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Abstract

Motivation: Trajectory inference (TI) for single cell RNA sequencing (scRNAseq) data is a powerful approach to inter-
pret dynamic cellular processes such as cell cycle and development. Still, however, accurate inference of trajectory
is challenging. Recent development of RNA velocity provides an approach to visualize cell state transition without
relying on prior knowledge.

Results: To perform TI and group cells based on RNA velocity we developed VeTra. By applying cosine similarity and
merging weakly connected components, VeTra identifies cell groups from the direction of cell transition. Besides,
VeTra suggests key regulators from the inferred trajectory. VeTra is a useful tool for TI and subsequent analysis.

Availability and implementation: The Vetra is available at https://github.com/wgzgithub/VeTra.

Contact: kyoung.won@bric.ku.dk or junil.kim@bric.ku.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Trajectory analysis using single cell transcriptomics is useful to
understand temporal transition of cell states. By showing transcrip-
tional changes along the obtained trajectory (or pseudo-time),
Trajectory inference (TI) has been applied to studying various bio-
logical processes including cell cycle, cancer development and cell
differentiation (Tran and Bader, 2020).

Besides pseudo-temporal analysis, TI has been used to assist
identifying gene regulatory rules. Visual inspection of gene expres-
sion changes along the inferred trajectory suggested potential regula-
tors for the biological processes (Trapnell et al., 2014). Systemic
approaches have been developed to reconstruct gene regulatory net-
works (GRNs) using the gene expression changes along the inferred
trajectory (Kim et al., 2021; Matsumoto et al., 2017). Well inferred
trajectory helped improve the performance of GRN reconstruction
(Qiu et al., 2020).

At present, more than 70 methods have been published to infer
trajectory from scRNAseq data (Saelens et al., 2019). Majority of TI
approaches have been developed based on the transcriptomic simi-
larity among cells. Pseudo-time is obtained from the ordered cells
based on the transcriptomic similarities (Saelens et al., 2019).
However, transcriptomic similarity cannot specify the initial and the
terminal points of the trajectory. When using TI algorithms based
on the transcriptomic similarity, a user has to provide the direction

of a cellular process, roots/terminals using the marker genes or any
prior knowledge about experiments to obtain pseudo-time
(Haghverdi et al., 2016; Setty et al., 2016; Trapnell et al., 2014).

It is more challenging to infer trajectory when cell dynamics are
complex. It is difficult to assign an accurate fate (lineage) to a cell
around branching regions. To improve robustness in detecting TI,
there have been attempts to confine the inferred trajectory to a set of
fixed topological structures, e.g. linear, bifurcation and cycle
(Saelens et al., 2019). However, the use of pre-defined structures can
restrict the opportunity to identify new structures.

Recently, RNA velocity has been suggested to analyze scRNAseq
data by incorporating mRNA dynamics (La Manno et al., 2018).
Notably, RNA velocity can provide the direction and the speed of
movement of individual cells and visualize the dynamic cell transi-
tions without any prior knowledge. The direction information from
RNA velocity provides a potential solution to determine the devel-
opmental trajectory of a cell around branching points. Therefore,
RNA velocity can be useful in developing precise TI tools.

To obtain precise TI and subsequent analysis without prior infor-
mation, we developed VeTra. VeTra identifies cell groups belonging
to the same lineage and suggests potential regulators in the identified
groups. Compared with previous undirected graph based methods
such as minimum spanning tree (Street et al., 2018) and graph-parti-
tioning algorithm (Wolf et al., 2019), VeTra builds directed graph
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from RNA velocity. VeTra identifies isolated cell transition paths by
searching for weakly connected components (WCC) which represent
the coarse-grained structure of connected community (An et al.,
2004). The isolated paths are further grouped together using the
hierarchical clustering algorithm to finally form potential develop-

ment lineages. As the results, VeTra identifies cell transition trajec-
tory and determines the memberships of cells to each trajectory even
around branching points. VeTra further suggests key regulators

along each trajectory by integrating the engine of TENET (Kim
et al., 2021). VeTra is a user-friendly tool for TI and subsequent

analysis.

2 Materials and methods

2.1 VeTra groups the cells belonging to the same

stream of trajectory
VeTra is an RNA velocity based TI tool that enables accurate lin-

eage tracing and subsequent analysis for gene regulation. VeTra per-
forms lineage tracing from the root to the terminal states by

grouping cells based on the similarity in direction of cell transition.
This enables VeTra to perform TI without prior knowledge or pre-
defined lineage topology.

VeTra reconstructs the pseudo-temporal order of cells based on
the coordinates and the velocity vector of cells in the low-dimen-

sional embedding. The velocity vectors are estimated by extrapo-
lating the spliced/unspliced read ratio to the local neighboring cells
(La Manno et al., 2018). Given velocity vectors (Fig. 1A), VeTra

reconstructs multiple directed graphs. To link cells based on transi-
tion, k nearest neighbors of a cell with similar direction are selected

using cosine similarity (cos1) (Fig. 1B, Section 2). Among them, the
nearby cell located upstream with the highest cosine similarity
(cos2) is selected (Fig. 1B, Section 2). Once all cells were investi-

gated for their next transition, multiple directed graphs are
obtained (Fig. 1C). To find a coarse-grained structure of the

directed graph, VeTra identifies WCCs where every cell is reach-
able from every other cell regardless of the direction of relation-
ships (Steven, 1990) (Fig. 1D). The WCCs are grouped together

when they are similar and close each other (Section 2, Fig. 1E).
Finally, we obtained the pseudo-time ordering of cell groups

(Fig. 1F) by projecting the member cells onto the principal curve
(Hastie and Stuetzle, 1989).

2.2 VeTra’s trajectory matches well with the known

lineage or biological process
We applied VeTra to infer the trajectory for various scRNAseq datasets
with known cell dynamics structures for pancreatic development
(Bastidas-Ponce et al., 2019; Bergen et al., 2020), chromaffin cell differen-
tiation (Furlan et al., 2017; La Manno et al., 2018), neural lineages in the
hippocampus (Hochgerner et al., 2018; La Manno et al., 2018) and cell
cycle (Xia et al., 2019). For benchmarking we used Slingshot (Street et al.,
2018), FateID (Herman and Grün, 2018) and PAGA (Wolf et al., 2019)
since they showed best performance in recent benchmarking tests (Saelens
et al., 2019). We also include CellRank (Bergen et al., 2020) and CellPath
(Zhang and Zhang, 2021a,b) as they are developed based on RNA vel-
ocity. We used Diffusion pseudo-time (DPT) to provide pseudo-time
ordering to CellRank. We provided known roots and terminals cell to run
Slingshot and FateID.

2.2.1 Pancreatic development (a topology with crossing branches)

During the pancreatic development endocrine progenitors differentiate
into alpha or beta cells (Bastidas-Ponce et al., 2019). Ductal cells are origi-
nated from common progenitors, which are fated to endocrine and exo-
crine lineages (Reichert and Rustgi, 2011). From the transcriptome of
pancreatic development (E15.5), VeTra identified three major trajectory
groups; (i) alpha cell differentiation from endocrine progenitors (EP), (ii)
beta/epsilon differentiation from EP and (iii) ductal development
(Fig. 2A). The first two clusters were commonly originated from EPs and
bifurcated into different lineages.

CellRank identified similar three trajectories with a slightly different
starting point close to ductal cells for alpha and beta cell trajectories
(Fig. 2A). FateID identified the trajectory to alpha and beta cells but failed
in identifying ductal lineage. Slingshot did not find delta/beta cell lineage
as well as ductal cell lineage (Fig. 2A). PAGA inferred coarse-grained tra-
jectories from EP to alpha, beta, delta and epsilon cells but it also found
trajectories between unrelated cell types (e.g. between alpha and beta
cells) (Supplementary Fig. S1). CellPath did not find the path to ductal
cells (Supplementary Fig. S2B).

2.2.2 Chromaffin cell development (a topology with diverging

branches)

During the development, the chromaffin cells and sympathoblasts
cells are generated from Schwann cell precursors (SCPs) (Furlan
et al., 2017). Vetra, FateID and Slingshot successfully captured the

Fig. 1. VeTra reconstructs single-cell trajectories for multiple cell lineages. (A) A 2D

embedding plot using the scRNAseq for pancreatic development. (B) Cosine similar-

ity to search for the neighboring cells with similar direction. cos1 finds the vectors

with similar direction and cos2 identifies the cell to transit from a cell. (C) The

directed graph obtained by applying cosine similarity. (D) The WCCs obtained

using all possible paths. (E) The grouped WCCs using a hierarchical clustering algo-

rithm. (F) The pseudo-time for each lineage identified by VeTra

Fig. 2. Performance assessment of the TI tools using the scRNAseq datasets with

various topologies. The trajectories inferred by VeTra, CellRank, FateID and

Slingshot using the scRNAseq data for (A) pancreatic development, (B) chromaffin

and sympathoblasts development, (C) cell cycle and (D) hippocampus development
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branches toward sympathoblasts and chromaffin cells (Fig. 2B).
CellRank identified SCPs as initial states but failed to identify proper
terminal states (Fig. 2B). PAGA connected bridging cells presumably

falsely as their fates are already committed to each branch (based on
RNA velocity) (Supplementary Fig. S1). CellPath only identified the

path to the chromaffin cells (Supplementary Fig. S2C).

2.2.3 Cell cycle (a cycling topology)

We applied TI tools on the scRNAseq dataset from U-2 OS cells
(Xia et al., 2019) and investigate the topology for cell cycle. VeTra

identified a single circular trajectory, starting at G1 phase toward
G1/S, G2/M and M phase, and finally going back to G1 phase
(Fig. 2C). Given the root cells in G1 phase, Slingshot identified simi-

lar trajectory. On the other hand, CellRank and CellPath estimated
a linear-like trajectory (Fig. 2C, Supplementary Fig. S2D). PAGA

connected cell populations with cycle, but inferred wrong trajecto-
ries between separated cell cycles (Supplementary Fig. S1).

2.2.4 Hippocampus development (complex diverging branches)

We further evaluated the performance using the scRNAseq data for

hippocampus development, which has been identified to have five
diverging branches: astrocytes, oligodendrocyte progenitor cells
(OPC), dentate gyrus granule neurons and pyramidal neurons

including CA1, CA2, CA3 and subiculum (La Manno et al., 2018).
Among these five main branches, astrocytes and OPCs are common-

ly branched from radial glial cells and the other neuronal branch
cells are originated from immature neuroblast cells (La Manno
et al., 2018).

VeTra identified five lineages toward CA1-subiculum, CA2-3-4,
granule, astrocytes, OPC (Fig. 2D). VeTra also predicted that CA2-

3-4 cells and granules share the same neuroblastic origin (Nbl1) and
astrocytes and oligodendrocyte progenitors share the same inter-
mediate progenitor origin (nIPC), which is consistent with the ori-

ginal RNA velocity results (La Manno et al., 2018). CellRank
identified one correct (Nbl1) and two incorrect (Granule, and CA1-

Sub) initial states (Fig. 2D). The five terminal states estimated by
CellRank were CA, CA2-3-4, ImmAstro, GliaProg and nIPC, includ-
ing three potential misclassified intermediate states (GliaProg, nIPC

and CA). Due to potential incorrect initial and terminal state assign-
ment, the trajectory inferred by CellRank failed in distinguishing the

five separated trajectories. Slingshot detected five lineages (Fig. 2D)
but determined wrong initial states (always from ImmAstro). FateID
did not infer any meaningful trajectories (Fig. 2D). PAGA inferred

clear trajectories from Nbl1 to CA1-sub, CA2-3-4 and Granule.
However, PAGA falsely connected ImmAstro and GlialProg
(Supplementary Fig. S1). CellPath showed severely truncated paths

for this dataset (Supplementary Fig. S2A).

2.3 Performance evaluation using simulated datasets
The assessment using scRNAseq data demonstrated the outstanding
performance of VeTra. However, the gold standard annotation for

individual cells is usually not provided and it is hard to quantify the
performance. For quantitative assessment, we simulated scRNAseq

datasets using Dyngen (Cannoodt et al., 2020) and generated three
lineage structures: binary tree, trifurcation and converging. We add-
itionally included a disconnected structure from VeloSim (Zhang

and Zhang, 2021a,b). Beside visualization, we calculated the match-
ing score by obtaining the average value of the normalized hamming

distances (DÞ between the predicted and the known lineages. We
used 1�Dð Þ � 100 as the score.

VeTra successfully identified the identified lineages for four
simulated datasets. Slingshot identified successfully except for the
disconnected path. However, other approaches were not successful

compared with VeTra or Slingshot (Supplementary Fig. S3). The
overall comparison (Supplementary Table S1) demonstrates the ro-
bustness of VeTra in TI.

2.4 VeTra provides condition-specific master regulator
It has been studied that TI can influence the performance of GRN
reconstruction. VeTra is equipped with a function to suggest key
regulators by adopting the engine of TENET (Kim et al., 2021) that
we previously developed to reconstruct GRN. TENET has a func-
tion to identify key regulators from the inferred causal relationships
with their target genes (Kim et al., 2021). Incorporating TENET,
VeTra has a function to identify most influential transcription fac-
tors (TFs) for the inferred trajectory.

Using the RNAseq dataset from pancreas development (Bastidas-
Ponce et al., 2019), VeTra found key regulators for the three pre-
dicted major branches: alpha, beta and ductal (Fig. 3A). The key
predicted regulators that distinguishing alpha cell development
against others were Pax6, and Arx. Pax6 and Arx have been known
to have a role during alpha cell development (Ashery-Padan et al.,
2004; Gosmain et al., 2011). Pax6 regulates genes related to gluca-
gon production (Ashery-Padan et al., 2004). Arx has been shown to
play a similar role in alpha-cell development (Gosmain et al., 2011).
VeTra also identified Neurog3 an endocrine (alpha and beta) specif-
ic key regulator(Gradwohl et al., 2000; Gu et al., 2002;
Schwitzgebel et al., 2000).

In addition, VeTra revealed condition-specific regulators for the
five lineages of hippocampus development (Fig. 3B). For instance,
Nr4a3 (Nor-1) is predicted a CA2-3-4 specific regulator by VeTra.
Nor-1 deficient mice appear to have abnormal pyramidal cell layer
in CA1 to CA3(Pönniö and Conneely, 2004).

3 Algorithm

To pick the most appropriate cell to which the vector of the cell i is
pointing, k closest neighbor cells are collected from the head of the
vector of a cell i in the low-dimensional space (Fig. 1B). Among the
neighbor cells, cells with similar direction are selected using a cosine
similarity criterion between the cell i and the neighbor cell j (cos1ij ¼

vi �vj

kvikkvjk > 0.5) (Fig. 1B, where vi and vj denote velocity vectors (2D
coordinates) of cell i and cell j. The cell with the highest similarity
for cos2ij (¼ dij

kvikkvjk, where dij is the vector from vi to vj) located up-
stream of the cell i is finally selected to obtain a directed graph in
the same stream of trajectory (Fig. 1B).

Fig. 3. Key regulators for each trajectory identified by VeTra. (A) The key regulators

identified from the trajectories for ductal, alpha and beta cell development. (B) The

key regulators identified from the five developmental trajectories in mouse

hippocampus
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The hierarchical clustering is applied to the WCCs for further
grouping (Fig. 1E). The distance between the two sub-graphs is
defined by the maximum distance of all the closest pairs of cells. To
calculate the distance between cells, we calculated the Euclidean dis-
tance in the four-dimensional space (two dimensions using the gene
expression and the other two using the velocity vector in the reduced
dimensional space). To obtain full trajectory (from the root to the
branch), we extended the memberships if a cell located nearby is
similar (cos1ij > 0.7). We obtained the pseudo-time ordering by pro-
jecting the member cells onto the principal curve (Hastie and
Stuetzle, 1989).

4 Discussion

TI is a widely used approach to understand temporal dynamics of
cells from scRNAseq data. A number of approaches have already
been developed to infer the trajectories. As shown in the examples
using the simulated as well as real scRNAseq data (Fig. 2 and
Supplementary Figs S1–S3), however, there is still room for algorith-
mic improvement for accurate detection of trajectory. We have
noticed that the results of current TI tools do not always match with
the cell dynamics observed by RNA velocity (La Manno et al.,
2018). RNA velocity, by providing the direction of cell transition,
enabled visual inspection of cell trajectory. VeTra is designed to
group cells in accordance with the cell transition drawn by RNA vel-
ocity. To fully use the vector space provided by RNA velocity,
VeTra used cosine similarity and obtained cell groups. The use of
cosine similarity makes VeTra rely on the vector space for TI.

Our benchmarking test on the scRNAseq datasets exemplifies
that VeTra successfully identified the trajectory drawn by RNA vel-
ocity and produced reasonable results that matched with the known
topological structures for cell development and biological processes.
It is interesting that VeTra outperformed other RNA velocity based
methods such as CellRank (Bergen et al., 2020) and CellPath
(Zhang and Zhang, 2021a,b) in our tests. Instead of using RNA vel-
ocity directly, CellRank calculates the probabilities of each cell tran-
sition to all terminals from initials. Therefore, the terminal states are
not deterministic for CellRank. This may have influenced the per-
formance of CellRank. CellPath uses meta-cells to obtain smoothed
RNA velocity and reduce the computing cost (Zhang and Zhang,
2021a,b). In our test, CellPath has failed to annotate large number
of cells for each lineage. A meta-cell is a cluster of cells. We suspect
that meta-cells may smooth cell direction too much when cells ex-
hibit diverse direction. Compared with them, VeTra tried to follow
the velocity vector using cosine similarity without further processing
them.

As the results, VeTra relies on RNA velocity calculation. RNA
velocity can heavily depend on the correct measurement of spliced
and unspliced RNA abundance. A recent study showed that the
choice of experimental setting can change the results of RNA vel-
ocity (Soneson et al., 2021). As a downstream analysis tool of RNA
velocity, VeTra can use the output from Velocyto (La Manno et al.,
2018) or scVelo (Bergen et al., 2020). A previous study shows that
the results of Velocyto and scVelo can be different (Cannoodt et al.,
2020), which can also cause different results for VeTra. We investi-
gated VeTra’s output after running Velocyto and scVelo. For the cell
cycle and chromaffin development datasets, both Velocyto and
scVelo showed similar results. However, we found different results
for the hippocampus and the pancreas development datasets
(Supplementary Fig. S4). For VeTra, CellRank and CellPath, we
selected the RNA velocity approach that produces the better per-
formance for each dataset.

VeTra is equipped with the tool to predict key regulators by
adopting the gear of TENET, a GRN reconstructor based on TE. It
was discussed previously that TENET is capable of detecting key
regulators using the aligned scRNAseq (Kim et al., 2021). VeTra
equipped with the TENET engine will be useful for downstream
analysis of TI.

VeTra requires the 2D coordinates embedded from expression
profile and the RNA velocity vectors for each cell. A user can specify
the number of groups. The output files include (i) 2D embedding

figures colored by grouping of cells, (ii) 2D embedding figures col-
ored by pseudo-time ordering, (iii) lists of selected cells for each
group and (iv) the pseudo-time ordering information for each group.
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