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ABSTRACT

Motivation: Alignment-free methods for sequence comparison are

increasingly used for genome analysis and phylogeny reconstruction;

they circumvent various difficulties of traditional alignment-based

approaches. In particular, alignment-free methods are much faster

than pairwise or multiple alignments. They are, however, less accurate

than methods based on sequence alignment. Most alignment-free

approaches work by comparing the word composition of sequences.

A well-known problem with these methods is that neighbouring word

matches are far from independent.

Results: To reduce the statistical dependency between adjacent word

matches, we propose to use ‘spaced words’, defined by patterns of

‘match’ and ‘don’t care’ positions, for alignment-free sequence

comparison. We describe a fast implementation of this approach

using recursive hashing and bit operations, and we show that further

improvements can be achieved by using multiple patterns instead of

single patterns. To evaluate our approach, we use spaced-word

frequencies as a basis for fast phylogeny reconstruction. Using

real-world and simulated sequence data, we demonstrate that our

multiple-pattern approach produces better phylogenies than

approaches relying on contiguous words.

Availability and implementation: Our program is freely available at

http://spaced.gobics.de/.

Contact: chris.leimeister@stud.uni-goettingen.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Traditional methods for comparative sequence analysis and

phylogeny reconstruction rely on pairwise and multiple sequence

alignments (Felsenstein, 2003). A major problem with these

methods is that they are relatively slow because aligning two

sequences takes time proportional to the product of their lengths.

With the huge amount of sequence data that are produced by

new sequencing technologies, faster methods for sequence com-

parison are required. Alignment-free methods became popular in

recent years, as their runtime is usually proportional to the total

sequence length; see Vinga and Almeida (2003) for a review.
Alignment-free methods are increasingly used for genome

comparison, in particular for genome-based phylogeny recon-

struction (Didier et al., 2007; Hatje and Kollmar, 2012;

Kolekar et al., 2012), but also for fast protein clustering (Corel

et al., 2010; Hauser et al., 2013; Lingner and Meinicke, 2006).

These approaches are not only much faster than conventional

alignment-based methods, but they also overcome some notori-

ous difficulties in phylogenomics, such as finding ortholog genes

(Ebersberger et al., 2009; Schreiber et al., 2009) or aligning large

genomic sequences (Darling et al., 2010). Other advantages of

alignment-free genome comparison are that they can work with

unassembled reads (Song et al., 2012) and are not affected by

genome rearrangements. Alignment-free methods are also used

to construct guide trees for progressive multiple alignment

(Blackshields et al., 2010; Edgar, 2004; Katoh et al., 2002).

This could crucially improve the runtime of multiple-alignment

algorithms, as calculating guide trees becomes the most time-

consuming step in progressive alignment if the number of

sequences grows.

Most alignment-free methods are based on word frequencies.

For a fixed word length k, they calculate a (relative) word-

frequency vector for each of the input sequences. Various

distance measures on vector spaces can be used to calculate a

pairwise distance matrix from these word-frequency vectors

(Chor et al., 2009; Höhl et al., 2006; Sims et al., 2009; Vinga

et al., 2012). Phylogenetic trees can then be calculated from these

distance matrices with standard methods such as UPGMA

(Sokal and Michener, 1958) or NeighbourJoining (Saitou and

Nei, 1987). Other alignment-free approaches define the local

context of sequence positions in terms of overlapping words

containing a position (Didier, 1999). Some methods do not rely

on a fixed word length k but allow for matches of variable length

(Comin and Verzotto, 2012; Didier et al., 2012; Haubold et al.,

2005; Ulitsky et al., 2006). A common feature of all these

methods is, however, that they are based on exact word matches

between the input sequences.
Database searching is another traditional application of word

matching in sequence analysis. Fast local alignment programs

such as BLAST (Altschul et al., 1990) originally relied on

identifying word matches of a fixed length, so-called seeds.

Rapid indexing methods can be used to identify such ‘seeds’,*To whom correspondence should be addressed.
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while, in a second phase of the algorithm, seeds are extended into
both directions to find statistically relevant high-scoring segment

pairs.

In a pioneering paper, Ma et al. (2002) proposed to use spaced

seeds instead of contiguous-word matches as a first step in
homology searching. Here, a fixed pattern or ‘mask’ of match

and don’t care positions is defined, and two words of the cor-

responding length are considered to match if they coincide at the

specified match positions, while mismatches are allowed at the

don’t care positions. An obvious advantage of this approach is

that word matches at nearby positions are statistically less

dependent on each other than contiguous-word matches are.

Also spaced seeds are better able to identify homologue sequence

regions in the presence of mismatches. Ma et al. showed that
spaced seeds are superior to contiguous-word matches in terms

of sensitivity and speed; see also Brown (2008) for an overview.

Recently, we proposed to use spaced words, defined by

patterns of match and don’t care positions, as a basis for align-
ment-free sequence comparison (Boden et al., 2013). Instead of

using spaced-word matches to trigger local alignments, we

compare the spaced-word composition of sequences to define a

measure of global similarity between them. In the present article,

we describe an efficient algorithm based on recursive hashing and

bit operations to calculate and compare spaced-word frequencies

and we extend our approach to distance measures defined by

multiple patterns. We use these distance measures to construct

phylogenetic trees for real-world and simulated DNA and

protein sequence families, and we compare our method to
established alignment-free methods using contiguous-word

frequencies, as well as to a traditional alignment-based approach.

Our results show that, for phylogeny reconstruction, spaced

words based on multiple patterns are superior to existing align-

ment-free methods that rely on contiguous words. A user-friendly

web interface for our program is described by Horwege et al.

(2014).

2 CALCULATING SPACED-WORD FREQUENCIES

As usual, for an alphabet � and ‘ 2 N, �‘ denotes the set of all

sequences over � with length ‘. For a sequence S 2 �‘ and

i � ‘, S½i� denotes the i-th character of S. Instead of ‘sequence’,

we also use the term ‘word’ or ‘contiguous word’ to distinguish

them from the spaced words that we are going to define. In our
context, the alphabet � represents the set of nucleotides or amino

acids, respectively. In analogy to the terminology introduced by

Ma et al. (2002), we define for integers k � ‘ a spaced word w of

length ‘ and weight k as a pair ðw0,PÞ where w0 2 �k is a

‘contiguous word’ of length k and P 2 f0, 1g‘ is a sequence of

‘0’ and ‘1’ characters of length ‘, such that there are exactly k

positions i in P with P½i� ¼ 1. We call P the underlying pattern of

w. In addition, we require that P½1� ¼ P½‘� ¼ 1 holds, i.e. the first

and the last characters in P must be ‘1’. The ‘1’ positions in the
pattern P denote match positions, while the ‘0’ positions are the

don’t care positions.

Let w ¼ ðw0,PÞ be a spaced word with weight k and length ‘
such that p15 . . .5pk are the positions of the ‘1’ characters in P.
We say that w occurs in a sequence S at position i if

S½iþ pj � 1� ¼ w0½j�

for all 1 � j � k. For example, the spaced word w ¼ ðw0,PÞ with

w0 ¼ AGT and P¼ 11001 occurs in the sequence

S ¼ GGAGCTTCAGGATCC at positions 3 and 9.
To define a distance function on a set of input sequences

S1, . . . ,SN over �, we first consider a single fixed pattern P

with weight k. For each sequence Si, we calculate the relative

frequencies of all possible spaced words with respect to our pat-

tern P (relative to the sequence length) and, similar as in other

alignment-free approaches, each sequence Si is represented by the

j�jk-dimensional vector of these relative frequencies. It is then

straightforward to define a distance dPðSi,SjÞ between two

sequences Si and Sj as the distance between these frequency

vectors, using some standard distance metric on vector spaces.

This approach can be generalized by considering a whole set

P ¼ fP1, . . . ,Pmg

of patterns instead of a single pattern P [similarly, Li et al. (2003)

used multiple spaced seeds for database searching]. Here, we

define a distance dP as the average of the distances defined by

the patterns P 2 P, i.e. we define

dPðSi,SjÞ ¼
1

m

X
P2P

dPðSi,SjÞ ð1Þ

We call this extension the multiple-pattern version of our

spaced-word approach.

3 IMPLEMENTATION

To calculate the frequencies of spaced words in a sequence with

respect to a pattern P, we implemented a hash function that maps

each spaced word to an integer in ½0, 264Þ. We first consider con-

tiguouswords of length k anddefine the i-th word of sequenceS as

wi ¼ S½i�S½iþ 1� . . .S½iþ k� 1�. A fast way to hash successive

words is by using a hash function h for which the value hðwiþ1Þ

can be calculated in constant time from the previous value h(wi) by

removing the value of the i-th character and adding the value of

the new character at iþ k. Such hash functions are called recursive

or rolling (Cohen, 1997; Karp and Rabin, 1987). In practice, we

used recursive hashing by cyclic polynomials (Cohen, 1997),

which is also known as Buzhashing (Uzgalis, 1996).
While this approach is fast, it is possible, in principle, that

collisions occur, i.e. that two different words are mapped to the

same hash value. We do not correct such collisions but, instead,

we define our hash function in such a way that the probability of

such collisions is minimized. To this end, we use a hash function

that provides a good uniformity for arbitrary input strings. First,

we define a constant table rtab containing 256 values of 64-bit,

assigning to each character of the alphabet � an integer in the

interval ½0, 264Þ. According to Uzgalis (1996), a uniform distribu-

tion of the resulting hash values is ensured by defining this array

such that every vertical bit position has exactly 128 zeros and 128

ones. With this definition, collisions are extremely unlikely. In all

test runs that we performed, we did not observe a single collision.

Next, we define the function s as the barrel shift that rotates

the bits by one position to the left, e.g. we have sð1100Þ ¼ 1001.

� is denoted as the bitwise exclusive or operator. With these

definitions, we define the hash value for a word wi as

hðwiÞ ¼ sk�1ðrtabðS½i�ÞÞ � sk�2ðrtabðS½iþ 1�ÞÞ�

. . .� sðrtabðS½iþ k� 2�Þ � rtabðS½iþ k� 1�Þ
ð2Þ
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Once h(w1) is calculated with this formula, the values

hðwiÞ, i � 2, can be calculated recursively as

hðwiþ1Þ ¼ sðhðwiÞÞ � skðrtabðS½i�ÞÞ � rtabðS½iþ k�Þ ð3Þ

Note that, with this recursion, all hash values h(wi) can be

calculated for a sequence S of length n in OðnÞ time, inde-

pendently of the word length k. The advantage of using bit

operations—compared with recursive hashing with multiplica-

tions and divisions—is that rotating bits is much faster than

these algebraic operations.
So far, we only considered contiguous words. The above recur-

sive formula (3) can be easily adapted to spaced words as long as

the number of don’t care positions in the underlying pattern is

small. To do this, we first calculate the hash value for words of

length ‘, and we then remove the terms corresponding to the

don’t care positions in the underlying pattern. This corresponds

to removing single characters from a word when a sliding

window is moved to the next position. For example, if there is

a single don’t care at position p in the pattern, we calculate

sk�pðrtabðS½iþ p� 1�ÞÞ and apply the � operator to erase the

term corresponding to the character S½iþ p� 1� to calculate

the hash value hðwiÞ for the spaced word starting at position i.

Consequently, the time complexity of this approach is

Oðð‘� kÞ � nÞ where k is the weight of the pattern P.
However, if the number of don’t care positions in P is greater

than the number k of match positions, i.e. if k5 ‘
2, the recursive

calculation is slower than the naive non-recursive approach,

which calculates the hash values based on the match positions

in the underlying pattern. In this case, the hash value h(wi) must

be explicitly calculated for each spaced word wi leading to an

Oðn � kÞ algorithm.
To store the frequencies of all spaced words in a sequence, we

implemented a simple hash table. To determine an appropriate

size of our hash table, we first calculate the maximum number

of distinct (spaced) words. Clearly, for a sequence S and a pattern

P of weight k and length ‘, the maximum number of distinct

spaced words in S is given by minðj�jk, n� ‘þ 1Þ where n is

the length of S. According to this observation, we choose as

hash table size the smallest integer b such that

2b4minðj�jk, n� ‘þ 1Þ. We then keep the b most significant

bits of our 64-bit hash value, which is achieved by shifting the

bits 64� b times to the right. These b bits are used as index in

the hash table, resulting in a complexity ofOð1Þ on average for the

common operations such as search or insert. We handle collisions

by sequentially searching the hash table for a free location, which

is known as open addressing. This method led to a better perform-

ance in our tests than an alternative approach using linked lists.
Once the word frequencies are determined for our input se-

quences, we can easily compare them for different sequences, as a

basis to calculate pairwise distances values. To do so, we iterate

over both hash tables and for each key we search the equivalent

key in the other hash table, which can be accomplished inOð1Þ as

mentioned above. If the key is not found in a hash table, then the

corresponding spaced word does not occur in the other corres-

ponding sequence.
In our multiple-pattern approach, we need to calculate spaced-

word frequencies for a large number of patterns. To do this ef-

ficiently, we implemented multithreading in our program to

increase the speed. Both steps, counting word frequencies and

calculating pairwise distances are easily parallelizable. We are

using threads to determine the word frequencies as well as for

the computation of pairwise distances.

4 BENCHMARK SET-UP

To evaluate our approach and to compare it with other se-

quence-comparison methods, we used benchmark sequence sets

from different sources: for DNA and protein sequence compari-

son, respectively, we used real-world as well as simulated se-

quence sets. Each sequence set consists of a number of

evolutionarily related sequences together with a reference tree

that we consider to be reliable.
For all sequences, we calculated the relative frequencies of

contiguous as well as spaced words using the above-described

single-pattern and multiple-pattern approaches. To obtain dis-

tance matrices for these sequence sets, we applied the Jensen–

Shannon (JS) distance metric (Lin, 1991) to the obtained rela-

tive-frequency vectors. The JS distance between two frequency

vectors P and Q is defined as

JSðP,QÞ ¼
1

2
KLðP,MÞ þ

1

2
KLðQ,MÞ ð4Þ

where

M ¼
1

2
ðPþQÞ ð5Þ

is the mean of P and Q, and KL(P,M) is the Kullback–Leibler

divergence (Kullback, 1987) between P and M defined as

KLðP,MÞ ¼
X
i

log2
Pi

Mi

� �
Pi ð6Þ

The JS metric was also used by Sims et al. (2009) for their

Feature Frequency Profile (FFP) approach. In addition, we

applied the Euclidean distance to the relative-frequency vectors

obtained with our multiple-pattern approach.
Finally, we applied the NeighbourJoining program (Saitou and

Nei, 1987) from the PHYLIP package (Felsenstein, 1989) to

calculate unrooted trees from these distance matrices. As a com-

parison, we applied three state-of-the-art alignment-free

approaches, Average Common Substring (ACS) (Ulitsky et al.,

2006), Kr (Haubold et al., 2005) and FFP (Sims et al., 2009), as

well as a traditional approach to phylogeny reconstruction using

Clustal W (Thompson et al., 1994) and Maximum Likelihood

(Felsenstein, 1981). For ACS, we used our own implementation

(Leimeister and Morgenstern, 2014) because the original soft-

ware is not publicly available. For FFP, we used the word

length that gave the best results for a given category of bench-

mark sequences. To evaluate these different methods, we com-

pared for each sequence set the resulting trees with the

corresponding reference tree using the Robinson–Foulds (RF)

metric (Robinson and Foulds, 1981).
As test data for genomic sequence comparison, we used a set

of 27 primate mitochondrial genomes that have been previously

used by Haubold et al. (2009) to benchmark alignment-free

methods. For these sequences, a reliable phylogenetic tree is

known that is based on multiple sequence alignment and
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Maximum Likelihood. Further, we used a set of 13 fully
sequenced flowering-plant genomes from the Malvidae clade
plus the grape vine genome as outgroup. As a reference tree for

these 14 genomes, we used a tree based on a multiple sequence
alignment of manually assembled CAP and Arp2/3 protein se-
quences as published by Hatje and Kollmar (2012). To bench-

mark our approach on protein sequences, we used BAliBASE
3.0, a standard benchmark database for multiple alignment
(Thompson et al., 2005). BAliBASE consists of 218 sets of

related protein sequences together with reference multiple align-
ments based on 3D superposition that are considered to be reli-
able. As BAliBASE contains no information about the

underlying phylogenetic trees, we constructed a reference tree
for each sequence set by applying the standard Maximum
Likelihood method (Felsenstein, 1981) to the corresponding ref-

erence multiple alignment.
In addition to these real-world benchmark sequences, we

generated a large number of simulated genomic and protein
sequence sets using the program Rose (Stoye et al., 1998). This

program mimics molecular evolution by producing a set of
sequences along an evolutionary tree, starting with a common
ancestral sequence at the root. Substitutions, insertions and dele-

tions are randomly incorporated according to a pre-defined sto-
chastic model of molecular evolution. As a result, sets of
‘evolutionarily’ related sequences are produced, together with

known phylogenetic trees that we used as reference trees in our
study. A parameter called relatedness determines the average evo-
lutionary distance between the produced sequences, measured in

PAM units (Dayhoff et al., 1978). For DNA sequence compari-
son, we created a set of 50 sequences of 16 000 nt length each
using Rose with a relatedness value of 70. To obtain simulated

protein benchmark data, we generated a set of 125 protein se-
quences with a length of 300aa each. Here, we used a relatedness
value of 480. Except for the relatedness values, Rose was run with

default values.
For all of these benchmark sequence sets, except for the 14

plant genomes, we first calculated trees based on contiguous-

word frequencies, and we identified the word length k that pro-
duces the best results for the respective category of sequence sets,
i.e. the trees with the smallest RF distances to the respective ref-

erence trees. For this value of k, we then generated patterns with
weight k, i.e. with k match positions, and with up to 30 don’t care
positions, i.e. with a length ‘ between kþ 1 and kþ 30. For each

‘, we randomly selected a set P‘ of 100 patterns of length ‘ and
weight k. For small values of ‘ where5100 patterns are possible,
we defined P‘ as the set of all possible patterns.

For each ‘ and each pattern P 2 P‘, we applied our single-
pattern approach and then calculated the average RF distances of
the obtained trees to the respective reference trees. In addition,

we applied our multiple-pattern approach by calculating the pair-
wise distance values dP‘ ðSi,SjÞ for each sequence set using all
patterns P 2 P‘ according to Equation (1). Moreover, we gener-

ated pattern sets P with 100 randomly selected patterns of weight
k and with varying length ‘ for themultiple-pattern approach. We
repeated these test runs using different sets of random patterns

and calculated the standard deviations of the obtained RD dis-
tances to the reference trees. Note that this re-sampling is only
possible if ‘ is large enough because for a short pattern length ‘,
the number of possible patterns is too small.

5 TEST RESULTS

5.1 Genomic sequences

For the primate mitochondrial genomes, the approach with con-

tiguous words produced best results with a word length of k¼ 9,

leading to a phylogeny with a RF distance of 4 to the reference

tree. Thus, we generated patterns P with weight k¼ 9 and length ‘
between 9 and 39, i.e. with 9 ‘match’ positions and up to 30 ‘don’t

care’ positions. The results are shown in Figure 1. For each pattern

length ‘4k, spaced words outperformed the standard contiguous

words (‘¼ k). For practically all values of ‘, the multiple-pattern

approach with the JS distance led to better results than the single-

pattern approach with the same pattern length ‘. For some values

of ‘, the RF distance to the reference tree was 0, so here the tree

topology reconstructed by our approach precisely coincides with

the reference topology. For values ‘519, the multiple-pattern ap-

proach with the Euclidean distance performed worse than with the

JS distance and even worse than the single-pattern approach. For

longer patterns, however, the Euclidean distance performed better;

for ‘420, multiple patterns with the Euclidean distance produced

perfect tree topologies, i.e. the RF distance was 0. The established

alignment-free approaches Kr and ACS performed worse than

spaced words with single or multiple patterns for all ‘410. FFP

performed better than these two approaches, but was outper-

formed by multiple spaced words with the Euclidean distance for

all pattern lengths ‘418 and by multiple spaced words with the JS

distance for most values ‘413.
The test results for our plant genomes are shown in Figure 3.

Here, we used a set of 60 patterns of weight 14 and variable length.
For our simulated DNA sequences, we found that contiguous

words with length k¼ 8 gave the best results, with an average RF

distance of 50 to the respective reference trees. We therefore

generated patterns with weight k¼ 8 and with length ‘ between

8 and 38. The results of these test runs are summarized in

Figure 2. As can be seen, spaced words with single patterns

and one or several don’t care positions (‘4k) performed better

than the usual approach with contiguous words (k¼ 0), as long as

the number of don’t care positions is small. The relative improve-

ment in the quality of trees is modest, however, and if the

number of don’t care positions is increased, the tree quality de-

teriorates. By contrast, a substantial improvement could be

achieved by using our multiple-pattern approach. Here, increas-

ing the pattern length ‘—i.e. increasing the number of don’t care

positions—further improved the resulting trees, leading to aver-

age RF distances of around 16 between the constructed trees and

the reference trees. On these sequences, the difference between JS

and Euclidean distance was small. The three competing align-

ment-free methods were clearly outperformed by our multiple-

pattern approach. A classical approach using multiple sequence

alignment and maximum likelihood led to slightly better results

than our multiple-pattern program.

5.2 Protein sequences

Overall, our test results on proteins were similar to the results on

DNA. On BAliBASE, a word length of k¼ 4 produced best re-

sults for contiguous-word frequencies. Thus, we used patterns

with weight k¼ 4 and lengths ‘ between 4 and 34. Figure 4

shows the results of these test runs. Again, the spaced-words
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approach with single patterns gives better results than with con-

tiguous words, but only for word lengths ‘ up to 7; a further

increase in word length by using more don’t care positions led to

deteriorated results, with RF distances to the reference trees

larger than for contiguous-word frequencies. By contrast, the

results of our multiple spaced-word approach led to better

trees, and the quality of the trees further improved when the

number of don’t care positions was increased. On these bench-

mark data, the results of our multiple-pattern approach were best

when patterns of varying length were combined.

Finally, the results of our test runs on simulated protein

families are shown in Figure 5. Again, using distances based

on single patterns improved the quality of the resulting trees

compared with distances based on contiguous-word frequencies,

but the improvement was relatively small and could only be

achieved for small numbers of don’t care positions. Using dis-

tance measures combining different patterns led to far better

results. As with the real-world protein sequence sets, the mul-

tiple-pattern approach with varying pattern lengths gave the

best results. On our simulated protein families, this approach

led to even better results than the classical approach based on

multiple alignment and likelihood.

5.3 The number of patterns and program runtime

In the above test runs, we applied the multiple-pattern version of

our approach with sets of m¼ 100 randomly selected patterns

(m¼ 60 for the plant genomes) or used all possible patterns

where fewer than m patterns are possible. The multiple-pattern

option improved the performance of our method but is more

expensive in terms of program runtime compared with the

single-pattern version.
To study the influence of the number m of patterns on the

resulting trees, we used a set of 50 simulated DNA sequences of

Fig. 1. Test results on a set of mitochondrial genomes from 27 different primates; see Sections 4 and 5 for details. For a fixed pattern weight of k¼ 9, we

generated patterns of length ‘ between 9 and 39, i.e. with 9match positions and up to 30 don’t care positions. For each length ‘, we randomly generated a

set P‘ of 100 patterns—each pattern with k¼ 9 match positions and ‘� 9 don’t care positions—and calculated pairwise distances (i) using all single

patterns P 2 P‘ and (ii) using our multiple-pattern option where one distance value is calculated for a sequence pair using all patterns from P‘. In

addition, we used a set P‘ consisting of patterns with weight of k¼ 9, and with a variable number of don’t care positions (‘‘¼ var.’). We measured the

average RF distances between the generated trees and the respective reference trees; the smaller these distances are, the better are the trees produced by a

method. Where no green or yellow bar is visible, the RF distance is zero, i.e. here the tree topology calculated with the multiple-pattern approach exactly

coincides with the reference topology. For the multiple-pattern approach, we repeated the test runs with 100 randomly selected sets of 100 patterns each

and calculated the standard deviations of the resulting RF distances. For the single-pattern approach, we calculated the standard deviation for the 100

test runs with different patterns. Standard deviations are shown as error bars. Note that for ‘¼ k, only one single pattern exists so here no standard

deviations could be calculated. For small values of ‘,5100 patterns are possible, so only a single set P exists and standard deviations cannot be calculated

for the multiple-pattern approach

Fig. 2. Test results on a set of 50 simulated DNA sequences of length 16 000nt each. Patterns with a weight of k¼ 8 were used. Experimental conditions,

notation and colour coding as in Figure 1. In addition to the various alignment-free methods, a classical approach using multiple alignment and

Maximum Likelihood was used
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length 16 000nt and a set of 125 simulated protein sequences of

length 300 aa. We applied our multiple-pattern method to these

datasets using different values of k and ‘ and pattern sets P of

different size m. The results of these tests are shown in Figures 6

and 7. As can be seen, the quality of the resulting trees improves

if the number m of patterns is increased to 60 or 70, but a further

increase in m does not lead to a significant improvement of tree

quality.
To compare the runtime of our approach with other meth-

ods, we used two benchmark sets: a set of 50 simulated DNA

sequences of 16000nt each and our test set of 14 plant gen-

omes. In addition to the aforementioned programs for se-

quence comparison, we used Clustal � (Sievers et al., 2011).

All programs were run on an Intel Core i7 4820 k overclocked

to 4.75GHz. This CPU supports up to eight threads, which

were fully used by our multithreading implementation. The

results of these test runs are shown in Tables 1 and 2, respect-

ively. Clustal W and Clustal � are omitted in Table 2 because

they cannot be meaningfully applied to the whole genomes

that we used.

A B

C
D

E F

Fig. 3. Trees reconstructed from 14 plant genomes: reference tree (A) based on aligned protein sequences and Maximum Likelihood from Hatje and

Kollmar (2012) and trees reconstructed by the alignment-free methods ACS (B), FFP (C),Kr (D), contiguous-word frequencies (E) with word length¼ 14

andmultiple spaced words (F) with weight k¼ 14 using a set ofm¼ 60 patterns. RF distances to the reference tree are ACS: 6, FFS: 10, Kr: 18, contiguous

words: 10, multiple spaced words: 6

Fig. 4. Test results on BAliBASE; the spaced-word approach was used with a pattern weight of k¼ 4. Notation as in Figure 1. For the multiple-pattern

approach, 20 sets P of patterns were generated, each set consisting of (up to) 100 patterns. Standard deviations of the RF distances for these 20 different

pattern sets are shown as error bars for each value of ‘. For the single-pattern version, 100 program runs with different patterns were performed and the

standard deviation calculated. For the multiple-pattern option, standard deviations are so small that most error bars are not visible
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5.4 Variation of sequence distances calculated with

spaced words

As mentioned, a main advantage of spaced-word frequencies is

that occurrences of spaced words at different sequence positions

are statistically less dependent on each other. Distance measures

using spaced words can therefore be expected to be more stable.

To study this point in detail, we generated 100 pairs of DNA

sequences of length 16 000nt with Rose and applied single and

multiple spaced words to these sequences with w¼ 7 and ‘ be-

tween 7 and 37. We then calculated the variation coefficients of

the resulting distance values. The results are summarized in

Figure 8. As can be seen, the variation coefficients of the

spaced-word distances are lower than for the standard exact-

word approach (k¼ 0), and lower for the multiple-pattern

option than for the single-pattern option.

6 DISCUSSION

Alignment-free methods are regularly used to estimate evolution-

ary distances between DNA and protein sequences and to con-

struct phylogenetic trees. Most of these methods are based on

word frequencies. Such approaches are usually less accurate than

traditional phylogeny approaches that are based on multiple se-

quence alignments, but they are much faster. While aligning two

sequences takes time proportional to the product of their lengths

(Morgenstern, 2002; Needleman and Wunsch, 1970), word fre-

quencies can be calculated in linear time. A certain disadvantage

of word-based methods is the fact that word occurrences at

neighbouring sequence positions are far from independent.

For this reason, some authors proposed to correct word statis-

tics by taking overlapping word matches into account (Göke

et al., 2012).
In database searching, word matches have been replaced by

so-called spaced seeds where string matches according to a non-

periodic pattern P of match and don’t care positions are used

(Ma et al., 2002). Motivated by this approach, we proposed to

use spaced words instead of the traditionally used contiguous

words to estimate distances between sequences and to construct

phylogenetic trees. While, under an i.i.d. sequence model, the

expected number of occurrences of a spaced word is approxi-

mately the same as for the corresponding contiguous word (ob-

tained by removing the don’t care positions), spaced-word

Fig. 5. Test results on simulated protein sequences; the spaced-word approach was used with a pattern weight of k¼ 4. Notation as in Figure 1

Fig. 7. Influence of the number of patterns on the results of Spaced words

applied to a set of 125 simulated protein sequences of length 300aa,

generated with Rose. Sets P of patterns generated as in Figure 6. Note

that for short pattern lengths ‘, the set of all possible patterns is limited,

so for ‘¼ 9 and 14, only small values of m could be tested

Fig. 6. Influence of the number of patterns on the results of our multiple-

pattern approach. The program was run on a set of 50 simulated DNA

sequences of length 16 000nt each, generated with Rose. For k¼ 8, dif-

ferent values of ‘ and m¼ 10,20, . . . ,150, we generated 100 sets P of

patterns each, every set P containing m patterns. The quality of the

produced trees, measured as the average RF distance of the 100 trees to

the respective reference trees, is plotted against m
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matches at neighbouring sequence positions are less dependent

on each other if a non-periodic pattern P is used.
In the first version of this spaced-word approach, we used a

tree structure to find matching spaced words (Boden et al., 2013).

Herein, we described an efficient algorithm and implementation

based on recursive hashing and fast bitwise operations. While in

general, algorithms using suffix-trees have the same linear time

complexity as hashing algorithms, tree-based pattern searching is

more difficult in our approach where patterns contain don’t care

positions. Furthermore, the bitwise operations that we are using

are much faster than operations on characters. The efficiency of

our new approach enabled us to introduce amulti-pattern version

where spaced-word frequencies with respect to an entire set P of

patterns are used instead of a single pattern P.

Our test results show that spaced-word frequencies based on a

single pattern with a small number of don’t care positions lead to

better phylogenetic trees than contiguous-word frequencies, al-

though the improvement that we could achieve with this first

approach was limited; see also Boden et al. (2013). By contrast,

we obtained a significant improvement by using our multiple-

pattern approach. Here not only the resulting phylogenetic

trees are superior to trees constructed with contiguous-word fre-

quencies or single-pattern spaced words, but also the results are

less sensitive to the number of don’t care positions. On simulated

DNA and protein sequences, themultiple-pattern approach led to

results not much worse—and sometimes even better—than the

classical alignment-based approach to phylogeny reconstruction.

While the results of the single-pattern method strongly depend

on the underlying pattern P (Boden et al., 2013), our new mul-

tiple-pattern approach led to high-quality results with randomly

selected sets P of patterns and the resulting trees are statistically

more stable. However, the runtime of this approach is longer

than if a single pattern is used, it is roughly proportional to

the number of patterns in P. The single-pattern version of our

approach is faster than all other programs that we tested, but the

multiple-pattern version is slower than some state-of-the-art

alignment-free methods. A program run on a set of 14 full-

length plant genomes that cannot be handled by multiple-align-

ment methods took �4min with the single-pattern version and

about five and a half hours with the multiple-pattern version

using a set P of 60 patterns.
A crucial parameter in our approach is the weight k of the

patterns, i.e. the number of match positions. Clearly, optimal

values for k depend on the length of the input sequences. In

our study, we experimentally determined for a given group of

sequences the optimal weight k for contiguous patterns and used

this same value for our spaced patterns. First test results indicate

that the optimal weight for contiguous-word matches also works

best for spaced words (data not shown). There is no guarantee,

however, that this is always the case, so further research is ne-

cessary to find suitable weights for k depending on the input

sequences.

Another open question is which size m of the set of P of pat-

terns should be used. Figures 6 and 7 demonstrate that increasing

m generally increases the quality of the resulting trees. Form460

or 70, however, no significant further improvement could be

achieved in our test examples. It would be desirable to have a

general rule to find a suitable number m of patterns in the mul-

tiple-pattern approach, depending on the input sequences.

Finally, it is not clear which distance measure on the spaced-

word frequency vectors is most suitable in our approach. In

this study, we used the JS and Euclidean distance measures,

but other distances may be more suitable to estimate

Fig. 8. Variation coefficients of distance values calculated with spaced-

and contiguous-word frequencies using single patterns (upper curve) and

multiple patterns (lower curve) on 100 pairs of simulated DNA sequences;

see subsection 5.4 for details. Note that for 0 don’t care positions, the

spaced-word approach coincides with the contiguous-word approach

(and the multi-pattern version coincides with the single-pattern version,

as only one single pattern is possible for a given number k of match

positions). Thus, for 0 don’t care positions, our graphic shows the vari-

ation coefficient for the classical contiguous-word approach

Table 1. Runtimes of various established sequence-comparison methods

and our spaced-word implementation on 50 simulated DNA sequences of

length 16000nt each

Method Runtime (s)

Clustal W 1817

Clustal � 1039

ACS 2.7

K r 0.9

FFP 123.3

Contiguous words 0.3

Spaced words, single pattern 0.31

Spaced words, multiple patterns 27.6

Note: Contiguous and spaced words were run with k¼ 8 match positions. The

multiple-pattern option was used with sets P of 100 randomly selected patterns of

varying length.

Table 2. Runtime on 14 plant genomes with a total size of 4.6GB

Method Runtime (s)

ACS 14808

FFP 2123

Kr 30,060

Contiguous words 207

Spaced words, single pattern 242

Spaced words, multiple patterns 20295

Note: Contiguous and spaced words were run with k¼ 14 match positions. Multiple-

pattern was run with 60 patterns of varying length.
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phylogenetic distances between DNA or protein sequences based

on their spaced-word frequencies.
To answer these questions, the statistical properties of spaced-

word frequencies need to be analysed in detail, as has been done

for the hit probabilities of spaced seeds in database searching

(Keich et al., 2004). Results on the probability of word occur-

rences (Robin et al., 2005) may help to better understand the

behaviour of our method theoretically, to optimize its param-

eters and to further improve its performance.
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