2014). Mutations in the SERPING1 gene are
responsible for the largest cases of hereditary angioedema
(HAE) (OMIM#106100), a rare autosomal dominant
disorder that causes recurrent attacks of cutaneous
angioedema, severe abdominal pain, and airway compromise
(Santacroce et al., 2021). The disease course during pregnancy

is unpredictable, with one study showing that seven Australian
patients with HAE had reduced or absent attacks in the last two
trimesters of pregnancy, while in the post-partum period they
suffered from increased frequency and more severe attacks
(Chinniah and Katelaris, 2009). However, fertility seems not to
be impaired by HAE itself or by HAE medications (Yakaboski
et al., 2020).

A network study by Sabetian and coll. (2014) built a sperm and
oocyte protein interaction network and revealed new protein
interactions. For example, the authors indicated that SERPINE1,
also known as PAI-1 (plasminogen activator inhibitor), is located
on the surface, in the tail and in the acrosome of mature
spermatozoa, participating in the sperm-egg interaction by
interacting with C1-INH of the oocyte (Sabetian et al., 2014).
Thus, our results suggest that new studies could be useful to better

FIGURE 4 | Most linked genes in CURDi network. The histograms show the most linked genes to immune system diseases in CURDi: HLA-B, SERPING1 and
IFNG.
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clarify the interactions among the SERPING1 gene, immune
diseases and fertility.

3.2.3 INFG Gene
The IFNG gene codifies for an extracellular proinflammatory
cytokine (interferon γ, IFN-γ) that constitutes the main effector
of cell-mediated immunity. Its main function is to recognize and
eliminate pathogens by enhancing the antigen recognition
through the antigen presenting cells and T cells, and is
secreted by CD4+, NK and NKT cells. It is able to intervene as
the early host defense and autocrine regulation but also during
the adaptative immune response (reviewed in (Schroder et al.,
2004; Bhat et al., 2018; Kak et al., 2018)).

In reproduction, IFN-γ shows an important role on embryo
implantation and pregnancy progression (Robertson et al., 2018).
For instance, increased levels of IFN-γ have been associated with
a reduced fertility (Carrasquel et al., 2014), as evidenced by the
results of Carrasquel and coll. (2014). In that in vitro study, high
concentrations of IFN-γ affected the intracellular calcium
concentration, altering the sperm membrane permeability and
thus impairing the sperm fertilizing ability (Carrasquel et al.,
2014). Moreover, it has been demonstrated that an excess of the
protein can also promote the generation of cytotoxic or CD8+

cells during the embryo implantation that later drives to fetal loss
(Robertson et al., 2018), thus supporting its fundamental
involvement as a regulator of the maternal-fetal immune
relationship.

Being secreted in the uterus during early pregnancy, IFN-γ
plays a critical role in gestation, including remodeling of
endometrial vasculature, angiogenesis at implantation sites,
and maintenance of the decidual (maternal) component of the
placenta. Alteration of INF-γ levels in the plasma of pregnant
women may contribute to severe gestational pathologies, such as
autoimmune disease, preterm labor, and preeclampsia (Sargent
et al., 2006; Murphy et al., 2009; Yang et al., 2014).

One plausible mechanism could be the inability of the mother
to switch from T helper cell type 1 (Th1) to Th2 cytokine profiles
at the fetal-maternal interface, due to an altered expression of
INF-γ and its receptors (IFN-γ R1 and IFN-γ R2) (Sargent et al.,
2006).

3.2.4 Other Genes
In the list of most connected genes, CSF2 showed 38 links. This
gene encodes for the granulocyte-macrophage colony-
stimulating factor (GM-CSF), responsible for the growth and
differentiation of hematopoietic precursor cells in granulocytes,
macrophages, eosinophils and erythrocytes, among others.
Interestingly, an important role has also been given to this
protein during the fertilization process. Specifically, GM-CSF
was found to mediate the maternal effects on embryonic
development during preimplantation, probably by inducing
the expression of IFN-γ (Loureiro et al., 2009). The presence
of GM-CSF receptors has been also described in the midpiece and
principal segment of the tail of mature spermatozoa in human
and bovine species, while it was also demonstrated that GM-CSF
was able to improve sperm motility when added to bovine sperm
samples (Vilanova et al., 2003). In Csf2 null mutant mice, a

deficiency in GM-CSF protein levels resulted in altered
differentiation and maturation of junctional-zone trophoblast
lineages, glycogen cells, and giant cells, thus suggesting the
role of the Csf2 gene as a regulator of trophoblast
differentiation and placental development (Sferruzzi-Perri
et al., 2009).

Among the other most connected genes in the CURDi
network stand out several genes codifying for cytokines, such
as the tumor necrosis factor alpha (TNF-α), interleukins 4, 6 and
10 (IL-4, IL-6 and IL-10, respectively), and granulocyte colony-
stimulating factor (G-CSF). TNF-α is a cytokine codified by the
TNF gene and with a wide variety of functions. It is naturally
produced by activated macrophages and monocytes, and its
increased levels have been associated with infertility in
humans (Eggert-Kruse et al., 2007; Yildizfer et al., 2015; Pinto-
Bravo et al., 2017). Although few studies evaluated the role of
TNF-α in the oviduct, evidence support that TNF-α may
modulate the oviduct contraction necessary for transporting
the gametes and embryo into the site of fertilization and the
uterus, respectively (Wijayagunawardane et al., 2003; Parada-
Bustamante et al., 2016). In addition, increased levels of TNF-α
was detected in the tubal fluid of patients with hydrosalpinx and
salpingitis due to chlamydial or gonococcal infection (Nasu et al.,
2007). In these pathological conditions, TNF-α may induce the
vascular endothelial growth factor (VEGF) production, which
may further enhance the oviductal secretion by regulating
vascular permeability (Nasu et al., 2007).

Interleukin-4 and -10 are pleiotropic anti-inflammatory
cytokines that function mainly by suppressing the pro-
inflammatory milieu (Chatterjee et al., 2014). For this reason,
they play crucial roles in the success of pregnancy: progesterone
induces the IL-4 and IL-10 production, which acts to inhibit Th1
responses during pregnancy, creating a tolerogenic environment
in women (Chatterjee et al., 2014; Shahbazi et al., 2019). Indeed,
while the trophoblastic cell implantation into endometrial cells is
associated with an active Th1 pro-inflammatory response, the
pregnancy maintenance is marked by an anti-inflammatory
response, promoting fetal allograft tolerance and ensuring fetal
development (Granot et al., 2012; Chatterjee et al., 2014).

Interleukin-6 is a pleiotropic cytokine involved in both acute
and chronic inflammatory processes (Papathanasiou et al., 2008;
Balasubramaniam et al., 2012). Papathanasiou and coll. (2008)
showed that IL-6, in addition to act as an inflammatory marker, is
capable in vitro to significantly reduce the ciliary beat function
(CBF) causing a severe tubal damage, whereas the addition of
anti-IL-6 restores the activity of CBF (Papathanasiou et al., 2008).
IL-6 may also play a role in the pathophysiology of tubal ectopic
gestation. Indeed, it was demonstrated that the expression of IL-6
is significantly increased near the implantation site in tubes with
ectopic gestation, as compared with normal gestations
(Balasubramaniam et al., 2012). On the other hand, IL-6 has
been shown to affect sperm motility and to induce protein
tyrosine phosphorylation in human spermatozoa (Laflamme
et al., 2005).

Granulocyte-colony stimulating factor (G-CSF) is a
pleiotropic cytokine belonging to the hematopoietic growth
factor family that codifies by the CSF3 gene. Recent studies
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has revealed granulocyte colony-stimulating factor (G-CSF) as a
predictive biomarker of oocyte and embryo developmental
competence in humans (Naghshineh et al., 2018; Cai et al.,

2020), promoting endometrial thickening and improving the
pathophysiology of endometriosis, which all fundamentally
lead to preventing from the pregnancy loss (Cai et al., 2020).

TABLE 1 | Group of diseases and number of diseases included within each group.

Class Disease class Number of diseases

C15 Hemic and Lymphatic Diseases 45
C17 Skin and Connective Tissue Diseases 33
C04 Neoplasms 32
C16 Congenital, Hereditary and Neonatal Diseases and Abnormalities 14
C14 Cardiovascular Diseases 13
C12 Male Urogenital Diseases 11
C13 Female Urogenital Diseases and Pregnancy Complications 11
C05 Musculoskeletal Diseases 8
C25 Chemically-Induced Disorders 8
C10 Nervous System Diseases 7
C18 Nutritional and Metabolic Diseases 7
C23 Pathological Conditions Signs and Symptoms 7
C19 Endocrine System Diseases 6
C01 Infections 5
C07 Stomatognathic Diseases 5
C08 Respiratory Tract Diseases 3
C06 Digestive System Diseases 1
C11 Eye Diseases 1
C24 Occupational Diseases 1

FIGURE 5 |Graphical representation of the most linked immune system diseases with the gene list in CURDi. The highest number of correlated genes are found in
rheumatoid arthritis (14 linked genes), allergic reaction and hypersensitivity (13 linked genes) and asthma (10 linked genes).
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3.3 CURDi Network and the Most Linked
Immune Diseases
Analyzing the link of the selected gene set with diseases involving
other organs and systems (different from the Immune System),
we found that the largest number of pathologies were related to
the following groups: “Hemic and Lymphatic diseases” (Chinniah
and Katelaris, 2009), “Skin and Connective Tissues diseases”
(Emmery et al., 2016) and “Neoplasms” (Nielsen et al., 2017)
(Table 1; Supplementary Material S3, second sheet for the
complete dataset).

As showed in Figure 5 the most linked diseases to the list of
genes from CURDi were rheumatoid arthritis (14 linked genes),
allergic reaction and hypersensitivity (13 linked genes) and
asthma (10 linked genes) (for the complete list of diseases and
related information see Supplementary Material S3, sheet 3).

3.3.1 Rheumatoid Arthritis
Among the three most linked conditions, only rheumatoid
arthritis (RA) has been related to fertility (Fattah et al., 2020)
so far, maybe because the other two (i.e., allergic reaction and
hypersensibility) show very high variability and multiple
interconnected components. A recent review by Fattah and
coll. (2020) provided several proofs regarding the relationship
between women with RA and fertility, which seems declined and
dependent on inflammatory milieu, mother age, hampered sexual
activity and negative effects of non-steroidal anti-inflammatory
drugs on ovarian function (Fattah et al., 2020). Indeed, it has been
found that women with RA deliver fewer children when
compared to healthy women (Fattah et al., 2020). The
decreased fertility rate in women suffering from RA might be
due to a reduced sexual activity (because of pain, fatigue, mental
distress, functional limitations), treatment with antirheumatic
medications hampering ovulation, as well as, to advanced
maternal age, patients’ choice, or a combination of all of these
factors (Fattah et al., 2020). The results showed here demonstrate
that at least 13 genes (CXCL8; CSF2; IL6; LCN2; TNF; VEGFA;
IFNG; IL1B; IL10; CP; CXCL2; GC; F1) could be involved in this
relationship.

3.3.2 Asthma
From the CURDi analysis, asthma showed 10 linked genes. The
link between asthma and infertility was studied in a nationwide
register-based twin study, in which a cohort of 15,250 twins
living in Denmark participated in a questionnaire study
including questions about the presence of asthma and
fertility (Gade et al., 2014). Differences in time to pregnancy
and pregnancy outcome were analysed in subjects affected with
asthma and allergy and in healthy individuals, using multiple
regression analysis. Results showed an association between
asthma and an increased time to pregnancy, with a
percentage of asthmatics with a time to pregnancy >1 year of
27% versus the 21.6% for the non-asthmatic individuals.
Interestingly, the association remained significant after
adjustment for age, age at menarche, body mass index and
socioeconomic status and was more pronounced in those
>30 years of age. In addition, untreated asthmatics had a

significant increased risk of prolonged time to pregnancy
compared to control individuals, while asthmatics receiving
any kind of treatment for asthma tended to have a shorter
time to pregnancy than untreated asthmatics (Gade et al., 2014).
Thus, the authors concluded that asthma seems to be correlated
with an alteration in fertility parameters, and that the negative
effect of asthma on fertility increases with age and disease
severity.

3.4 AMDi Network and the Most Linked
Genes
Since the study of human diseases takes a huge advantage by the
use of animal models as valuable resource for the investigation of
pathogenesis, diagnostics, and therapeutics of human diseases, we
realized the network representing the connections between the
selected gene set and the immune diseases in animal models
(AMDi). The most linked genes were IL4, TNF and CCL2, (12, 12
and 10 links, respectively) (see SupplementaryMaterial S4, sheet
1 for the complete list).

The roles of IL4 and TNF, have been discussed before. The
CCL2 gene codifies for the small chemokine CCL2, also referred
to as monocyte chemotactic protein 1 (MCP1), which is secreted
by endothelial, epithelial and stromal cells, monocytes and
lymphocytes (Hess et al., 2013). It influences the innate
immunity through its effects on monocytes, as well as the
adaptive immunity through the control of T helper cell
polarization (Hess et al., 2013). It was proposed that
chemokines expressed by the oviductal epithelial cells
contribute to normal physiological homoeostasis and
protection from pathogens by activating the immune cells
(Fahey et al., 2005). In addition to this protective function,
chemokines, including CCL2, may protect these cells from
malignant transformation, again suggesting that CCL2 may be
involved in early tumour development (Wojnarowicz et al.,
2012). It was also shown that a marked down-regulation of
CCL2 may contribute to allogenic tolerance of the
preimplantation embryo as it crosses the Fallopian tube (Hess
et al., 2013).

Interestingly, an association between two CCL2
polymorphisms (rs1024611 and rs4586) and the development
of gestational diabetes mellitus (GDM), the most common
medical complication of human pregnancy, was demonstrated
in 411 pregnant women (Teler et al., 2017). To this regard, a more
recent study confirmed that blocking the CCL2/CCR2 pathway in
a mouse GDM model, the inflammatory cytokines may be
reduced, mitigating GDM symptoms and improving the
reproductive outcomes in mice (Qi et al., 2021).

3.5 AMDi Network and the Most Linked
Diseases
The AMDi network also provided very intriguing and useful
information. For instance, the two pathologies related with the
highest number of correlated genes are the Experimental
Autoimmune Encephalomyelitis (EAE, 17 genes) and Asthma
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(11 genes), this last being already discussed above (for the
complete list of diseases and related information, see Figure 6;
Supplementary Material S4, second sheet).

3.5.1 Experimental Autoimmune Encephalomyelitis
EAE is an autoimmune encephalomyelitis commonly used as an
experimental model for the human inflammatory demyelinating
disease, multiple sclerosis (MS). It constitutes a complex
condition in which the interaction between a variety of
immunopathological and neuropathological mechanisms leads
to the key pathological features of MS: inflammation,
demyelination, axonal loss and gliosis (Constantinescu et al.,
2011).

The exploration of the link between MS and infertility is
very complex for several reasons. As discussed by Cavalla and
coll. (2006), the frequency of childlessness in the female MS
patients seems to be higher than in the general population
(Cavalla et al., 2006). Rather than lowered fertility, this could
reflect other issues related to this pathology, such as the fact
that patients may choose to avoid or postpone pregnancy,
mainly because of concern about taking care of the baby or
about the risk of transmitting a genetic susceptibility to MS to
their children (Cavalla et al., 2006). A recent study has shown
that women affected with MS had lower live birth rates (LBR)
compared to unaffected women (irrespective of their infertility
diagnosis or treatment) (Houtchens et al., 2020). This
statistically significant difference in LBRs was more evident
in women in early (Bauer-Mehren et al., 2011; Profaizer and
Eckels, 2012; Leone et al., 2013; Chattopadhyay et al., 2014;
Mosaad, 2015; Pinero et al., 20152015; Robinson et al., 2015;
Piñero et al., 2017; Wieczorek et al., 2017; Jongsma et al., 2019;
Piñero et al., 2020; Tersigni et al., 2020; Wilczyńska et al.,

2020) and middle (Emmery et al., 2016; Nielsen et al., 2017;
Agius et al., 2018; Papúchová et al., 2019) childbearing years.
The difference between women with and without MS
disappeared after receiving infertility treatments, thus
highlighting the importance of information regarding the
efficacy of infertility treatments in women with autoimmune
diseases (Houtchens et al., 2020).

Despite the fact that MS is three times more common in
women than in men and that endocrine alteration commonly
found in MS patients and immunosuppressive therapies could
interfere with fertility, Glazer and co-workers evaluated the
association of MS and male infertility in a register-based
cohort study in Denmark between 1994 and 2015 (Glazer
et al., 2017). A comparison was made between a group of
24,011 men diagnosed with male factor infertility and a
control group of 27,052 normal males. Infertile men showed
a higher risk of prevalent and incident MS when compared to
the reference group, thus suggesting, for the first time, an
association between male infertility and MS (Glazer et al., 2017).

Here we provided the evidence that in both EAE and asthma a
common genetic background could explain, at least in part, the
finding that a systemic inflammation can also involve the
reproductive system.

From the results obtained in this study, we highlighted as
immune system and reproductive function are closely linked.
Indeed, as it was shown, some proteins involved in sperm-oviduct
interaction could be involved in several immune system diseases,
while, at the same time, some immune system diseases could
interfere with the reproduction process, although their causal
relationship is still unclear.

However, to better understand the cross-talk between the
immune and the reproductive systems are needed further

FIGURE 6 | Graphical representation of the most linked immune system diseases with the genes list in AMDi. The most linked diseases were experimental
autoimmune encephalomyelitis (EAE, linked 17 genes) and asthma (linked 11 genes).

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79512310

Taraschi et al. Immune System and Reproduction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


investigations, such as wider epidemiological studies and
experimental research with the use of animal models.

In conclusion, our innovative approach fits well in the field of
“reproductive immunology” that represents an active area of
research aimed at understanding how the immune system
contributes to human reproduction. In a clinical research
scenario this comprehension might be fundamental in
reducing implantation failure and recurrent miscarriage in
assisted reproductive technologies (ARTs).
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